
Conservation of Information in Relative Search
Performance

Winston Ewert & Robert J. Marks II
Dept. of Electrical & Computer Engineering

Baylor University
Waco, Texas

William A. Dembski
Discovery Institute

Seattle, WA

Abstract—While conservation of information popularized by
the No Free Lunch (NFL) theorem establishes that all search
algorithms have the same performance on the average, this
appears not to be true when performance is compared in
a relative manner. Some algorithms look to perform better
than others. However, this advantage is lost when averaging
is over a group of related algorithms. Every advantage against
one algorithm is balanced by a disadvantage against a related
algorithm. From this perspective, conservation of information
still applies. As a consequence, comparative transitivity does not
hold. If search procedure Z beats Y which, in turn, beats X, we
cannot conclude that Z beats X. Indeed, the opposite might be
true.

Index Terms—conservation of information, No Free Lunch
theorems, active information

I. INTRODUCTION

Conservation of information (COI) [1], [11], [13]–[15]
demonstrates the futility of attempting to solve general in-
termediate or larger sized problems without application of
knowledge about the problem being solved. In the case of an
arbitrary search problem, the No Free Lunch (NFL) theorem
[8], [10], [13], [15], [16], for example, dictates any search
algorithm can be substituted for any other algorithm without
changing the search performance on average. This is true
regardless of how the performance is defined as long as it
only depends on the values obtained by the search process.

However, comparison of the relative performance of search
algorithms do not exhibit this property [2], [9], [15]. Indeed,
Wolpert and Macready [15] presented a such an example in
their original paper referring to it as a minimax distinction
between algorithms.

As a simple example consider a treasure buried in one of
three possible locations in an desert island. Two pirates, X and
Y, arrive at the island with the intent of digging up the treasure.
Each pirate has to pick a strategy consisting of choosing the
order of locations to be visited. If one of the pirates searches
a location after his rival, he will not find the treasure. We will
assume that the treasure is equally likely to be found in any
of the locations.

As illustrated in Figure 1, assume Pirate X searches for
the location in a specific order such as (1,2,3). Assuming
uniformity [3], the probability of the treasure being found
in any of those locations is 1

3 . Pirate Y uses a related but
different search order: (2,1,3). Again, the probability of finding

the treasure at any of the locations is 1
3 . Each strategy alone

will thus have the same performance as dictated by the NFL
theorem.

However, this changes if both pirates are hunting for trea-
sure at the same time. Pirate Y has chosen locations such that
in two of the three cases, he will have searched a location
and taken the treasure before Pirate X. If the treasure is at
location 1, Pirate X will get the treasure. However, if the
treasure is location in locations 2 and 3, Pirate Y will have
checked all those locations first, and thus Pirate Y will win.
Pirate X will get treasure one in three times, whereas Pirate
Y will claim the treasure two out of three times. In this sense,
the strategy of Pirate Y is better than the strategy of Pirate
X. This is true despite the two strategies performing the same
when considered separately.

Due to the generality of the conservation of information
results, any exception to the general principle, such as these
unbalanced performance results, give pause. Does such a basic
and simple variation cause conservation of information to no
longer be valid? And if there is a violation of the conservation
of information here, should there not be ways to exploit the
failure to construct superior search algorithms?

The answer to these questions is no. The apparent “free
lunch” of Pirate Y over Pirate X is not a failure of conservation
of information. One strategy may beat another head-to-head,
but when compared to a group of related strategies, losses
and wins will balance out. Victories against one strategy are
paid for by losses against another. Consequently, there exist

Fig. 1. Pirates X and Y search for buried treasure in parallel. The treasure
can be in one of three locations.

45th Southeastern Symposium on System Theory
Baylor University, Waco, TX, USA, March 11, 2013

978-1-4799-0038-1/$31.00 ©2013 IEEE 71

TABLE I
INAPPLICABILITY OF TRANSITIVITY EXAMPLE.

Teams → ZY YX XZ
Treasure Location ↓ ↓Winner↓

1 Z X X
2 Y Y X
3 Z Y Z

Overall Winner → Z beats Y Y beats X X beats Z

As shown in Figure 1, Pirate X’s search order is (1,2,3) and Pirate Y’s order is
(2,3,1). Not shown is Pirate Z with order (3,1,2). This table shows who wins
(always with probability 2

3
) when the pirates are paired. Transitivity does not

hold.

no generally superior search algorithms.
The transitive property necessary to establish an overall

superior search algorithm is inapplicable to search. Pirate Y
has the advantage over Pirate X. A third Pirate Z chooses the
sequence (3,1,2) which beats Pirate Y. Thus Pirate Z beats
Pirate Y who beats Pirate X. If transitivity applies, Pirate Z
beats Pirate X. But the opposite is true, Pirate X beats Pirate
Z. Details are in Table I. This transitivity inapplicability was
previously noticed by Koppen et al. [9].

More generally, Table II shows the probability of a strategy
for finding the treasure first as compared against all other
strategies. Each strategy has the same bag of performances
albeit against different strategies. Every strategy has an advan-
tage against some other strategy, but also has another strategy
with an advantage over it. Thus, no way exists to gain an
absolute advantage over all other strategies.

The lack of an absolute advantage limits the sense in which
one strategy can be better then another. One can beat a
specific algorithm, but not in a way that actually performs
better against all other algorithms. Pirate A is only able to
outperform his rival if he somehow knows the strategy his
rival will employ. Thus, as would be expected from the idea
of the conservation of information, knowledge of the rival’s
strategy is necessary in order to beat it.

Consider the random algorithm. This is equivalent to ran-
domly choosing which strategy to employ. Playing against this
strategy will produce the average performance of all strategies.
This average is the same regardless of the opposing strategy, so
no way exists to consistently best a random search algorithm.

The application of knowledge of Pirate Y about Pirate X to
Pirate Y’s strategy can be measured in terms of active infor-
mation. [4]–[7], [12]. Table II shows that, with no knowledge
of Pirate X’s search strategy, Pirate Y has a probability of
p = 1

2 of finding the treasure first. When Pirate X’s schedule is
known, Pirate Y’s chances increase to q = 2

3 . This knowledge
gives rise to

I+ = − log2

(
p

q

)
= − log2

(
3

4

)
= 0.415 bits

of active information.
As an extreme example, consider the alternate scenario

where Pirate X and Y decide who keeps the treasure by the
majority of wins in three quick games of rock-paper-scissors.
If Pirate Y knows the strategy of Pirate X, Pirate Y can win

all three games. With p = 1
2 and q = 1, Pirate Y’s knowledge

of Pirate X’s strategy can be translated into one bit of active
information.

The contest between Pirate X and Y illustrated in Figure 1
can be generalized. For any given search algorithm, we can
generate a family of related search algorithms. When averaged
over a distribution of functions closed under permutations as
well as over the family of search algorithms, no advantage
exists and the principle of conservation of information still
applies.. Advantages against certain algorithms on certain
fitness functions must be paid for by disadvantages against
other algorithms on other fitness functions.

II. THE GENERAL RESULT

Given a search algorithm, we can define a new search algo-
rithm by applying a permutation to the query space. Let α(f)
be the fitness values obtained by the search algorithm, α on
the fitness function f . Let αp, where p is a permutation on the
query space, be another algorithm such that αp(f) = α(f ◦p).
Whenever αp makes a query, it interprets the query through
the permutation thus a producing a related by distinct search
algorithm. Let P be all possible one to one functions on the
query space.

T (α) = {αp|p ∈ P} (1)

is the family of search algorithms related to α.
The NFL theorem holds for any distribution over functions

which is closed under permutation [8]. That is∑
f∈F

Pr[f]χ(α(f)) =
∑
f∈F

Pr[f]χ(δ(f)) (2)

where χ is some performance metric, α(f) is the values
obtained by the search algorithm α run on the fitness function
f . δ is any search algorithm. The search algorithm can be
substituted for any other algorithm without changing the
averaged performance. The essential reason for this is that the
values obtained by a search algorithm are independent of the
algorithm, and thus any function of those will be independent
as well.

The relative performance of a pair of algorithms, α and β
can be defined as

%(α, β) =
∑
f∈F

Pr[f]χ(α(f), β(f))

Notably, substituting different algorithms in this expression
may produce a different average even when averaged over the
uniform distribution.

Theorem 1. If for any f ∈ F , Pr[f] = Pr[g] for any g ∈ Π(f)
where Π(f) is the set of permutations of f then

℘ :=
∑

γ∈T (β)

%(α, β) =
∑

γ∈T (β)

∑
f∈F

Pr[f]χ(α(f), γ(f))

is independent of α and β

Proof:

℘ =
∑

γ∈T (β)

∑
f∈F

Pr[f]χ(α(f), γ(f))

72

TABLE II
PROBABILITY OF FINDING THE TREASURE FIRST FOR ALL STRATEGIES.

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
(1, 2, 3) 0.00 0.25 0.25 0.50 0.25 0.25
(1, 3, 2) 0.25 0.00 0.25 0.25 0.25 0.50
(2, 1, 3) 0.25 0.50 0.00 0.25 0.25 0.25
(2, 3, 1) 0.25 0.25 0.25 0.00 0.50 0.25
(3, 1, 2) 0.50 0.25 0.25 0.25 0.00 0.25
(3, 2, 1) 0.25 0.25 0.50 0.25 0.25 0.00

From (1) and the definition of αp, γ(f) = β(f ◦ p). Thus

℘ =
∑
p∈P

∑
f∈F

Pr[f]χ(α(f), β(f ◦ p)).

Exchanging the summations give

℘ =
∑
f∈F

Pr[f]
∑
p∈P

χ(α(f), β(f ◦ p))

p is only used in the expression f ◦ p, so we can rewrite this
as

℘ =
∑
f∈F

Pr[f]
∑

g∈Π(f)

χ(α(f), β(g))

The inner summation is a function of the values obtained by
a search algorithm averaged over a permutation. This follows
from (2). We can therefore substitute the algorithm β with
another arbitrary algorithm, δ.

℘ =
∑
f∈F

Pr[f]
∑

g∈Π(f)

χ(α(f), δ(g))

Let Y be the set of subsets of F such that each subset contains
all functions which are permutations of each other.

℘ =
∑
y∈Y

∑
f∈y

Pr[f]
∑

g∈Π(f)

χ(α(f), δ(g)).

By the assumption of the theorem, all Pr[f] = Pr[g] for any
f, g in a specific y ∈ Y . Thus we can move the probability
out of the summation.

℘ =
∑
y∈Y

Pr[f]|y|
∑
f∈y

∑
g∈Π(f)

χ(α(f), δ(g))

We observe that Π(f) = y where f ∈ y. Thus

℘ =
∑
y∈Y

Pr[f]|y|
∑
f∈y

∑
g∈y

χ(α(f), δ(g)).

The summation over f fits the form of (2) so we can substitute
the algorithm α with another arbitrary algorithm, δ′.

℘ =
∑
y∈Y

Pr[f]|y|
∑
f∈y

∑
g∈y

χ(δ′(f), δ(g))

Thus the relative performance averaged over the set of related
functions does not depend on the choice of algorithm α and
β.

The relative performance of an algorithm when averaged
over a closed-under-permutation distribution and over the
family of related algorithms is independent of the choice of
algorithms. Above average performance in one situation must
be paired with below average performance in another situation.

III. CONCLUSION

We have shown that no generally superior algorithm can be
produced even when using relative performance metrics. Better
performance against some algorithms is paid for by worse
performance against other algorithms. One can devise an
algorithm that is relatively superior to another, but not against
all other algorithms. In order to best an algorithm, active
information is required from extra knowledge of the problem.
This parallels the case of the NFL requiring information
about the fitness function in order to improve performance.
Finally, random search exhibits the same average performance
regardless of which algorithm it faces. Thus no way exists to
gain an advantage on average over random search.

The principle of conservation of information still applies
in the case of relative performance metrics. The appearance
of free lunches in relative performance metrics does not give
us any way to exploit them to create generally superior
optimizers.

ACKNOWLEDGEMENTS

This work was supported in part by the Center for Evolu-
tionary Informatics.

REFERENCES

[1] Steffen Christensen. What can we learn from no free lunch? a first
attempt to characterize the concept of a searchable function. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2001.

[2] David W. Corne and Joshua D. Knowles. No free lunch and free leftovers
theorems for multiobjective optimisation problems. In Evolutionary
Multi-Criterion Optimization (EMO 2003) Second International Con-
ference, pages 327–341. Springer LNCS, 2003.

[3] W.A. Dembski and R.J. Marks II. Bernoulli’s principle of insufficient
reason and conservation of information in computer search. In Systems,
Man and Cybernetics, 2009. SMC 2009. IEEE International Conference
on, pages 2647 –2652, oct. 2009.

[4] William A. Dembski and Robert J. Marks II. Life’s Conservation Law:
Why Darwinian Evolution Cannot Create Biologica Information. In
Bruce Gordon and William A. Dembski, editors, The Nature of Nature,
Wilmington, Del., 2009. ISI Books.

[5] William A. Dembski and Robert J. Marks II. The Search for a Search:
Measuring the Information Cost of Higher Level Search. Journal
of Advanced Computational Intelligence and Intelligent Informatics,
14(5):475–486, 2010.

[6] Winston Ewert, William A. Dembski, and Robert J. Marks II. Evo-
lutionary synthesis of nand logic: Dissecting a digital organism. In
2009 IEEE International Conference on Systems, Man and Cybernetics,
number October, pages 3047–3053. IEEE, October 2009.

[7] Winston Ewert, George Montañez, W.A. Dembski, and Robert J. Marks
II. Efficient per query information extraction from a hamming oracle.
In System Theory (SSST), 2010 42nd Southeastern Symposium on, pages
290 –297, march 2010.

73

[8] Christian Igel and Marc Toussaint. A No-Free-Lunch theorem for
non-uniform distributions of target functions. Journal of Mathematical
Modelling and Algorithms, 3(4):313–322, January 2005.

[9] M. Koppen, D.H. Wolpert, and W.G. Macready. Remarks on a recent
paper on the ”no free lunch” theorems. IEEE Transactions on Evolu-
tionary Computation, 5(3):295–296, June 2001.

[10] Tom Loredo. No Free Lunch : Challenging Problems for Frequentist &
Bayesian Approaches No Free Lunch for Optimization. Outlook, (July),
2009.

[11] TM Mitchell. The need for biases in learning generalizations. Technical
report, Department of Computer Science, Rutgers University, 1980.

[12] George Montañez, Winston Ewert, William A. Dembski, and Robert J.
Marks II. A Vivisection of the ev Computer Organism: Identifying
Sources of Active Information. BIO-Complexity, 2010(3):1–6, April
2010.

[13] D.L. Pepyne and Y.C. Ho. Simple explanation of the no free lunch
theorem of optimization. In Proceedings of the 40th IEEE Conference
on Decision and Control (Cat. No.01CH37228), volume 5, pages 4409–
4414. IEEE, 2001.

[14] Cullen Schaffer. A conservation law for generalization performance.
In Cohen WW and Hirsch H, editors, Proceedings of the Eleventh
International Machine Learning Conference, pages 259 – 265, 1994.

[15] D.H. Wolpert and W.G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
April 1997.

[16] John R Woodward and James R Neil. No Free Lunch, Program Induction
and Combinatorial Problems. Genetic Programming Proceedings of
EuroGP2003, 2610:475–484, 2003.

74

