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Abstract—The allocation of resources between tasks within 
a swarm of agents can be difficult without a centralized 
controller. Disjunctive control has been shown to be a viable 
method to control the behavior of a swarm. In this project, a 
disjunctive fuzzy control system is used to solve the problem 
of resource management. Multi-state swarms are evolved 
with an offline learning algorithm to adapt to dynamic 
scenarios with multiple objectives. Some of the emergent 
behaviors developed through the evolutionary algorithm 
were state-switching and recruitment techniques. 

Index Terms—Keywords: swarm intelligence, multi-
state, task switching, fuzzy control, emergent behavior 

I. INTRODUCTION 

An important component of swarm intelligence 
systems is division of labor. If there are multiple, possibly 
competing, objectives, how is a group of autonomous units 
able to decide how many units should work on each 
objective? In this paper, we will demonstrate the ability of 
these swarms to adapt to dynamic conditions by 
autonomously reallocating resources as necessary in order 
to achieve multiple objectives. Our solution is based on 
strategies found in nature, both the state-switching 
methods employed in ant colonies and recruitment 
techniques found in swarms of bees [1]. These methods are 
tested in simulations that require the swarms to accomplish 
two objectives at the same time: such as defending a 
friendly unit or attacking enemy targets. Section II 
provides a brief background of Swarm Intelligence. In 
Section III, we describe a Point Attack & Point Defense 
game played by two swarms, in which each works to both 
defend its base and destroy its enemy’s base. Agents use 
threshold functions to control state-switching behavior. 
Section IV describes a Search & Destroy mission that a 
swarm is tasked with completing. The swarm must find 
and destroy an enemy target within a time limit using 
recruiting techniques. These two scenarios are combined in 
a Base Attack simulation, which is described in Section V. 
Here, both state-switching thresholds and recruiting 
methods are used by the swarm. In each case, an 
evolutionary learning algorithm is used to optimize these 
strategies based on fitness scores. The resulting emergent 
behaviors are shown to be robust as the swarms continue 
to perform well even as the population of the swarm 
decreases. A portion of the following results have 
previously been published [12]. 

II. SWARM INTELLIGENCE 

In a swarm, each agent is computationally simple, 
compared to the complexity of the whole. Individual 
agents follow a set of simple rules which define the agent’s 
behavior. However, when a large number of the agents are 
allowed to work together, the result can be a unique and 
sometimes surprising emergent behavior. For the following 

simulations, decisions the agents make, such as “Where do 
I go next?”, or “Should I begin working on a new task?” 
are controlled via inputs from a group of sensors. These 
inputs are fed into weighting functions which determine 
the resulting decisions of the unit. 

Previous research [3][6] has focused on designing 
swarms with a single objective. These swarms 
demonstrated the use of Combs control [6] as a viable 
solution to determining the individual rules within a 
swarm. Most previous simulations involved two swarms 
competing in a simple game. By using an evolutionary 
algorithm to optimize the fitness scores of these swarms, 
each swarm was able to develop strategies and counter-
strategies to beat its opponent. Our goal throughout this 
project is to expand upon the previous work to more 
complex swarms that can achieve two or more objectives 
in a dynamic environment. 
 

 

III. POINT ATTACK & POINT DEFENSE SWARMS 

A. Simulation 

The first simulation that we investigate is a Point 
Attack & Point Defense competition. Two swarms 
compete against each other. Each swarm has two, possibly 
competing objectives: to guard its own base from enemy 
attacks, and to find and destroy an enemy base. The game 
is played in a rectangular, two-dimensional grid, as shown 
in Figure 1. The edges of the grid a rigid, so when an agent 
runs into the edge, it bounces off in the opposite direction.  

At the beginning of the simulation, two teams are 
initialized, which we will refer to as swarm one and swarm 

Figure 1. A screenshot from the Point Attack & Point Defense 
simulation. Swarm one is shown by the blue and white dots, with blue 
representing defending agents and white, attacking. Swarm two is 
shown in green and gold for defensive and attacking agents, 
respectively. Bases are shown in red. The size of the dot is an indicator 
of the relative strength of the agent.
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two. Swarm one is initialized on the left wall with swarm 
two on the right, like many competitive team-based games. 
When two agents bump into each other, a battle is 
triggered. In a battle, each of the two agents involved does 
a random amount of damage to its opponent, scaled by the 
strength of the agent. When an agent’s strength reaches 
zero after a battle with an opposing agent, it is removed 
from the playing area. When an agent reaches the enemy 
base, the same attack algorithm is used. In the case of 
attacking an enemy base, however, the battle is one sided 
as the base is not able to fight back. Each team’s base is 
placed in a randomized location near its friendly wall. The 
base starts with a large strength value. The simulation 
continues until one of the two bases has been destroyed by 
reducing its strength to zero. Since each swarm has two 
objectives (aggressive and defensive), agents are allowed 
to take on one of two states. Aggressive agents are tasked 
with finding and attacking the enemy base, while defensive 
agents repel enemy attacks on the friendly base. 

 
Each agent is able to sense nearby units and can 

distinguish friendly agents from enemy agents. In addition, 
agents are aware of the current state of other units they can 
sense. The sensor readings are fed into weighting 
functions, which determine the resulting movement of the 
agent. A sample weighting function is shown in Figure 2. 
The weighting functions come in pairs. One function 
defines movement toward or away from the object being 
sensed, while the second controls movement parallel to the 
object. The combination of the two allows the agent a full 
range of movement relative to the object in the two 
dimensional playing grid. In addition to the contributions 
of the series of weighting functions, each agent also takes a 
random step (or twiddle, as we call it). This twiddle is a 
crucial component to the simulation, since without it, 
agents out of range of anything else would remain 
motionless. 

 
The swarms in the Point Attack & Point Defense 

scenario are multi-state. Agents within the swarms are able 
to take on one of multiple states in order to allow the 
swarm as a whole to achieve multiple objectives 
simultaneously. In addition to being multi-state, these 
swarms also need to be dynamic for them to be able to 
adapt to changing conditions within the playing field. The 
first problem is choosing a method that would allow 
individual agents to switch tasks, if needed, without the 
use of a centralized controller. Our solution was inspired 
by the behaviors of certain types of ants in nature. Within 
most ant colonies, there are multiple roles the ants fulfill. 
When circumstances dictate, ants are able to temporarily 
switch tasks to help the rest of the anthill with a task that 
needs extra work. For instance, a soldier ant that senses a 
large amount of food piled up that needs to be taken into 
the hill could decide to switch and function as a worker 
until the transportation of the food is completed. The 
decision making process can be modeled as a threshold 
function with a sigmoid shape [1]. 

In a similar fashion, agents within the Point Attack & 
Point Defense swarms switch tasks based on threshold 
functions attached to sensors that count the strength of 
nearby agents in different states. A sample threshold 
function is shown in Figure 3. If an agent senses a large 
number of agents around it working on the same task 
relative to the agent’s threshold, role saturation occurs and 
it is inclined to switch to the other task. Also, if an agent 
senses the relative strength of enemy units with respect to 
friendly agents to be too large, it may decide it’s in danger 
and send out a distress signal asking nearby units of a 
different state to switch to the agent’s current state. If those 
other agents sense that their current task has enough agents 
and are in a “safe” position, they may be inclined to switch 
to help out the agent in distress. In the early stages of the 
design process, agents considering switching counted the 
number of nearby agents, not their strengths. This caused 
some problems, as weaker agents were counted the same 
as stronger agents. For instance, a group of seven weak 

 
Figure 2. Sample weighting function. This function represents the 
sensor that finds the distance between an agent and its closest friend 
of a different state (within range). In this example, an agent within 
28 units of the friendly agent is repelled from the agent while an 
agent at a distance of greater than 28 is attracted to the other agent. 
The emergent behavior of this simple rule is the agents attempting 
to maintain a distance of 28 units away from all agents of a different 
state. 

 
Figure 3. Sample threshold function. This function shows how the 
difference between enemy strength and allied strength is used to 
determine whether or not the agent is in danger. In this case, the 
threshold 70, so if an agent senses that the difference is less than 70, 
the agent will most likely not consider itself to be in danger. If the 
difference is sensed to be greater than 70, then odds are the agent 
does think it’s in danger. 
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agents encountering two strong opposing agents would 
think that they were in good shape, when in fact, the group 
of two had a distinct advantage. By comparing the relative 
strengths of nearby agents, the swarm was better able to 
judge when agents were safe or in danger. 

B. Coevolution 

The weighting functions were optimized using an off-
line learning algorithm based on coevolution. In 
coevolution, two populations are evolved against each 
other. One of the drawbacks of coevolution is that it can 
become difficult to tell if strategies are improving simply 
by looking at the results of the fitness function. At first 
glance it appears that there is not much progress being 
made, but the populations are learning as the evolution 
process goes on. Eventually, however, the populations will 
reach a point of equilibrium, where the teams have both 
maximized their fitness performance and are equally 
matched. 

 
The coevolution process is shown in Figure 4. First, 

both populations (pop1 and pop2) are filled with randomly 
generated teams. Then, pop2 is “frozen” and one team is 
randomly selected from it to compete against pop1. In one 
generation, each team in pop1 plays 30 games against the 
team from pop2. Then the teams in pop1 are ranked 
according to their fitness scores. After ranking, the bottom 
half of the teams in pop1 are removed and the remaining 
half is duplicated. These duplicates are then mutated by 
adding random Gaussian noise to the weighting functions. 
This allows the learning algorithm to remove poor 
performing teams and search out better solutions similar to 
the successful ones. After mutations, one generation of 
evolution is complete and the cycle repeats. After 100 
generations, the evolution switches to the other population. 
Pop1 is frozen and all the teams within pop2 play 30 
games each against the best team from pop1. 

The fitness score for this scenario is carefully 
formulated. Unlike previous swarms where a single value 
could be tracked [6], such as time survived, this swarm has 
multiple goals. A successful swarm should be able to 
guard its own base long enough to find and destroy the 
opponent’s base, while at the same time keeping as many 
agents alive as possible. A swarm that attacks its 
opponents base can receive up to 50 fitness points based 

on how much damage it inflicts on its enemy’s base, along 
with up to 50 more points based on how much strength its 
own base has remaining at the end of the simulation. If a 
swarm successfully destroys its opponent’s base, a bonus 
of up to 50 points can be awarded depending on the 
number of surviving agents in the victor’s swarm. If a team 
does not attack its opponent, it receives one point if it at 
least finds its opponent’s base, and zero points if it fails in 
its search. 

 

C. Results 

The fitness scores over the course of the evolution 
process are shown in Figure 5. Only the fitness scores of 
the “active” population being evolved are shown. The 
populations take turns being evolved against the other 
every 100 generations. These switches occur at the 
discontinuities on the graph. Initially, pop1 is the active 
population for 50 generations and achieves excellent 
scores. This is not that impressive, however, considering 
their opponent is a just a team with randomized weighting 
functions. At generation 50, pop1 is “frozen” and pop2 is 
evolved. Since pop1 is much more highly evolved than 
pop2, pop2 has a difficult time competing against pop1 
and receives poor fitness scores. This pattern repeats for 
almost the next 1000 generations, until pop2 finally 
catches up to pop1 and they both become equally matched 
opponents. After approximately 1200 generations, the 
algorithm is able to optimize the parameters of the swarm 
to maximize its ability to both defend its base and attack 
the enemy base. 

For a highly evolved swarm, when the simulation 
started, approximately two thirds of the swarm switches 
into an aggressive mode, with the rest of the agents acting 
as defenders. The defenders form a small mob around their 
friendly base to fend off enemy attacks. A larger number 
of agents are required for the offensive task due to the fact 
that spreading out across the map to find the enemy base 
takes more units to complete as opposed to the smaller 
number needed to defend the base. When opposing agents 
approached either other, the stronger group of agents 
usually begins chasing the weaker group, since the 
outcomes of battles are determined using the relative 
strengths of the agents. As the simulation progresses, 
defending agents slowly die off, only to be replaced by 
nearby agents that determine that they are safe enough to 
do so. This process allows each swarm’s defenders to 

 
Figure 4. The Coevolution Process. 

Figure 5. Evolution Results for the Point Attack & Point Defense 
Swarms
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guard its base until its attackers find and attack its enemy’s 
base. Eventually, as both sides incur losses, the swarms 
begin to break down and cease to function as swarms. 

The Point Attack & Point Defense swarm simulation 
demonstrates how techniques found in swarms of ants can 
be applied to a battle type scenario. By allowing the agents 
to switch between tasks during the simulation, the swarms 
are able to perform well for a longer period of type and can 
adapt to their current circumstances. The optimized rules 
applied as a set of weighting functions and threshold 
functions, while simple, were able to result in a flexible 
and robust emergent behavior which allows the swarm to 
complete two separate objectives. Coevolution is shown to 
be an effective means of optimizing the parameters for the 
scenario. 
 

 

IV. SEARCH & DESTROY 

A. Simulation 

The second simulation for the swarms to learn is a 
Search & Destroy mission, shown in Figure 6, wherein a 
swarm is tasked with finding and eventually destroying an 
enemy target. Unlike the previous example, this enemy is 
allowed to fight back. In order to encourage the emergent 
behavior of recruitment, the enemy is able to withstand 
attacks of less than 3 units. The enemy is also able to 
inflict a random amount of damage, ranging from zero to 
ten, against attacking agents which are initialized with a 
strength value of 100. When an agent’s strength drops to 
zero, it is removed from the field of play. This process 
allows for the enemy to survive attacks of less than three 
agents and destroy the failing agents. The simulation 
continues until either the target is destroyed, the swarm 
dies out or the time limit expires. 

 
Agents in this swarm have the ability to take on one of 

three states: scouts, recruiters and soldiers. In addition to 
deciding when to switch states, the agents also need the 
ability to recruit units in order to form attacking groups. To 
draw another comparison to ant colonies, when ants have 
trouble moving large objects, their first method of 
recruitment is to release a large amount of pheromone 
within a local area. If that does not attract enough ants, the 
ant will return to the anthill leaving a trail of pheromone 
behind. Since the pheromone trail method does not work 
well with all applications, we decided to implement only 
the first method. In the Point Attack & Point Defense 
scenario, our goal was to explore the evolution of the 
agents’ state switching behavior. In this simulation, 
however, our focus was les on how the agents switch as it 
was on allowing the swarms to evolved recruitment 
methods. In order to simplify the evolution process, the 
weighting functions that define the agents’ behavior are 
evolved, but the state switching itself follows a set of pre-
defined rules. 

All agents are initialized as scouts. When a scout finds 
the enemy, it becomes a recruiter. When a scout finds a 
recruiter, it switches to the soldier task. A soldier will 
remain in that state unless it gets separated from its 
recruiter, in which case it reverts back to acting as a scout. 
Additionally, if a recruiter finds another recruiter, the 
recruiter with the lowest remaining strength becomes a 
soldier and treats the other agent as its recruiter. This rule 
was added to the simulation to prevent large numbers of 
recruiters in the swarm searching for scouts, when instead 
they could simply form up with each other in order to more 
quickly accomplish their objective. Each state contains its 
own set of weighting functions. So when an agent is said 
to have “switched states” it is actually switching the set of 
weighting functions that govern its behavior. 

As with the previous example, the movement of the 
agents is controlled by sensors and their corresponding 
weighting functions. Sensors used include nearest agent of 
the same state, nearest agent of a different state and the 
enemy target. Additionally, soldiers are able to sense their 
nearest recruiter and recruiters are allowed to count the 
number of soldiers within sensor range. Another sensor is 
introduced to this simulation: a center sensor. In the Point 
Attack & Point Defense swarms and in much of the 
previous swarm work with our group, most of the 
interesting behavior occurs at the boundaries of the playing 
grid. The rectangular grid with rigid boundaries is 
normally used for simplicity, but we want to replace these 
hard boundaries with a softer, circular boundary. To 

 
Figure 6. Screenshot of the Search & Destroy swarm. White dots are 
explorers. Blue dots are recruiters, and Red dots are soldiers. The 
enemy target is represented by the green dot. 

 
Figure 7. The three possible states in the Search & Destroy swarm. 
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accomplish this, we remove the boundary and replace it 
with a center sensor. Agents are allowed to travel “off the 
map” as far as they want, but agents that are too far away 
at the end of the simulation are considered lost. The center 
sensor allows the swarm to keep agents from wandering 
off by pulling them back in. The sensor is similar to the 
other weighting functions, but is defined by only two 
values: the distance from the center at which the sensor is 
turned on and the strength of the agent’s attraction back to 
the center. While the initial reason for this sensor was to 
contain a swarm in a continuous field of play, the sensor 
ended up being used by the swarms to improve the 
effectiveness of their search, which will be explained later. 

It is important to mention that, while this scenario is 
designed with the goal in mind to develop recruitment 
techniques, the swarm is still given flexibility to find an 
optimal solution. Instead of hard-coding the behaviors into 
the program, the framework for the behavior is provided, 
and the swarm is allowed to adjust various weighting 
functions and thresholds to refine this behavior. In 
studying swarm intelligence, we are often searching for 
both interesting behavior and useful behavior. The “bullies 
v dweebs” scenario [13] is an example of some very 
interesting work, where the emergent behavior was 
unexpected. However, the simulation does not directly 
translate to an application, which is the focus of this 
research. While the simulations described in this paper are 
designed with the goal of providing useful techniques, the 
flexibility of the swarm was maintained by allowing the 
weighting functions to be evolved. 

B. Evolution 

To evolve this swarm, coevolution cannot be used 
since there is only one swarm involved. Instead, a single 
population of teams is generated and optimized by 
removing poor performing teams and replacing them with 
mutated copies of the remaining teams. In formulating the 
fitness function for this simulation, we need to think about 
how to steer the evolution towards our goal, while at the 
same time allowing the swarm to find unexpected results. 
For the fitness function, if the swarm at least found the 
target, it receives one point. A swarm can also receive up 
to 100 points depending on how much damage it inflicted 
on the target. The total distance travelled by the swarm is 
tracked through each simulation. If the target is 
successfully destroyed, up to 50 points are awarded based 
on how much distance the total swarm travels compared to 
the maximum possible distance travelled. Less movement 
was awarded more points to promote efficiency and 
conservation of movement translating into real-world 
energy and fuel savings. Finally, the total fitness score is 
adjusted by multiplying by the percentage of swarm 
remaining. 

During one generation of evolution, each team is 
simulated twenty five times and the program records the 
percentage of games in which the swarm successfully 
destroys the target, the percentage of games in which the 
swarm at least finds the target and the average fitness 
score. The teams are compared against each other in pairs 
in order to rank the teams. Each team is matched up with 
ten other, randomly selected teams. For each match up, the 
teams are first compared using the percentage of 
successful simulations. The team with the higher 

percentage “wins” and is awarded one point. If the teams 
tie in this test, the next criteria is the percentage of games 
with a successful search. A point is again awarded to the 
team with the higher percentage. In the case of another tie, 
the average fitness score is used to determine who received 
the point. Teams are then ranked according to their point 
totals. At this point, the lower half of the teams are 
removed from consideration and replaced with mutated 
copies of the better half. The point system allows the 
“natural selection” process to be more forgiving. A team 
that achieves worse scores temporarily is able to survive 
longer and possibly discover a better strategy later on in 
the process as opposed to being removed immediately after 
they fall into the bottom half of teams in the population. 

C. Results 

After evolution, the swarm learns to successfully find 
and destroy the enemy target within the time limit. Scouts 
are repelled from each other, which causes them to spread 
out across the map. When a scout wanders off too far from 
the center, it is kept alive by gently being pulled back in. 
After a scout finds the enemy target and becomes a 
recruiter, it stays away from the target until it senses it has 
a large enough group of soldiers around it (at least two, for 
a total group of three). At this point, the recruiter returns to 
the target, attacks it and usually destroys it. An interesting 
result is that when a scout switches to a recruiter, it begins 
searching for soldiers within a circle of a smaller radius 
than before the switch. Recruitment occurs when a 
recruiter comes within range of either a scout or another 
recruiter, so by staying in a smaller search area, the 
recruiters are able to increase their chances of finding other 
recruiters who are also staying in the same area. This 
behavior emerges from the use of the center sensor, which 
is “turned on” at a smaller radius when an agent is in the 
recruiter state. The use of the center sensor for recruitment 
was unexpected and is another example of why it was 
important in these simulations to allow room for the 
evolution process to discover the optimum solution. 

During this process, occasionally the swarm would find 
a “trivial” solution, that while not what we were looking 
for, did provide some interesting and unexpected behavior. 
For instance, originally this simulation was designed to 
initialize the target at a random distance from the center, 
ranging from 400-480 units away. The emergent behavior 
after that variation of the scenario was evolved was the 
formation of a large group. Instead of spreading out to 
search for the target, most of the agents formed one big 
mob, traveled to a distance of roughly 440 units away from 
center, and simply went in a circle around the center, 
eventually running into the target and destroying it almost 
instantly. Since the sensor ranges in this case were 30 
units, agents traveling in a circle of radius 440 (with some 
twiddle added in) were able to find virtually any target 
hiding within the 400-480 circle. This meant that the 
search problem was actually a trivial one. With the search 
task solved by travelling in a circle, the need for 
recruitment was removed by performing “recruitment” in 
the beginning. When attacking the target, it makes no 
difference whether a scout or soldier is attacking, so the 
evolution converged to a solution where instead of a single 
recruiter and a handful of soldiers attacking, a large group 
of scouts formed up and took out the target themselves. 
This unexpected (and unwanted) behavior is a perfect 
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example of how we need to be careful in how we design 
the problem the swarm will be solving. In this case, the 
search problem was too easy, which made the entire result 
trivial. Any simulation we design will have an implicit 
maximum fitness, ranging from trivial to impossible. The 
search for an interesting, yet solvable problem is one of the 
more difficult challenges in swarm intelligence.  

At one point, we attempted to introduce the concept of 
memory into the system, with the hopes of improving the 
effectiveness of the search. Units would be able to 
remember their previous three locations and, theoretically, 
would learn to not search the same space twice. Our result, 
however, was that the agents lost their cohesion, and the 
final swarm result suffered. Each agent, now having 
information on its previous locations, did learn to move 
away and look for new areas, but in the process the agent 
would effectively ignore all other units nearby. The agents 
were each searching the space independently instead of 
cooperating with each other by spreading out. While the 
fitness scores were lowered by the addition of memory, 
they could have been improved by evolving a zero weight 
on the trails. Zeroing out the trail weights, however, did 
not occur in our evolution due to the fact that the odds of 
all of the necessary weights reaching zero simultaneously 
was extremely low. In effect, the evolution would always 
converge to a local maximum of the fitness function that 
was too far away from the global maximum. Based on 
these results, we decided to refrain from implementing a 
temporary memory for each agent. 

The Search & Destroy simulation, while simpler than 
the Point Attack & Point Defense swarms, demonstrated 
the use of both state-switching and recruitment. The 
techniques discovered in these scenarios lays the 
groundwork for more complex swarms later on. Also, the 
evolutionary algorithm using a points system comparison 
between teams was shown to be a useful method to invert 
the swarms. 

 
 

V. BASE ATTACK 

A. Simulation 

Concepts from the first two simulations are combined 
into a more complex, Base Attack scenario, pictured in 
Figure 8. The Base Attack swarm has two objectives. First, 
the swarm needs to defend a central base from incoming 
projectiles. Agents can detonate themselves to destroy the 
enemy projectiles. However, these explosions also take out 
friendly units nearby. Second, the swarm needs to seek out 
enemy units that are spawned at the edges of the playing 
area. These enemy units periodically fire projectiles 
towards the central base. Enemy units are again stronger 
and require three agents to detonate nearby within a short 
period of time. This requirement is added to force the 
swarms to form groups which would involve learning 
recruiting techniques. When the friendly base takes too 
much damage and is destroyed, the simulation ends. A 
effective swarm in this simulation would be able to defend 
its base while simultaneously searching for and destroying 
enemy units. Swarms are scored on how long they survive 
and how many agents stay within bounds. The solution 
requires the swarm to allocate its resources between the 
two tasks and find efficient methods to complete its 
objectives. 

The movement of the agents is again controlled using 
the input from a variety of sensors. The agents are able to 
sense their distance from friendly units, enemy units, 
enemy projectiles, and the base. These distances are fed 
into weighting functions to determine the resulting 
movement. The weighting functions are adjustable 
parameters that represent the rules that the swarm follows. 
After a solution is found, we can look at the resulting 
weighting functions to determine which strategies were 
learned by the swarm. All of the sensors have a limited 
range, so that agents are only aware of what is happening 
within a localized area. 

Since there are two main objectives the swarm is trying 
to accomplish, there are two states the agents are allowed 
to take: attackers and defenders. Defenders are equipped to 
defend the base by destroying incoming projectiles, while 
the attackers are capable of searching for the enemy units, 
forming groups and attacking the enemies in force. Within 
the attacker task, there are two sub-states: scouts and 
recruiters. 

Similar to the Point Attack & Point Defense swarms, 
the switching behaviors of the agents is modeled as a 
threshold function. The threshold functions determine the 
percent chance that an agent will decide to switch based on 
the input of an environmental variable. In this case, 
switching is partially determined by the number of units in 
the same state versus the units in a different state. Again, 
the agents are only aware of local information, so the 
switching sensors have a limited range as well. Each 
function is defined by a single variable, the threshold. At 
the threshold value, the output of the function is 50%. If 
the input is less than that value, then the agent will most 
likely not take any action. As the value increases above the 
threshold, the agent will be more inclined to switch states, 
if the conditions are right. To prevent the swarm from 
making the mistake of ignoring enemy units, agents are 
only allowed to switch when there are no enemy units or 
projectiles nearby.  This behavior could be evolved by the 

 
Figure 8. Base Attack. The base is shown in the middle by a black dot. 
A yellow agent has appeared in the upper left and fired a green 
projectile toward the base. Agents are colored as follows: red scouts, 
blue defenders, and maroon recruiters. 
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learning algorithm, but would require a more complex 
switching algorithm, involving the number of both friendly 
units and enemy units. To simplify the simulation, this rule 
is hard-coded into the agents’ decision making process. 
While there is a chance that an agent can oscillate between 
states, that chance is minimal enough to ignore in this 
simulation. 

In addition to sensing the number and state of nearby 
units, we utilize a “smart” base. While the central base is 
not a part of the swarm, we allow the base to interact to a 
small extent with the nearby agents. The base counts up 
the number of nearby defenders and broadcasts that 
number to nearby agents. Agents within range are then 
able to make decisions on whether or not to switch based 
on the information given by the base. This was necessary 
because, in some cases, agents would think the base was 
unguarded when, in fact, it was, but the defenders were out 
of range on the other side of the base. Agents are able to 
decide for themselves when the number of defenders is 
either too large or too small. The base is not actually 
making any decisions by itself. Instead, it is passively 
sending the information for the agents to process. 

This swarm takes advantage of recruitment techniques 
developed in the Search & Destroy swarm. Within the 
attackers’ task, there are two sub-states: recruiters and 
scouts. All attackers are initially scouts. For simplicity, the 
state switching within the attacker objective is controlled 
via some preset rules. When a scout finds an enemy, it 
becomes a recruiter. When defenders or other recruiters 
find a recruiter and determine that they are in a safe 
position, they become  scouts. The goal is for recruiters to 
search for other agents until a large enough group 
surrounds the recruiter so that the enemy unit can be 
destroyed by the group. Another rule was introduced that 
allowed units that returned to the enemy’s location but 
could not see the enemy to switch back to scouts and 
continue searching. In this scenario the enemy may have 
either drifted away or been destroyed by another group of 
agents. In either case, the agents should move on instead of 
getting stuck in a location that may not be important. 
While the recruitment itself is not an adjustable parameter, 
the movement of the units within the recruitment sub-
states is adjustable. Scouts need to learn to follow 
recruiters and recruiters need to learn the optimal size of 
groups needed. In this simulation, three agents are needed 
to destroy the enemies. 
 

B. Evolution 

For the evolution of the swarms’ parameters, we 
looked at a variety of evolutionary strategies 
[4][5][7][9][10][11]. After some experimentation, we 
selected a method similar to that used in David Fogel’s 
Blondie24 program. Fogel’s program was successful in 
evolving neural networks that could play checkers [2] or 
chess [14]. At the beginning of the evolutionary process, a 
population of teams is generated. Each team contains a set 
of weighting functions and threshold functions that define 
the rules followed by the team’s swarm. For this 
experiment, a population of 50 teams was used. 

During each round, each team plays a set number of 
games. After the simulations are completed, each team 
receives a fitness score that represents how well the swarm 

performed during the simulations. It is often difficult to 
determine a fitness function that rewards both good 
defensive and offensive strategies. In order to encourage 
the swarms to learn to defend the base as long as possible, 
points are awarded to the teams based on how long the 
base survived. This point total is then modified by 
multiplying the percentage of active units that remain in 
the playing area at the end of the simulation. This 
encourages swarms to learn to stay within the playing area 
without actually setting a hard boundary. The fitness 
scores are also adjusted by adding bonuses for 
conservation of movement. 

 
Then, using a lexicographical sorting method, the 

teams are selected based on the number of games in which 
they accomplished certain objectives. After the teams are 
sorted by fitness, they are sorted based on the number of 
games where they find at least one enemy. This rewards 
teams that successfully complete the search objective of 
the attackers. Finally, the teams are sorted based on 
successfully destroying enemies, which indicates a 
completion of the second attacker objective, destroy. At 
this point, the worst 25 teams (half of the overall 
population) are removed from the evolution process and 
the best 25 teams are duplicated. 

The new 25 teams are mutated by adding random 
Gaussian noise to the weights that control the swarms’ 
behavior. This process allows the evolutionary algorithm 
to remove poor solutions and keep successful solutions, 
while constantly searching for new and improved 
strategies that are both similar to previous good solutions 
and different enough that the search is considering new 
strategies. The mutation step size is an important 
parameter in the evolutionary program. If the step size is 
too small, then the program will not be able to effectively 
search through the entire search space. On the other hand, 
if the step size is too large, then the search will not be able 
to converge to a solution. In order to prevent the search 
from converging too quickly, a minimum step size was 
used. The minimum step size was calculated by first 
calculating the average step size for each weight over all of 

Figure 9. This figure represents the learning process of the 
evolutionary algorithm by showing how the fitness scores improved 
over time. The solid line indicates the average fitness score of the 
population for each generation. The X’s represent the maximum and 
minimum scores in the population. After 300 generations, the 
algorithm converges to what appears to be a locally optimal solution. 
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the teams tested. After a list of the average step sizes was 
calculated, the minimum step size was found by selecting 
the median of the average step sizes using the method 
described by Liang et al. [8]. 

 

 
 

C. Results 

After the evolutionary algorithm was run for several 
hundred generations of teams, the resulting strategies 
allowed the swarms to perform well in both the defense of 
the base and the search for and destruction of enemy units. 
The improvement of the fitness scores over the course of 
the evolution process is shown in Figure 9. The learning 
algorithm allows the swarms’ fitness scores to increase 
over time, before leveling out at a maximum value given 
the parameters of the simulation. 

One of the basic behaviors learned was the division of 
labor. A swarm was able to divide itself up into two 
groups, with roughly two thirds going into attack mode 
and the remaining acting as defenders. This emergent 
behavior was intuitive given that attackers had more of a 
search area to cover, while only a small amount of 
defenders were needed to guard the base. After the initial 
division of labor, the swarm was able to dynamically shift 
its resources autonomously. As defenders are depleted 
through either enemy projectiles or recruitment, they are 
replenished by nearby attackers that switch states when 
they determine the number of defenders is too small. 
Figures 10 and 11 demonstrate the dynamic state switching 
behaviors learned by the swarms. 

 

 
The attackers learned to spread out both from the base 

and from each other. The scouts also learned an optimal 
distance at which to turn on their center sensor to allow 
them to both remain in the playing area and search as 
much of the map as possible. This attacker behavior is 
shown in Figures 12 and 13.  

 

In Pseudocode: 
for i in number of generations: 
 Simulate each team 50 times 
 Rank by fitness scores 
 Rank by # of times enemy found 
 Rank by # of enemies killed 
 Remove bottom 25 teams 
 Duplicate top 25 teams 
 Mutate duplicates 

Figure 10. The threshold function shown here demonstrates role 
saturation, which occurs when agents switch states after deciding 
there are too many units working on their task. First, the agent 
counts up the number of nearby agents working on its task and those 
working on a different task. This is fed into the threshold function, 
which determines the chance that the agent will switch. In this case, 
if the difference between nearby defenders and attackers is 3, then 
the agent has a 50% chance of switching to offense. If the number of 
defenders compared to attackers is large, the agent will most likely 
switch, and vice versa. In this image, a blue defending agent has 
decided that there are too many defenders around it and chooses to 
switch states to become a red scout. 

Figure 11. This function represents the way the agents process the 
information broadcast from the base. The base will broadcast the 
number of defenders around it and the agent has the option of 
switching to a defensive mode if it decides there are not enough 
defenders around it. In this case, the swarm will attempt to keep at 
least 8 or so defenders around the base. If the number of defenders 
is less than that, then there is a role deficiency and nearby 
attackers will most likely switch to a defensive mode. Here, the 
base has broadcast that there are 6 defenders around it. A red 
scout has heard the message and decided that 6 defenders is not 
enough, so it chooses to switch states to become a blue defender. 

Figure 12. This weighting function shows how the swarm has 
learned to stay within the boundaries without being explicitly told 
how to. Any units that are greater than approximately 850 units 
away from the base are considered lost. Teams can achieve higher 
scores by keeping a large percentage of their agents within bounds. 
Also, the playing area is 1200 by 1200 units and the enemies are 
spawned at a radius of 600 units from the base. This team has 
learned that if the agents turn back to the base after they are a 
distance of 620 units away, they will remain within bounds while 
still being able to find all enemy units. This graph shows how 
scouts react to seeing other units. When a scout sees another agent, 
it will be repelled from it. This allows the scouts to spread out and 
cover as much area as possible. Additionally, the graph is positive 
for small values. While the scouts are initially repelled from other 
agents, they will also be attracted to recruiters through the use of a 
separate weighting function. When the scout is pulled in to a close 
distance from the recruiter, the positive value from this weighting 
function allows the scouts to follow the recruiters more closely.
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The defenders also learned to surround the base while 

maintaining a set distance from each other. They learned to 
keep their distance because detonations to destroy enemy 
projectiles could destroy friendly units if they were too 
close. Figures 14 and 15 show the defensive strategies 
used by the swarms. 

 

 

One of the more unexpected results came from the 
optimization of the center sensor. The goal was for the 
swarm to learn to stay within the boundaries of the playing 
area. An interesting emergent behavior was that the 
recruiters’ center sensor turned on at a very small value. 
This caused all recruiters to be drawn back to a tight radius 
around the base, which resulted in an effective recruitment 
strategy as there is always a group of agents close to the 
base. These recruiting techniques are shown in Figures 16 
and 17. 

 

 
Figure 13. In this screenshot, a red scout approaches a maroon 
recruiter. While the scouts are inclined to stay away from other 
agents when they are relatively far apart, their attraction to 
recruiter overwhelms the initial repelling force. When the 
recruitment sensor brings the red scout close enough to the 
recruiter, the scout’s attraction to other units at close distances 
kicks in and the scout will tightly follow the recruiter until the 
enemy is eventually destroyed. A green projectile fired from the 
enemy is also pictured. 

Figure 14. This weighting function shows how defensive agents will 
stay approximately 31 units away from each other. The zero 
crossing with a positive slope creates a “sweet spot” that the agent is 
inclined to stay in. Note, the function does become positive for 
small distances, but since the function is negative for values from 6 
to 31, the agents should never get close enough to each other for that 
to matter. This function represents the rule that tells the defensive 
agents how far to stay away from the base. The agents will attempt 
to remain about 45 units away from the base. 

 
Figure 15. The defending agents learned to surround the base and 
travel in a circular pattern in order to intercept as many enemy 
projectiles as possible. They are also keeping a set distance away 
from each other so that is one detonates, it doesn’t take out 
friendly units. 

 
Figure 16. The first function shows the center sensor for 
recruiters. Note the scale for the x-axis. Any recruiters that are 
more than 1 unit away from the base will be inclined to return to 
the base. In other words, all recruiters return to the base. It is easy 
to understand why this unexpected strategy developed because 
there are (or should always be) agents acting as defenders near the 
base that can be recruited to join recruiters’ groups. This second 
graph demonstrates another part of the recruitment method 
learned. It represents how the agent moves with respect to the 
found enemy based on the number of friendly agents around it. If 
there are no friendly units around, the agent is repelled from the 
enemy; it is not strong enough. If there is one unit around the 
recruiter, then it still does not return to the enemy. Only when 
there are at least two friendly agents nearby does the recruiter 
return to the enemy. At this point, the group is at least three 
agents strong and able to destroy an enemy unit. 

 
Figure 17. Here, a red scout has found an enemy unit and switched 
states to become a maroon recruiter. The recruiter is headed back 
toward the base in order to recruit other agents to form a group large 
enough to take out the enemy. This image shows the recruiter being 
joined by a third agent, which was formerly a blue defender. Since 
the recruiter senses that its group is at least three agents and is big 
enough to destroy the enemy, the recruiter turns and begins leading 
the group to the enemy unit to attack it. After the enemy is 
destroyed, any remaining agents from the group will continue 
searching in a scout mode.
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One of the benefits of swarm intelligence is graceful 
degradation of the swarm’s performance. As the 
simulation progresses, the swarm will incur losses. 
However, by dynamically shifting its resources, the swarm 
is able to maintain both tasks, defending the base while 
still searching for enemy units. It is only when the swarm 
loses a large percentage of its population that the swarm 
begins to break down and is no longer able to successfully 
work on both objectives. The swarms in this project were 
evolved with an initial population size of 40 units. This 
number allowed the group of units to be large enough to be 
considered a swarm while still being small enough to 
encourage unique, emergent behavior. The concept of how 
large a swarm needs to be in order to be considered a 
swarm is a fuzzy one and often depends on the application. 
The question of how size affects a swarm’s performance 
will be explored further in future work.  

VI. CONCLUSION 

One of the advantages of swarm intelligence is a 
swarm’s ability to autonomously reorganize itself in a 
dynamic environment. In our work, we have used 
techniques found in nature to allow swarms to manifest 
this behavior in simulations where the swarm is required to 
perform well in two objectives. In the Point Attack & Point 
Defense swarms, agents have to balance themselves 
between both defending their base and finding and 
attacking their enemy’s base. Swarms in the Search & 
Destroy simulation have to use recruitment methods to 
form groups to destroy a large opponent. And finally, these 
scenarios are combined in the Base Attack swarm, in 
which a single swarm has to complete defensive and 
offensive objectives, using both threshold functions and 
recruitment techniques. By using an evolutionary learning 
algorithm, the weighting functions that defined the 
swarms’ behavior in each of the three simulations are 
optimized to maximize the swarms’ fitness scores. 

We believe that these concepts can be expanded upon 
in future work. One topic to consider is the effect of size 
on a swarm’s performance. For the purposes of these 
simulations, a population size of 40 was chosen because it 
is small enough to be feasible in a real-world application 
but also large enough to demonstrate swarm 
characteristics. A more in depth exploration of the effects 
of population size could provide more insight as to when a 
large group of agents begins functioning as a swarm. 

This paper has demonstrated the application of a multi-
state swarm that was able to use state-switching 
capabilities to adapt to a dynamically changing 
environment. While previous work has shown swarm 
intelligence as a viable solution to single objective 
missions, we have expanded these swarm techniques to 
accomplish multiple objectives using threshold functions 
to control the switching between states. The emergent 
behaviors of the swarms are robust and allow the swarm to 
continue achieving its objectives until a large percentage of 
its population is lost.  
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