
Volume 2013  |   Issue 4 |   Page 1

Research Article

Active Information in Metabiology
Winston Ewert,1* William A. Dembski,2 Robert J. Marks II1

1Electrical & Computer Engineering, Baylor University, Waco, Texas, USA
2Discovery Institute, Seattle, Washington, USA

Abstract
Metabiology is a fascinating intellectual romp in the surreal world of the mathematics of algorithmic information theory. In this 
world, halting oracles hunt for busy beaver numbers and busy beaver numbers unearth Chaitin’s number, knowledge of which 
in turn allows resolution of numerous unsolved mathematical problems, many of whose solutions would earn large cash boun-
ties.  All this, despite the fact that halting oracles can’t be implemented on a computer, a computer can never make a list of 
busy beaver numbers, and Chaitin’s number, always a positive real number less than one, is proven to be unknowable. The fun 
of metabiology is the application of these ideas to illustrate Darwinian evolution.  When metabiology’s evolutionary process 
is stripped of the glitter of algorithmic information theory, however, what remains is a procedure similar to that used in other 
attempts to model Darwinian evolution, like the ev and AVIDA computer programs. Metabiology, like ev and AVIDA, succeeds 
because available sources of knowledge about the solution being sought can be mined. We show the mining of information 
from a halting oracle has striking similarities to mining information from a simple Hamming oracle.  Unlike a halting oracle, 
however, Hamming oracles can be implemented on a computer. We demonstrate that for both oracles, information can be 
mined by search strategies that are analogous in some respects even though the methods differ; in both cases the search strat-
egy used greatly influences the result. Because metabiology’s process relies on unknowable numbers and infinite resources, 
its reported relative performance measures can only be expressed asymptotically. That is, the results of metabiology are only 
proven to be true on the largest possible scale. In fact, simple simulations using bounded resources suggest the asymptote is 
not always approached quickly, indicating that metabiology results may only hold for scales larger than any practical system. 
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1. INTRODUCTION
Gregory Chaitin is a pioneer in algorithmic information 

theory, which he developed independently from but in parallel 
with Kolmogorov and Solomonoff [1]. Algorithmic informa-
tion theory [2] builds on the work of Gödel and Turing, and 
deals in part with mind-bending mathematics, such as proving 
there are unprovable propositions and knowing that there are 
things that can’t be known.

Recently, Chaitin has embarked on the project of develop-
ing a field he dubs metabiology [3]. The underlying impetus 
for his project is to provide a solid mathematical underpinning 
for Darwinian evolution. As he states it, “The honor of math-
ematics requires us to come up with a mathematical theory of 
evolution and either prove that Darwin was wrong or right [3].” 
His approach is to model evolution in the abstract realm of 
computer programs run on Turing machines. By focusing on 
software, he hopes to learn something about the pure essence 

of the evolutionary process, which he claims is essentially about 
software, not hardware.    

As in his many other books [2,4–9], Chaitin’s description of 
metabiology [3] is casual, clear, compelling, and mind-bending. 
Yet in the end, although the mathematics is beautiful, our anal-
ysis shows that the metabiology model parallels other attempts 
to illustrate undirected Darwinian evolution using computer 
models [10–13]. All of these models depend on the principle of 
conservation of information [14–21], and all have been shown 
to incorporate knowledge about the search derived from their 
designers; this knowledge is measureable as active information 
[14,22–25]. In order for evolution to occur in these models, 
external knowledge must be imposed on the process to guide 
it. Metabiology thus appears to be another example where its 
designer makes an evolutionary model work. 
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2. ALGORITHMIC INFORMATION THEORY
Before undertaking a description of metabiology, some foun-

dational ideas from algorithmic information theory need to be 
established. Outlined below are some of the concepts and terms 
Chaitin uses.

2.1   The Halting oracle. 
Chaitin’s model makes use of a hypothetical machine that 

can produce answers to the Turing Problem. Turing’s halting 
problem [1,26] can be stated simply: 

Given an arbitrary computer program X, there is no 
meta-computer program, Y, able to analyze X that 
can announce whether or not, when run, X will stop 
or run forever. A hypothetical device capable of solv-
ing the halting problem is dubbed a halting oracle. 

Turing showed that writing a halting program Y is not pos-
sible, using the following logic: 

There are a countably infinite number of Turing 
machine programs. Each possible program can 
therefore be indexed using a positive integer. We 
arrange all these programs in a list starting with the 
smallest. The pth program is appropriately labeled as 
an integer p. Let H(p,i ) be a halting oracle program 
that decides if a program p with input i, written p(i) 
halts or not. H(p,i ) outputs a 1 if the program p(i) 
halts and 0 if it doesn’t. Like programs, all possible 
inputs can be ordered and assigned an integer num-
ber, in this case  i. Then, consider the program:

 function N(p) {  
      if (H(p,p) == 1) {          
           while (1 == 1) {         
           }    
      }    
      return 0;  
 }

Given a program p, this program outputs a 0 when 
p(p) doesn’t halt, and runs forever in a while loop 
if the program p( p) halts. What, then, of the pro-
gram N(N )? In this case, the program is analyzing 
itself to see whether or not it will halt. The results 
are contradictory. If H(N,N) = 1 in the program, we 
get stuck in the while loop  forever.   But H(N,N) = 
1 means the program  N(N) halts. This is a contra-
diction. Likewise, if H(N,N) = 0 in the program,  a 
zero is printed and the program stops. But H(N,N) 
= 0 means the program  N(N) doesn’t halt. Another 
contradiction. Thus, the assumption that there is a 
halting program H(p,i) that works for all p and i has 
been proven false.

If the Church-Turing thesis [1] is true, halting oracles do not 
exist. Conversely, if halting oracles do exist, all open problems 
in math requiring a single counterexample to disprove them 

could be solved. A commonly used example is Goldbach’s conjec-
ture, which hypothesizes that all even numbers greater than two 
can be written as the sum of two primes. Instances include 10 
= 7+3, 1028 = 1021+7, and 143,142 = 71,429+71,713.  Gold-
bach’s conjecture has eluded proof since its proposal in the 18th 
century.  

Suppose a program X can be written to test each even number 
sequentially to see if it were the sum of two primes. If a coun-
terexample is found, the program stops and declares “I have a 
counterexample!” Otherwise, the next even number is tested. 
If Goldbach’s conjecture is true, the program will run forever. 

If a halting oracle existed, we could feed it X. If the halt-
ing oracle says “this program halts,” Goldbach’s conjecture is 
disproved. A counterexample exists. If the halting oracle says, 
“This program never halts,” then Goldbach’s conjecture is 
proven! There exists no counterexample.

 There are numerous other open problems in mathematics 
that could be proven or disproven if we had a halting oracle, 
including the question of the existence of an odd perfect num-
ber and the Riemann hypothesis. Many of these problems have 
substantive cash prizes for those able to solve them! 

Metabiology uses the halting oracle in its modeling of Dar-
winian evolution.  Chaitin accurately calls the halting oracle 
a “mathematical fantasy” [3]. A computer tool proven not to 
exist is admittedly at the outset an obvious major strike against 
a theory purporting to demonstrate reality. 

2.2   Prefix-free programs1   
In order to execute a program, it has to be written in a 

language or code. Within algorithmic information theory, 
these codes are typically assumed to be prefix-free. If a com-
puter language uses prefix-free code, then no computer 
program can be a prefix of another program. For example, 
suppose that the bit stream B = 000 111 000 is a program in 
a prefix-free language. Then any other programs starting with 
000111000 are not allowed. Thus, 000 111 000 1 = B 1 and  
000 111 000 100 101 = B 100 101 cannot be computer pro-
grams in this language. 

This is illustrated in Figure 1 where a binary tree is shown. 
The tree begins with a zero and a one and begins branching. 
Some of these branches end with blocks, called leaves of the 
tree. These leaves are binary strings corresponding to prefix-
free computer codes.  The example shown in Figure 1 is very 
simplistic. Trees of actual prefix-free computer codes will be 
enormous with leaves containing thousands of bits. 

2.3   Busy beaver numbers 
All evolutionary processes seek increased fitness. In metabiol-

ogy, fitness is found through seeking busy beaver numbers. The 
meaning of “busy beaver number” is understood in the context 
of the following question: For a Turing machine with N states 
that utilizes only zeros and ones, what program will output the 
largest number? This program is dubbed the busy beaver pro-
gram and the number output is the busy beaver number. As N 
increases, the busy beaver number cannot get smaller. 

1Prefix-free programs are also called self-delimiting programs [1].
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Generating larger and larger numbers is not difficult in gen-
eral. For example, a program can be improved by construction 
of a new program that runs the original program and adds one 
to the result. This new program will be slightly longer than 
the old program. Without imposition of any stop criterion, 
the search for ever-increasing numbers as N increases requires 
unbounded computational resources. This increase is enormous 
in the search for busy beaver numbers. 

Although not apparent on first viewing, there is a relation-
ship between busy beaver numbers and the halting problem. 
Metabiology uses a variation of the busy beaver number, called 
BB(K ), the largest number able to be output by a program 
of length K bits before the program halts. To understand the 
relationship between BB(K ) and the halting problem, consider 
the following scenario: We have a program P and we want to 
determine whether or not it will halt. We can define another 
program, P', which executes P and then outputs how long it 
took to run P. If we knew BB(K ), where K is the length of P', 
we would know the longest running time P could take. If P 
took longer than that to run, we would know that P would 
never finish. Thus being able to determine the BB(K ) would be 
equivalent to having a halting oracle. 

2.4   Chaitin’s number
Some of the prefix-free computer programs in Figure 1 halt 

and some do not. We can assign a weight to each program, 2−l 

for each program where l  is the length of the program. Chaitin’s 
number asks, what is the total weight of all programs that halt? 
[8]:

                                                         

Due to Kraft’s Inequality [1], we know this to be between 
zero and one. Chaitin’s number has remarkable properties, 
prompting a leading textbook in information theory to dub it 
“Chaitin’s mystical, magical number” [1]. Since Chaitin’s num-
ber requires knowledge of whether or not a program halts, and 
halting oracles do not exist, Chaitin’s number is unknowable 
even though it exists. 

Metabiology is indirectly related to Chaitin’s number and its 
use in finding busy beaver numbers. Let p be the index of a 
prefix-free code  and let the length of the code be ℓp bits. If we 
run all programs of length L or less for L steps, some of the 

Figure 1: An illustration of a binary tree whose leaves correspond to prefix-free computer codes. The marked leaves correspond to programs that halt. 
doi:10.5048/BIO-C.2013.4.f1

Ω =
∑

all p’s that halt

2−�p . (1)Ω =
∑

all p’s that halt

2−�p . (1)

http://dx.doi.org/10.5048/BIO-C.2013.4.f1
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programs will stop. We can look at all of these programs and 
compute:

Compare this with Chaitin’s number in (1). We are summing 
over only short programs, each of which has been run for only 
L steps. Clearly, then, ΩL < Ω. But, as L → ∞, all programs will 
have been run for enough steps for them to halt and ΩL → Ω.

2.5   Big O notation 
Big O notation describes the limiting behavior of a function 

when the argument grows unbounded. For example, if y = 3e x 
+ x 3 + 4, then O( y ) = e x. Thus, for x large enough, the e x term 
will eventually dwarf the other terms and, eventually, the other 
terms will become insignificant in their contributions to the 
numerical value of y.   

3. ANALYSIS
In metabiology, in contrast with many other proposed mod-

els of evolution, there is no artificially imposed fitness function 
or artificially designed fitness landscape. Rather, metabiology’s 
landscape flows from the mathematical structure of Turing 
machine programs. Using the mathematical construct of busy 
beaver programs, metabiology does not undertake to assist the 
evolutionary process directly, as many other evolutionary mod-
els have done. Rather, metabiology asks whether busy beaver 
programs can be found by evolving computer programs. While 
this may seem straightforward on the surface, we note that 
although mathematics is replete with other number-theoretic 
landscapes, e.g. prime numbers, perfect numbers and twin 
primes, we are aware of none as exotic as busy beaver numbers.

In order to seek the above-described busy beaver numbers, 
metabiology evolves programs that output very large numbers. 
These numbers grow faster than any computable function. 
Chaitin shows that, if they could be written, his programs 
would produce large numbers very quickly [1,3,27]. But in 
order to do so, Chaitin’s model uses a halting oracle, busy bea-
ver numbers and limitless resources, things that do not exist in 
reality, or are unknowable, or are unbounded. Because meta-
biology programs have unbounded length and can run for an 
unbounded amount of time, the unboundedness essentially 
undermines the creativity required to solve the large-number 
problem. With unbounded resources and unbounded time, one 
can do most anything. One can also quickly exceed the compu-
tational resources of the known universe [14,28].

Despite use of these extraordinary tools in its working, 
metabiology follows other models of evolution that we have 
analyzed. In particular, the halting oracle is a source of design 
knowledge. Chaitin rightly states, “[The halting oracle] is where 
all the creativity is really coming from in our program [3].”  

Like gold ore from the side of a mountain, sources of infor-
mation can be mined from oracles with varying degrees of 
efficiency. One can mine gold ore with a teaspoon, a shovel, a 

backhoe, or sophisticated machinery optimized for mining gold 
ore. Metabiology mines the halting oracle for information using 
three different methods. 

For purposes of comparison and illustration, we’ll start by 
analyzing a Hamming oracle, which is conceptually much sim-
pler than the halting oracle, and show how it can be mined for 
information using different tools. Then we will show that the 
methods of mining both the halting and Hamming oracles have 
striking similarities.

3.1   Mining information from a Hamming oracle
The Hamming distance between two strings of bits is equal 

to the number of places the two strings differ, e.g., the Ham-
ming distance between 000 111 000 and 110 110 000 is three. 
A Hamming oracle has a secret, unknown, binary string of  
L bits, and our job is to guess what it is. We present a string of 
bits to the Hamming oracle and, without specifying the loca-
tion of differing bits, the oracle tells us the Hamming distance 
between our guess and the hidden number. The smaller the 
Hamming distance, the closer we are to knowing the hidden 
bit sequence.

The information to be mined is the bit sequence hidden in 
the Hamming oracle. There are a number of ways to repeatedly 
query the Hamming oracle to do this; below, we discuss three 
[29]. We evaluate each algorithm in terms of how many queries 
each takes to find the bit sequence. The smaller number of que-
ries, the better the algorithm.

Blind search (poor). The Hamming oracle has the ability to 
specify whether or not a randomly chosen sequence is correct or 
not. We choose a bit sequence at random and see if the Ham-
ming distance is zero. If it is, we have found the phrase. If it 
isn’t, another phrase is randomly chosen. The process is repeated 
until there is a success. This is a repeated Bernoulli trial with 
probability of success 2−L. The expected number of queries to 
achieve success is: 

Evolutionary ratchet search or stochastic hill climbing 
(good). Here’s a better approach that gets to the solution with 
fewer queries. We begin by choosing an arbitrary string of ones 
and zeros and present the string to a Hamming oracle. This is 
dubbed the candidate solution.

a. Choose a bit at random from the string and flip 
it. If the bit is a zero, we make it a one and, if a one, 
make it a zero. 

b. If the Hamming distance is smaller than before, 
replace the candidate solution with the new string. 
Otherwise, retain the older candidate solution.

c. Go to step a and repeat until the Hamming dis-
tance is zero, in which case the candidate solution is 
the final solution.

ΩL =
∑

all p’s not more than L bits that

halt in L or less steps

2−�p . (2)ΩL =
∑

all p’s not more than L bits that

halt in L or less steps

2−�p . (2)

Q = 2L (3)Q = 2L (3)
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This algorithm will take fewer queries than the blind search. 
The expected number of queries to a success when we start with 
a Hamming distance of L is [14]:

 where the Lth harmonic number is:

As L increases, LHL → L ln L, so the query count in Equation 
4 is significantly lower than for the blind search in Equation 3.

Sequential bit-flipping (better). The blind search described 
above makes no use of changes to the Hamming distance from 
query to query. The ratchet search, a form of evolutionary 
computing, does make use of changes in the Hamming dis-
tance, whether it is increasing or decreasing. We now show that 
sequential bit-flipping performs even better than the ratchet 
search. 

The search begins with an initialization presented to the 
Hamming oracle. The Hamming distance is recorded. Bits are 
flipped sequentially one at a time starting with the leftmost bit 
and finishing with the rightmost bit. 

a. If the Hamming distance is larger, the bit before 
the flip was the correct bit.  

b. If the Hamming distance is smaller, then the 
flipped bit is the correct bit.

In either case, the identity of the bit is now known. We 
freeze this bit into place and proceed to a like examination of 
the next adjacent bit. The process is repeated until the Ham-
ming distance goes to zero. Each query to the Hamming oracle 
thus reveals one bit of information about the unknown binary 
string. A total of L queries or less is required.

There exist even better ways to mine information from a 
Hamming oracle. For example, none of the searches here uses 
the actual numerical values provided by the Hamming oracle to 
choose the next query. The best possible search can be found by 
a search-for-the-search [30], which Ewert et al. [29] have done 
for a more general (non-binary) Hamming oracle. 

The three different searches for mining information from a 
Hamming oracle described above are summarized in Figure 
2. The efficiency of a search algorithm can be measured using 
active information per mean query [14]. The endogenous infor-
mation, IΩ, measures the difficulty of solving a problem when 
no information is known about the problem.  Finding each 
element in a binary string of length L has an endogenous infor-
mation of approximately IΩ = L bits. The mean query count 

 in Figure 2 thus allows immediate evaluation of the active 
information per mean query as:

 
3.2   Mining information using a halting oracle

Metabiology uses a halting oracle to mine information. 
Despite the fact that a halting oracle differs significantly from a 
Hamming oracle, both oracles can be mined in similar ways to 
seek identification of an unknown bit stream.  Just as the Ham-
ming oracle could be mined in three ways (described above), 
metabiology mines the halting oracle to search for busy beaver 
numbers in three ways. The different algorithms are dubbed: 

•	 Exhaustive	Search	(poor)
•	 Random	Evolution	(good)
•	 Intelligent	Design	(better)

In metabiology, fitness is measured by comparing the num-
ber a program outputs to the busy beaver number BB(K ). We 
here compare three ways to mine information from the halting 
oracles and show that some are better than others. 

Q = LHL (4)

HL =

L∑
n=1

1

n
(5)

I� =
Iω

Q
(6)

I� =
Iω

Q
(6)

Results Hamming Halting Oracle

Q I� Q I�

Poor Blind Search 2L L
2L

“Exhaustive Search” 2L L
2L

Good Ratchet Search LHL
1

HL
“Random Evolution” L2 ≤ Q ≤ L3 1

L > Q > 1
L2

Better Bit-Flip L 1 “Intelligent Design” L 1

Figure 2.  Comparison of three ways each to use the Hamming and the halting oracles in a search for a binary string. See the text for definitions. The 
value given for metabiology’s “random evolution” requires interpretation in big O notation, which is read “on the order of.” O(L2) means “on the order of 
L2” (See Section 2.6).  Values for Q and I� should be interpreted correspondingly. doi:10.5048/BIO-C.2013.4.f2

Q = LHL (4)

HL =

L∑
n=1

1

n
(5)

I� =
Iω

Q
(6)

http://dx.doi.org/10.5048/BIO-C.2013.4.f2
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Exhaustive search (poor). For exhaustive search, a computer 
program is chosen at random and its performance evaluated. 
The computer program is chosen by flipping a coin. With refer-
ence again to Figure 1, a fair coin is repeatedly flipped until we 
reach a leaf on the tree. With H = 1 for heads and T = 0 for tails, 
a flip sequence of TTTHTH gives the program 000101 which 
is the program in the upper right corner of Figure 1. The ran-
domly chosen program is presented to the halting oracle. If the 
program doesn’t halt, we start afresh flipping the coin to choose 
another program at random. If the program does halt, we run 
it and count the number of steps before the program halts. 
The coin flipping is repeated again and again. Each time we 
find a program that halts we run it and the number of steps is 
counted. When a program runs for more steps that have previ-
ously been tallied, the new program replaces the old as the best.  
The expected number of queries for the halting oracle to find 
the busy beaver number for program with a length of L bits is: 

Metabiology’s “random evolution” (good). Anyone who has 
written computer code knows that small changes in the code 
can disable function. If a computer program puts out a large 
number, then flipping a few bits in the code can result in drasti-
cally different performance. The fitness landscape of programs 
that produce large numbers by binary strings is therefore far 
from smooth. The specific form of the evolutionary ratchet 
search (stochastic hill climbing) and the bit-flipping searches 
we describe above for the Hamming oracle will therefore not 
be effective for searching among different computer programs. 
Chaitin, however, comes up with a clever alternative evolution-
ary ratchet search for extracting large number generators from 
the halting oracle.

For “random evolution” in metabiology, the random initial-
ization identifies a program, p, that will halt and generate an 
output.  The algorithm steps are: 

a. Choose another computer program, M, by flip-
ping a coin. 

b. The randomly chosen program, M, will use as 
input the binary string of the p computer program. 
To find out whether the program M with input p 
does or not stop, we use the halting oracle. 

•	 If	the	program	doesn’t	halt,	we	go	back	to	step	a.	
•	 If	the	program	does	halt,	we	run	it	and	observe	the	
output p'.

c. If the string of bits p' is determined by a halting 
oracle to be a program that stops, we run it. If the 
program outputs a longer number than p, we reassign 
p = p'. In all other cases, we keep p as is. 

d. Go to step a for the next iteration.

Because of the ratchet feature, each query will result in equal 
or better fitness values.   Eventually, busy beaver numbers will 
emerge. Remarkably, Chaitin shows that the expected number 
of queries,    , required by this algorithm for success obeys: 

In the world of big O notation, this can be significantly less 
than the query count for exhaustive search in Equation 3. 

Metabiology’s “intelligent design” (better). In metabiology, 
the “intelligent design” search makes the most efficient use of 
the halting oracle in finding busy beaver numbers. Here is the 
procedure. We guess a number Ω* and ask whether Ω* > Ω or 
whether Ω* < Ω. (We are assured equality doesn’t happen when 
Ω* is rational because Ω is irrational.) We write a program X 
to step through ever increasing values of L and keep track of 
ΩL until ΩL ≥ Ω*. If we have guessed Ω* > Ω, then X will 
never halt. We can find this out by submitting X to the halting 
oracle. If the halting oracle says “X doesn’t halt,” it is saying 
“Your guess of Ω* is too big. Guess a smaller value.” A smaller 

Figure 3. Interval halving in the “intelligent design” version of metabiology. doi:10.5048/BIO-C.2013.4.f3

Q = O(2L) (7)

I� =
Iω

Q
(6)

Q = O(2L) (7)

O(L2) ≤ Q ≤ O(L3) (8)O(L2) ≤ Q ≤ O(L3) (8)

http://dx.doi.org/10.5048/BIO-C.2013.4.f3
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value is guessed and the process is repeated. If the halting oracle, 
on the other hand, says “X halts,” it is telling you that there is an 
L such that Ω* ≤ ΩL ≤ Ω.

We could start with one bit programs in the search, but this 
would be silly. So let’s assume we know the shortest program 
requires m bits. So we:

1. Run all programs of m bits m steps and compute Ωm,

2. Run all m and m + 1 bit programs for m + 1 steps and 
compute Ωm + 1 ,  

3. Run all m, m + 1 and m + 2 bit programs for m + 2 
steps and compute Ωm + 2 ,

4. etc.  
We keep going until we get an L such that Ωv ≥ Ω*. We know 

this will eventually happen because the halting oracle says it 
will.  We can then choose a larger value of  Ω* and repeat the 
process.

An illustration is in Figure 3. A staircase of Ωℓ is shown as a 
function of ℓ that asymptotically approaches Ω as ℓ → ∞. Our 
first guess of Ω is Ω*[1]. A program X[1] is written to sequen-
tially compute Ωℓ for ever increasing ℓ until it equals or exceeds 
Ω*[1]. The halting oracle says X[1] will never stop. So the esti-
mate needs to be reduced. We choose Ω*[2] and submit X[2] to 
the halting oracle, which says the program will eventually stop. 
So we run X[2] until we get an ℓ = L such that  ΩL ≥ Ω*[2].

Once ΩL is found, we know the true value of Ω lies between 
ΩL , which we know is too small, and Ω*[1], which we know 
is too big. Using interval halving, we next test Ω*[3], which 
lies between these two values. This is shown in Figure 3. The 
program X [3] is presented to the halting oracle who responds 
“This program will never halt.” In other words, Ω*[3] is too big. 
Now we know Ω lies between ΩL and Ω*[3]. The intermediate 
value of Ω*[4] is chosen and X[4] is presented to the halting 
oracle, which announces the program will halt. Thus, as before, 
we sequentially evaluate Ωℓ’s until we find an ℓ=L̂ where, for 
the first time, ΩL̂  ≥Ω*[4].  We now know that the true value of 
Ω lies between ΩL̂  and Ω*[3]. This interval halving process is 
repeated to get estimates closer and closer to Ω.

Below is pseudocode that does what we just described. For 
a given value of Ω*, we first find the smallest value of ΩL for 
which ΩL ≤ Ω*.

function OmegaL(Ω*) { 
 L = m − 1   
 ΩL = 0, 
 while (Ω<Ω*)     {  
 L = L  + 1 
     Run all programs of L bits or less for L steps,  
     Compute ΩL in (1)  using ℓp’s for those       
        programs that halted in L steps or less.

 } 
 return ΩL ; 
 }

If Ω* > Ω, this program will run forever.  Thus, before run-
ning it, we need to use the halting oracle to find whether or not 
OmegaL halts. 

Recall, however, that the search is not for Chaitin’s number 
Ω, but for busy beaver numbers. The interval-halving process 
allows us to find the latter. When all the programs ℓ bits long 
have been run for L steps (ℓ > L), some of the programs have 
stopped and some have not. Of those that have halted, the one 
that ran the longest is a lower bound to BB(ℓ). As the interval-
halving search progresses, more and more programs will halt 
giving better and better estimates of BB(ℓ). Eventually, the 
program that generates BB(ℓ) will halt and we will have our 
busy beaver number. We will never know when this occurs, but 
are guaranteed it will as the search continues endlessly into the 
future. Unbounded time is an assumption in metabiology.

The interval-halving procedure just described is dubbed 
“intelligent design” by Chaitin. Except for the first few choices 
of Ω*, the search algorithm is deterministic as is the case with 
all interval-halving searches.

Summary. We compare the results obtained using the differ-
ent search strategies and the Hamming oracle or halting oracle 
in Figure 2. For both exhaustive and blind search, both pro-
grams require 2L queries on average. The introduction of either 
ratchet search or metabiology’s “random evolution” greatly 
decreases the number of expected queries. A more finely tuned 
algorithm such as bit-flipping or Chaitin’s intelligent design 
decreases the number of expected queries even more. 

Metabiology mines information from a halting oracle, which 
Chaitin quite properly refers to as its source of creativity. While 
the same source is used in each case, the three different search 
strategies mine active information from that source in different 
ways and with different degrees of efficiency. The poor algo-
rithm requires a large number of queries, and extracts a small 
amount of active information per query. The good algorithm, 
based on evolutionary search, takes fewer queries, and extracts 
more information per query. It makes better use of the available 
information source. However, the better algorithm, based on a 
carefully constructed algorithm to extract the information in 
the most efficient manner possible, uses still less queries. The 
evolutionary approach does comparatively poorly (see Figure 
2). The same is the case for the search strategies using a Ham-
ming oracle: the “evolutionary” ratchet search performs less 
well than an “intelligent” bit-flip search.

3.3   Simulation
Metabiology works in the theoretical realm of algorithmic 

information theory, where time and space limitations mean 
nothing, halting oracles can be used despite not existing, and 
all that matters is asymptotic behavior described by big O nota-
tion. A realistic model may behave quite differently. In order to 
test this, we have simulated a test of metabiology, using some-
thing similar to Chaitin’s model, but with resource constraints.

To do this, we used the programming language P" [31,32]. 
The language uses four symbols:  R (which moves the Turing 
machine tape to the right); λ, which increments the current 
symbol and moves to the left; and parentheses, “(” and “)” to 
demarcate a loop: the instructions inside are repeated as long 
as the symbol under the head of the tape isn’t the first symbol. 
For our purposes, our symbols are limited to R, λ, “(”, and “)”, 
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where R is the first symbol. The programs were executed using 
a tape with these four symbols so that the programs could natu-
rally be taken as the input and output of other programs. 

Since P" is a Turing complete language, it is possible to cre-
ate loops which will never terminate. Metabiology solves this 
problem by using a halting oracle, which we do not have. We 
approximate this by limiting execution time to 100,000 cycles. 
Any program executing for longer than that is assumed to be in 
an infinite loop, and is terminated.

We can generate random programs of various lengths using 
P". One of the four symbols is repeatedly chosen uniformly. 
We require every right parenthesis “)” be balanced by a preced-
ing left parenthesis “(” in order for the program to be valid. If 
“)” is chosen without a balancing “(”, the random generation 
stops instead of adding the symbol. Should the program reach a 
length of 100,000 it is also stopped. 

For random evolutionary search, we start filtering randomly 
generated programs until we find one that halts. For 10,000 
iterations, the current program is fed as input to another 
randomly generated program. The output is tested, and if it 
produces a longer output tape than the original, it is accepted; 
otherwise the previous program is kept.

For exhaustive search, 10,000 random programs were gener-
ated and tested. The best of all these programs is reported as 
the result.

Figure 4 shows the results of the experiment run for 50,000 
Monte Carlo iterations, using either the random evolution or 
the exhaustive search strategy. Contrary to metabiology’s per-
formance as suggested by big O notation, exhaustive search 
produces longer programs with higher probability than does 

random evolution, when the number of trials are limited. In 
other words, in this simulation exhaustive search is better than 
evolutionary search. How can this be? Metabiology’s claim that 
evolution is better than random search only applies asymptoti-
cally, under conditions of unlimited resources. Our P" model 
will eventually converge on metabiology’s asymptotic result, 
given additional time. Thus, given enough generations and a 
large enough limit on execution time, metabiology evolution 
will beat randomness, but in the short term, metabiology does 
not demonstrate successful Darwinian evolution.

4. CONCLUSION 
4.1   Resources and reality

Although elegant in conception, metabiology departs from 
reality because it pays no attention to resource limitations. 
Metabiology’s math obscures the huge amounts of time required 
for the evolutionary process. The programs can run for any arbi-
trarily large number of steps. Additionally, programs can be of 
any length with no penalty imposed for longer programs.

As mentioned, big O notation only describes the limiting 
behavior of a function when the argument grows unbounded. 
The notation must be interpreted with care. If y = 3et – e1000, 
then O( y ) = e t even though 3e t will not overtake e1000 in all of 
recorded history with t measured in picoseconds. Furthermore, 
big O does not distinguish between y = 3e t and y =  10100000et. 
This means that huge costs that are not apparent from results 
presented in big O notation are hidden in the analysis of meta-
biology. If we take these into account, we see that running a 
program for the number of steps indicated in Figure 3, requires 

Figure 4: Comparison of random evolution and exhaustive search on metabiology. doi:10.5048/BIO-C.2013.4.f4

http://dx.doi.org/10.5048/BIO-C.2013.4.f4
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more computational resources than are universally available 
[14,28].

The typical definition of the busy beaver problem is the search 
for the program that produces the largest number amongst a 
certain class of possible Turing machines. When this class is 
finite, there is a busy beaver program. One of the programs 
under consideration will produce the largest number, even 
though it is in general impossible to mechanically determine 
the correct answer. 

Metabiology considers the class of all programs, not 
merely those limited by a certain size. As a result, there 
is no program that is a busy beaver, only some programs 
with larger output then others. It is always possible to  
produce a longer Turing machine program, which produces  
a larger number. To solve the busy beaver problem requires  
creativity, because the program must make the most out of  lim-
ited resources. Metabiology lacks this requirement for creativity.

Chaitin notes that as his metabiology is made more biologi-
cally realistic he will probably be unable to prove results and 
instead have to be content with simulation. It seems that the 
first step toward making metabiology realistic would be the 
introduction of resource limitations. However, it is the very 
absence of limitations that makes the proofs work. We suspect 
that any emerging version of metabiology will be akin to Ham-
ming oracle mining, or any one of a number of other computer 
models purporting to demonstrate Darwinian evolution [10–
14,22–25].

4.2   Metabiology landscapes  
An interesting part of metabiology is the demonstration of 

evolution amongst Turing machine programs, which we would 
not suspect are suitable for the evolutionary process. We would 

think that changing a single bit of a Turing machine pro-
gram could produce very large changes in the output. As any 
computer programmer will tell you, landscapes of computer 
program fitness are the opposite of smooth. We would therefore 
not expect Darwinian evolution to fare well. Chaitin notes this 
when he writes [3], “The fitness landscape has to be very special 
for Darwinian evolution to work.”

The environment for evolution to occur, therefore, has to be 
carefully designed. Indeed, in the paradigm of conservation of 
information, smooth landscapes can be source of significant 
active information [14].  Metabiology’s construction of smooth 
landscapes is accomplished by running all viable programs, 
a computationally expensive approach that is only possible 
because there are no resource limitations.

While metabiology is fascinating, it falls short of demon-
strating the abilities of undirected Darwinian evolution. Other 
programs have claimed to simulate Darwinian evolution. These 
incluvde AVIDA [11,23] and ev [12,33]. Like AVIDA and 
ev, metabiology makes use of external information sources to 
assist in the search. Like the simple Hamming oracle, the halt-
ing oracle can be mined for information with various degrees 
of sophistication.  Evolution thus requires external sources of 
knowledge to work. The degree to which this knowledge is used 
can be assessed using the idea of active information.

Chaitin states [3], “For many years I have thought that it is 
a mathematical scandal that we do not have proof that Dar-
winian evolution works.” In fact, mathematics has consistently 
demonstrated that undirected Darwinian evolution does not 
work. The multiverse is neither large enough nor old enough 
[14,28]. Consistent with the laws of conservation of informa-
tion, natural selection can only work using the guidance of 
active information, which can be provided only by a designer.     
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