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Abstract— One of the benefits of using Combs disjunctive 

control in swarm intelligence is the ability of the swarm to 
continue to operate even when one or more of its sensors are 
broken. Instead of failing, the swarm continues to perform 
based on the inputs of the remaining sensors. In this project, a 
multi-objective scenario is designed for a swarm of agents to 
complete. Once optimized, the swarm is then modified by 
removing one of its sensors. Maintaining the original objective, 
the evolution process is continued to allow the swarm to 
compensate for the sensor failure. This paper describes the 
different emergent behaviors of the swarm after the post 
failure rules are optimized using an evolutionary learning 
algorithm. 
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task switching, fuzzy control, emergent behavior, Combs 
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I. INTRODUCTION 

Swarms in nature are composed of a large number of 
individual agents, such as bees or ants, that each follows a set 
of basic rules [3]. Often these rules can be described as a 
simple cause effect relationship between an external stimuli 
and an agent’s response. Each agent’s response contributes to 
the emergent behavior of the swarm, which can often be 
unpredictable [2][5][8]. However, what if agents were unable 
to sense a certain stimulus? For example, what if a group of 
drones was unable to sense the difference between friend and 
foe? Or what if they had difficulty sensing certain types of 
enemy units altogether? How would that reduction in 
awareness affect the emergent behavior of the swarm?  

The robustness of disjunctive control, also called Combs 
control [9][10][11], has the advantage of seamlessly 
recovering from failed sensors by exploiting possibly 
redundant information available from other sensors when 
available [12][13][14].  A simple example is steering a car to 
the right. This can be done by a) turning the front wheels of 
the car to the right, b) turning the back wheels of the car to 
the left, c) braking the two wheels on the right side of the car, 
or d) accelerating the rotation of the two wheels on the left 
side of the car. As long as one of these control actions exists, 
the car can be steered to the right even when the remaining 
three functions fail. Redundancy in the information available 
in sensors is often not as obvious as in this example. In the 
case of swarms, the failing of one or more sensors may 
prompt the swarm to adopt a different emergent strategy in 
order to meet the objective of the collective.   

Our goal is to discover what new emergent behaviors 
occur when certain rules are removed by disabling some of 
the agent’s sensors. A previously tested simulation is used as 
a baseline for this experiment [1]. In this paper, we 
demonstrate the emergent behaviors that result from 
individually removing four of the agents’ sensors. 

Although we explain swarm behavior in detail, there is 
no substitute for watching swarming in real-time. The 
motivated reader is therefore encouraged to view our video 

which both explains and displays the fascinating and 
emergent behavior described in this paper . 

II. SWARM INTELLIGENCE 

In the simulation, a swarm is tasked with completing two 
objectives: guarding a central base from enemy attacks while 
also searching out and destroying enemy units. In order to 
encourage recruitment, at least three agents are required to 
successfully kill an enemy unit. The simulation ends when 
the base sustains a set amount of damage: in this case, when 
ten enemy projectiles hit the base. The movement of the 
agents is controlled by sensors connected to weighting 
functions. When an agent senses an object, the distance to 
that object is fed into a function that tells the agent how to 
move with respect to the object. In addition to a series of 
object sensors and their corresponding weighting functions, 
agents are also equipped with a center sensor that tracks how 
far away the agents are away from the base and pulls them 
back in if necessary. All of the sensors have limited range, 
except for this center sensor. 

In order to accomplish both objectives, the agents are 
allowed to take on one of multiple states: defender, scout or 
recruiter. For each state, there is a different set of sensor 
weighting functions, including the center sensor functions. 
When an object switches states, it is changing the set of rules 
it follows. Since the swarm needs to dynamically adjust its 
resources, the agents are able to switch between states using 
threshold functions. If an object senses there are too many 
agents working on the same task, or too few, the agents are 
able to change states or request other agents to change states 
as necessary. How the agents make this decision is 
determined by a threshold value. Each weighting function 
and threshold is an adjustable parameter that represents a rule 
that the agents follow. These rules are optimized through the 
use of an evolutionary learning algorithm. This paper 
discusses what happens when one of these rules is removed 
from the swarm’s decision making. 
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III. EVOLUTION PROCESS 

A predatory swarm’s performance can be maximized 
using an evolutionary learning algorithm 
[6][7][9][11][12][13]. Performance is measured by tracking 
the number of enemy kills and the swarms’ fitness scores. 
Each swarm is assigned a fitness score which is equal to the 
time survived, multiplied by the percentage of surviving 
agents within the field of play, multiplied by an efficiency 
factor that represents the reduction of the distance travelled 
by the swarm, as shown in (1). E is the efficiency factor and 
C is a constant. 

 
ܨ                      ൌ ܶ݅݉݁ ∗ ௔ܲ௚௘௡௧௦ ∗ ܧ ∗  ܥ
 
An initial random population of teams, each represented 

by a set of weighting functions and thresholds, is evolved by 
simulating the scenario with each member of the population 
and comparing the results. Teams with higher kill totals and 
fitness scores survive and advance to the next generation of 
evolution, while the poorer teams are removed. Each 
surviving team is copied and mutated by adding random 
Gaussian noise to the weights and thresholds. For weights 
with values ranging from negative five to five, the standard 
deviation of the Gaussian noise added is approximately 1.25. 
This algorithm allows the population of swarms to “learn” 
which rules and strategies successfully accomplished both 
objectives of attacking and defending [4][10]. This process is 
repeated for approximately 800 generations, resulting in a set 
of weights that were optimized for the given scenario. A 
brief description of the emergent behaviors is given below. 

To accomplish the first objective of defense, defenders 
learn to loosely circle the base and intercept enemy 
projectiles by moving between them and the base. If the 
number of defenders drops too low, nearby scouts switch 
tasks to help defend the base. For the second objective, 
scouts learn to spread out from the base and from each other 
while looking for enemy units. When an agent finds an 
enemy, it transforms into a recruiter and return to base. At 

the base and along the way, scouts join the recruiters until 
the recruiter senses that the group is strong enough to destroy 
the enemy unit. The recruiter leads the group back to the 
enemy in order to eliminate the enemy. Any surviving agents 
in the group then go back to exploring the map for enemies. 

Now that we have a solution for the multi-task scenario, 
our next step is to begin disabling sensors one at a time in 
order to determine how the failure of one of the sensors will 
impact the emergent behavior of the swarms. The first sensor 
that is removed is the projectile sensor. This sensor is used 
by defending agents to see incoming enemy projectiles that 
are headed towards to friendly base. Defenders are normally 
able to intercept the projectiles. We want to see what would 
happen if the defenders are no longer able to sense these 
projectiles. The population of swarms that were evolved with 
all of their sensors intact is used as the initial population for a 
second round of evolution without this projectile sensor. 

This process is then repeated for another scenario. The 
projectile sensor is turned back on and the group sensor is 
removed. The group sensor allows the agents to track how 
many other agents are nearby. This is used in recruitment 
since it allows the recruiting agents to know if they have 
enough friendly agents around them to destroy an enemy 
unit. The evolving population is reset to the initial group of 
teams that were evolved with all their sensors and the 
evolutionary algorithm is run again. This is repeated two 
more times: once with the center sensor broken and again 
without the base sensor. 

 

IV. RESULTS 

Fitness scores for each of these four evolutionary cycles 
are shown in Figure 1. In each case, the fitness scores are 
lower with the sensor removed. However, these scores do 
improve over time as the swarms’ weights are adjusted to 
maximize the use of the remaining sensors the swarms did 
have. Even though it is missing one of its sensors, in some 
cases a swarm is still able to achieve scores almost as high as 
a swarm with all sensors available. One of the main 
differences in emergent behaviors that developed is how the 

 
Figure 1. The results of the evolution before and after breaking the four 
sensors are shown here. Before generation 200, the swarm is evolving 
with all of its sensors. At the discontinuity, the graph splits to represent 
the fitness scores after the removal of the sensors. The swarm performs 
well with its projectile and base sensors removed and okay without its 
group sensor, but very poorly when the center sensor is disabled. 

 
Figure 2. This figure demonstrates the emergent behavior of defending 
agents evolved with different sensors disabled. (A) shows the tight ring 
formed when the projectile sensor is removed. (B) shows attackers 
forming groups before scouting due to the fact that the group sensor is 
off. (C) shows the ring formed around a group of replacement scouting 
agents when the center sensor is disabled. (D) shows a mob of defenders 
surrounding the base with the base sensor broken. 

(1)
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defending agents guarded the base. These strategies are 
depicted in Figure 2. 

Combs control subjects each sensor to a nonlinear 
actuator who shapes are determined through the evolutionary 
process. Examples of actuator nonlinearities are illustrated 
Figure 3.  The actuator outputs are aggregated to determine 
agent action [8].  

 

A. Projectile Sensor 

Removing the projectile sensor does not greatly affect the 
fitness scores, which drop slightly compared to the results of 
the previous evolution. This is because the swarms are able 
to adapt to the loss of the sensor and still accomplish their 
objectives similarly to before. With the sensor, defending 
agents circling the base are attracted to projectiles and move 
in for the kill. Without the sensor, defenders are unable to see 
the projectiles. The swarm’s solution is to make its circling 
behavior tighter and faster. By rapidly circling around the 
base, agents are able to intercept most enemy projectiles 
simply by running into them. The tighter circle uses a smaller 
group of defenders to effectively defend the base and allows 
more scouts to look for enemy units. This is an example of a 
behavior that existed previously, but was adjusted in order to 
compensate for the loss of a sensor. The behavior of the 
scouts and recruiters remains the same, since their task does 
not involve defending the base from projectiles. 
 

 

B. Group Sensor 

The group sensor is proven to have more of an effect on 
the swarms’ behavior. This sensor is crucial for the 
recruitment techniques developed previously since it allows 
recruiters to count the number of nearby agents. When this 
ability is taken away, the agents are no longer able to 
determine if their group is large enough to destroy an enemy. 
Through the evolutionary process, the swarms respond by 
modifying their strategy. Instead of scouts spreading out, 
over time the scouts form up in clumps and scout in groups. 
This removes the need for recruiters to return to the base to 
find other agents. When an enemy is found by a group, 
recruitment is no longer needed. Instead, assuming a group 
of at least three agents, the group can simply move in 
immediately and destroy the enemy. The defensive strategy 
remains the same, but with a smaller number of defenders to 
allow more scouts to explore. Compared to the original 
evolution, scores drop since the effectiveness of the search is 
reduced when the scouts search in groups. However, 
considering the previous recruitment strategy no longer 
works at all, this emergent behavior is a reasonable 
alternative and allows the swarm to still find and destroy 
enemy units while maintaining the previous defensive 
strategy of surrounding the base in a rotating ring. 

Figure 3. Without the projectile sensor, the swarms adapt by tightening 
the ring around the base and speeding up their rotations. In the first 
graph, the old strategy is represented by the solid line and the new 
function is the dotted line. Initially, the “sweet spot” that the defenders 
converged to was around 50. This is lowered by evolutionary 
adaptation to a radius of 40 by the new method. In graph 2, the speed 
at the “sweet spot” (40) from a little under 4 to almost 5. 

Figure 4. Since the group sensor is disabled, the swarms have to adapt. 
Originally, scouts are repelled from each other. The value of the solid 
line is positive (indicating attraction) at small distances. However, since 
the agents are repelled at larger distances, the agents should never get 
close enough to each other for that to matter. The new function causes 
agents to be more attracted to each other. At large distances the attraction 
is weak, but still positive, and increases as the agents move closer. The 
second graph shows how many defenders the base is expecting. The 
swarm learns to use a smaller number of defenders in order to allow 
more agents to explore. 
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C. Center Sensor 

When the center sensor is removed, the swarm scores 
drop off drastically. The center sensor is of foundational 
importance for the swarm mission. Without it, there is 
nothing to prevent exploring agents from wandering off the 
edge of the map. Since the swarm is unable to perform well 
in its task of finding and destroying enemies, it focuses on 
the second task of defending its base. The unexpected 
emergent behavior that develops from evolving without this 
sensor is the clumping of scouts in the base. When the 
simulation begins, some of the scouts form groups and begin 
searching, but most of the scouts form one large group and 
converge right on top of the base. These scouts, while not 
scouting, are used as reserves to replace destroyed defenders. 
The defending ring is similar to before, but with a much 
larger radius and a group of eight evenly spaced defenders 
surrounds the base. As the defenders detonate to take out 
incoming projectiles, they are replaced by scouts in the base. 
The defenders are far enough away from other defenders and 
the base (which is full of scouts) so that detonations do not 
take out any friendly units. This strategy allows a large 
portion of the swarm to stay defending the base which keeps 
the base alive for as long as possible. While the swarm is 
unable to properly complete both objectives, this 
modification does allow the swarm to perform well in at least 
one mission objective. 

D. Base Sensor 

Without the base sensor, the swarms are able to still 
achieve fitness scores on par with previous results. Since the 
defenders are unable to sense the base, the previous rotating 
ring strategy is impossible. To compensate for this loss, the 
defenders forms a mob and surrounded the base. The 
defenders also learn to spread out from each other instead of 
linking up in the circling method. Previously, defenders used 
the attraction from the base sensor to stay close to the base. 
After evolution, the swarm learns to use the center sensor to 
accomplish the same objective by pulling in defenders that 
wander off more than 50 units away. This group of randomly 
moving defenders makes it difficult for enemy projectiles to 
reach the base, even though it is not as efficient as the ring 
strategy. The scouting and recruiting methods are  not 

affected by the loss of the base sensor, so overall fitness 
scores remain high. 

 

V. CONCLUSION 

We have shown that while decreasing a trained swarm’s 
abilities will negatively affect its performance, an 
evolutionary algorithm can allow the swarm to learn a new 
strategy that utilizes its remaining strengths. In four separate 
cases, a swarm is evolved to complete a multi-objective 
scenario, each time with the loss of one sensor. Sometimes 
an emergent behavior is refined to maintain swarm 
performance. An example of this is when the rotating 
defenders form a smaller, tighter circle around the base to 
better defend it when their projectile sensors were removed. 
Other times, a completely different strategy emerges, such 
as when scouts began exploring in groups to remove any 
need for recruitment. Also, if a swarm is unable to 
accomplish one objective due to sensor loss, then it would 
put more of its focus into the other objective. For instance, 
disabling the center sensor greatly reduces the swarm’s 
ability to search for enemies so instead the swarm began to 
keep a large percentage of its agents near the base in order 
to survive for as long as possible. In each case, even though 
the fitness scores drop initially, the swarms are able to use 
other sensors in order to at least partially compensate for the 
sensor reduction. 
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