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Abstract— Swarm intelligence, inspired by the group 
behavior of insects in nature, can be used to design control 
algorithms for groups of autonomous units in environments 
where a centralized controller is not feasible. Allowing agents 
within the swarm to take on one of multiple states allows the 
swarm greater flexibility and the ability to accomplish multiple 
objectives simultaneously. In this paper, a multi-state swarm is 
designed to simulate the mapping of a modeled underwater 
minefield. The rules controlling the movement of the agents are 
evolved in an offline learning algorithm, which is also used to 
optimize the state-switching behaviors in the swarm. In 
addition, the robustness of the solution is tested by simulation 
at various swarm sizes. The minimum swarm size necessary for 
completion of the mission is found, along with the point at 
which diminishing returns in the fitness of the swarm appears. 

Index Terms—Keywords: swarm intelligence, multi-state, 
task switching, fuzzy control, emergent behavior 

I. INTRODUCTION 

Swarm intelligence is inspired by the way that large 
groups of insects work together in nature [6]. An insect can 
often be modeled as following a set of simple rules, or 
instincts, while a large swarm of insects are able to 
coordinate and accomplish a complex objective, such as 
designing a beehive or building an anthill. One of the goals 
of our research is to apply some of the concepts of swarm 
intelligence to a large group of autonomous underwater 
vehicles (AUVs). These drones operate in an environment 
where radio waves do not travel well and communication is 
very difficult. This means a centralized controller cannot be 
used. Instead, we can use swarm intelligence to find a set of 
rules for the agents to follow which results in the desired 
emergent behavior. 

An application of underwater swarms is minefield 
mapping. The problem of clearing a minefield has been 
studied throughout the past hundred years and recently the 
use of swarm intelligence has been shown to be a viable 
option [1][2]. However, for the most part, much of the work 
has dealt with underground mines. In these cases, the 
minefield can be marked by agents in a swarm to 
communicate to other agents that an area of the field has 
previously been searched for mines thoroughly. This is 
similar to how ants forage for food. When an ant finds a 
source of food, it returns to the anthill, releasing a trail of 
pheromones as it goes. Other ants are able to follow this 
pheromone trail to the food. While this emergent swarm 
behavior is interesting and can be applied to underground 
mine scenarios, it does not function well when dealing with 
underwater mines. In an underwater scenario AUVs are 
unable to leave a trail that would be unchanged by local 
currents, marine life etc. Since it would be unfeasible to 
mark trails underwater, a new strategy is needed. 

II. MINEFIELD 

An underwater minefield mapping scenario is developed 
to explore possible strategies. In this scenario, a single 
swarm is tasked with searching an area for mines and 
reporting all the mine positions to the central base. Since we 
are working with multi-state swarms, agents are able to take 
on one of three states: explore, report and recharge. All 
agents are initialized as explorers. When an agent approaches 
an unreported mine, the agent has the option of switching to 
a reporting state. When a reporter reaches the base with the 
location of a mine, that location is saved. For the purposes of 
the simulation, we assume that the mine’s location is 
broadcast out from the base to let the rest of the swarm know 
the location of previously mapped mines. 

We also introduce a recharging state for the swarm. This 
concept of battery life is not considered in our previous work 
[3][4][5], but was something we wanted to add in order to 
approach a more realistic applicable solution. All units are 
initialized with a battery charge of 100. After each cycle, the 
battery charge is decreased in two ways. First, there is an idle 
battery discharge that occurs regardless of movement. 
Second, the battery is discharged based on how far the agent 
has travelled that time step. Agents have the ability to switch 
from either exploring or reporting states to a recharging state 
if their battery drops too low, as defined by the output of a 
threshold function. Agents that are near the base are able to 
recharge their batteries. In practice, this could mean 
surfacing for solar cell recharging, refueling from a ship, or 
other possibilities, but for simplicity, agents in this scenario 
are able to recharge if they are within a set radius of the 
central base. When the battery charge reaches an acceptable 
level, the agents switch back to the task of exploring the 
search space.  
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The movement of the agents is controlled by a series of 

actuator functions. Each agent is equipped with a variety of 
limited range sensors that can detect objects, such as other 
agents, mines, and the base. The distances to these objects 
are used as inputs for a series of actuator functions that 
determine the resulting movement with respect to the object 
being sensed. This combination of weighting functions is an 
example of disjunctive, or Combs, control [13]. In addition 
to the summation of the vectors generated from the group of 
actuator functions, each agent also takes a random step. The 
weighting functions themselves are simple piece-wise 
defined linear functions, as dictated by the y-values at three 
points. The y-values are set as adjustable parameters that can 
be modified to produce different behaviors. These 
parameters can then be optimized by using an evolutionary 
learning algorithm [8][9][10][11][12]. Agents are allowed to 
move off the edge of the map, but the swarm is penalized 
through their fitness scores if any agents are off the map at 
the end of the simulation. To prevent this, agents are also 
equipped with a center sensor that allows them to always 
sense how far away they are from the center of the map. If 
they move too far away, the center sensor’s actuator function 
can be used to pull the agent back toward the center of the 
map. The point at which the agent are pulled back in is 
another evolved parameter. 

Our optimization process begins by initializing a 
population of 80 swarms with random parameters. Then a 
Monte Carlo simulation of the entire population of swarms is 
performed. After simulation, the teams each receive a fitness 
score, described below, that defines how well the swarm 
performed in the previous round of simulations. The teams 
are then ranked by their fitness scores. Next, teams in the 
half of the population with lower fitness scores are removed 
from the population of possible solutions and replaced with 
copies of the better teams, along with a small amount of 
randomly generated solutions. The copies are then mutated 
by adding random Gaussian noise to the swarms’ parameters. 
This concludes on cycle, or generation, of evolution. After 

hundreds of generations of evolution, poor solutions are 
filtered out and the algorithm can approach an optimum set 
of parameters. 

In evolving the swarm, a fitness function is needed to 
determine how well the swarm maps out the minefield. Our 
resulting fitness function is computed as a product of scores 
that represents how well the swarm achieves some specific 
objectives. The first, and most obvious, objective to track is 
how many mines the swarm is able to find. Our goal is for 
the swarms to successfully find at least 90% of the mines. It 
is important to note that these goals are adjustable and 
simply reflect what we consider success. In practice, a swarm 
designer needs to define what a “successful” swarm means to 
them. Expecting 100% completion of a task 100% of the 
time may be setting the bar too high, so for our purposes, 
90% is used. The second objective tracked is how many 
mines are reported. We do not want the swarm to simply find 
the mines. They need to report the mine positions to their 
home base as well, and 90% is set as an acceptable 
percentage for the purposes of evolution. Thirdly, the swarm 
should keep as many agents alive as possible, so the 
percentage of agents remaining alive, within the field of play 
when time expired is also tracked. Agents are considered 
dead if either their battery level drops to zero or if they bump 
into a mine. 95% is used as the success threshold here. 
Finally, we would like the swarm to perform its task as fast 
as possible, so the time remaining was used as well. The 
fitness score is computed using the following formula: 
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In equation (1), PF is the percent of mines found, PR is the 

percent of mines reported, PS is the percent of swarm 
remaining and T is the time remaining (out of the total time 
limit of 2000, assuming all of the mines are reported). 
However, if any of the three percentages is greater than the 
set success threshold, the threshold value is used instead. In a 
successful evolution, the swarm’s percentages of mines 
reported, mines found and swarm remaining should 
eventually increase to be greater than the predefined 
thresholds. When this happens, the swarm has a successful 
strategy, and the evolutionary algorithm begins optimizing 
the swarm’s strategy for speed. 

III. RESULTS 

Figures 2-5 represent the progress of improving these 
objective percentages over the course of the evolution 
process. Figure 6 shows the resulting fitness scores over the 
same period of evolution. 

 
Figure 1. Screenshot from Minefield simulation. The small circles 
represent agents in the explore mode. The small triangles are agents in 
the recharging state and the small square agent is acting as a reporter. 
The larger dots indicate the location of the mines. The ring in the 
center of the map represents the sensor range of the central base (not 
pictured) as well as the recharging radius for the agents. 



DRAFT

 

 

 

 

 

 

 
 

When this simulation was first designed, the goal was to 
produce an emergent behavior similar to the leaf-cutter ant 
[6]. Certain species of leaf-cutter ants have a very efficient 
assembly line strategy to transport pieces of leaves. Instead 
of taking its piece of a leaf all the way to the anthill, each ant 
only carries its piece until it bumps into an ant headed the 
other way. The ant hands off the piece to the newcomer and 
returns to the leaf, while the newcomer turns back to the 
anthill with the leaf. This method is actually the most 
efficient strategy. Without these handoffs, the entire line of 
ants would be slowed down by the slowest ant, as all of the 
faster ants would get stuck behind slower ants. 

Similarly, for our minefield simulation, agents were 
given different maximum speeds and reporters were given 
the ability to “hand off” information to nearby explorers, 
switching states with them. The decision making algorithm 
was controlled via a simple three input aggregator equivalent 
to a neural network perceptron [7]. The inputs included the 
agent’s maximum speed, its distance to the base, and its 
battery charge. Each input was multiplied by an adjustable 
weight and summed together. If the result was greater than a 
pre-set threshold, than the agent decided to perform the state-
switching action. Reporters were able to request a handoff 
with an explorer and the explorers were able to decide 
whether or not to accept the request. If both the reporter and 

 
Figure 2. Mines Found. The average percentage of mines found 
reaches 97%, exceeding the goal of 95%. The maximum 
percentage found is 100%. 

 
Figure 3. Mines Reported. The average percentage of mines 
reported for each generation is shown by the solid line. Maximum 
and minimum percentages for each generation are also indicated 
by x’s. the average percent reported reaches the 95% threshold by 
the end of the evolution. The maximum scores approach 100% as 

 
Figure 4. Swarm Left. On average, over 90% of the swarm 
survives the simulation by the end of the evolution process, which 
meets the requirement of 90% survival. Also, the maximum 
percentage of the swarm remaining reaches approximately 99%. 

 
Figure 5. Time Remaining. The average time remaining at the end of 
a simulation converges to approximately 500. The maximum time 
remaining reaches 1000. 

 
Figure 6. Fitness Scores. Average fitness scores settle at 8.5, with 
maximum scores greater than 10. 
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the explorer agreed to handoff the mine location information, 
then the agents would switch states with each other. 

 
Unfortunately, it was discovered that this method of 

handing off bits of information does not improve the 
swarm’s speed or efficiency in this scenario. In a two-
dimensional grid, fast agents do not get stuck waiting behind 
slower agents. Instead of needing to hand of off their 
information to the slow unit, fast agents can just maneuver 
around the slower ones. This was learned by comparing 
swarms’ fitness scores after being evolved both with and 
without these hand-offs. As shown in Figure 7, the results 
proved than there is essentially no difference between 
swarms evolved with and without this ability. This does 
demonstrate an inherent pruning ability of swarm inversion. 
Through analysis, handoffs were shown to be a useless 
ability, and therefore may not be a necessary technological 
addition. The handoff capabilities can be removed from the 
simulation to simplify the rules without negatively affecting 
the emergent behaviors of the swarms. 

 
Even though the solution did not achieve the method we 

were expecting, the swarms were eventually able to find an 
efficient method of searching the area for mines. The 
emergent behavior of this minefield swarm is fairly simple, 
but produces a solution that successfully maps out all of the 
mine locations within the given time limit. Explorers spread 
out until they find a mine. If its location hasn’t already been 
reported, the explorer switches to a reporting state and 
returns to the base in order to report the location of the mine. 
This is accomplished by reducing the center sensor radius to 
a small value for reporters. Agents also switch to their 
recharging state when their battery level drops too low. 
Recharging agents return to the base to recharge and switch 
back to explorers when the recharging is complete. Examples 
of these behaviors are shown in Figure 8. 

IV. SWARM SIZE 

One of the more “fuzzy” concepts in swarm intelligence 
relates to how large (or small) a group of agents should be in 
order to be considered a swarm. Obviously a group of two 
simple agents is probably not going to be able to perform 
many complex behaviors. Conversely, a group of a million 
agents would almost certainly be able to achieve its 
objectives, but the cost of having such a large swarm would 
vastly outperform the benefits. Finding the optimum number 
of agents to successfully and efficiently accomplish an 
objective would be a useful problem to solve. We decided to 
test our Minefield simulation with a wide variety of swarm 
population sizes in order to determine the best swarm size for 
our particular model and difficulty. 

While designing the minefield scenario, it was initially 
tested with a population size of 30 agents. Our goal was to 
design a swarm that would be large enough to have complex 
emergent behavior, but still small enough to be relatively 
inexpensive. We expected the fitness scores to increase as 
the population sizes increase. At some point, however, we 
anticipated seeing diminishing returns as we increase the 

 
Figure 7. Comparison of Fitness Scores during evolution with and 
without handoffs. The red lines represent the scores generated by an 
evolution with handoffs. The blue show the fitness scores generated 
without handoffs. The results are essentially the same. 

 
Figure 8. Examples of emergent behaviors. In A, a scout (circle) has 
just found an unreported mine. The scout switches to become a square 
reporter and returns to base. In B, the reporter reaches the base and 
reverts to scout mode. In C, a blue scout realizes its battery is too low 
and switches to a recharging state (triangle). In D, it has finished 
recharging at the base, and becomes a scout again. 
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swarm sizes. To test this, we took a highly evolved swarm 
solution and tested its performance when we changed the 
number of agents in the swarm. During the size test, the 
solution was tested 5000 times at each of the population 
sizes, which ranged from a swarm of one to fifty. 

 

 

 
 

Figure 9 shows the increase of the fitness scores as the 
swarm size changes. As expected, we start to see diminishing 
returns and the swarm size gets unnecessarily large. Figures 
10 and 11 show the percentages of mines found and reported. 
It can be seen that a swarm of fifteen agents can successfully 
meet the criteria of finding and reporting 90% of the mines. 
However, a 100% success rate is not approached until the 
swarm size reaches 36 agents. After 36, there is not much 
difference in these two graphs. Figure 12 shows how the 
percentage of swarm remaining changes due to differences in 
population size. While a very small swarm is able to keep the 
required 95% of the swarm alive, it is not able to properly 
search the area for mines. It is not until the swarm size 
increases to around 12 that the swarm completed this 
objective and the mine search objectives. Another benefit of 
increasing the swarm size is shown in Figure 13, the 
speeding up of the swarm’s success time. After a swarm 
completes the three required objectives, the next step is to try 
and perform those tasks as fast as possible. The time 
remaining increases rapidly around a size of 36 agents and 
slows down after that. Figure 14 provides a clearer insight 
into how swarm size impacts speed. In this graph, the time 
remaining is divided by the swarm size, resulting in a peak 
that represents when the swarm is performing its objectives 
quickly and efficiently. 
 

 
From analyzing these data it is evident that a population 

size of at least 15 is necessary for a successful swarm and the 
swarms begin experiencing diminishing returns at a 
population size of 36 agents. Therefore, the optimum swarm 
size for this particular Minefield application, as described, is 
approximately 36 agents. The solution is robust enough that 
slight variations in the swarm size do not greatly impact the 
success or efficiency of the emergent behaviors. This 
optimum swarm size is based on the difficulty of the 
scenario, which can easily be changed by adjusting a variety 
of factors. First, increasing the time limit would lower the 
difficulty greatly. Also, modifying the size of the search 
space, by either changing the actual size of the playing area, 
or the sensor ranges of the agents would result in either an 
easier or harder scenario, depending on if you increased or 
decreased the relative size of the search space. In 
comparison, it would take 213 stationary units with the 
designed sensor ranges of 25 units to completely cover the 
area required by the problem which has a radius of 800 units. 

 
Figure 9. Fitness Scores vs Swarm Size. The average fitness scores for 
each swarm size, along with errorbars representing one standard 
deviation from the mean, are shown in this figure. A score of at least 7 
represents a swarm that has successfully completed its objectives. 
Here, the average fitness scores reach this threshold at a size of 13. 

 
Figure 10. Mines Found. The percentage of mines found reaches the 
threshold of 90% at a swarm size of 13 agents, and begins 
experiencing noticeable diminishing returns around 36. 

 
Figure 11. Mines Reported. Similar to Figure 10, a swarm of 15 agents 
is required to meet the threshold of the mines reported and again, 
diminished returns can be seen near 36 agents. 

 
Figure 12. Swarm Left. 12 agents are required to meet, on average, the 
95% survival criterion. 
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Or, a single unit with could explore the entire search space in 
213 time frames, assuming it had a global source of 
information guiding it to prevent it from returning to a 
previously searched location. Both of those examples are 
extreme cases, but they show how the Minefield scenario can 
be solved over a period of time with a much smaller 
population size than 213 and without the use of global 
information as needed by the single agent. 

 

 

V. CONCLUSION 

We have designed a simple model of a minefield and 
evolved a swarm that can successfully map out all of the 
mines’ locations within a set time limit. In order to determine 
a “successful” swarm simulation, we set thresholds on three 
separate objectives. When those criteria were met, the swarm 
was optimized for speed. We also test for the optimum 
swarm size needed in this simulation and found that a 
population size of 15 is required while approximately 36 
agents would be ideal. By simply adjusting some parameters, 
a user could set criteria for success, and then test to see if the 
required swarm size was feasible for their specific 
application. 
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Figure 13. Time Remaining. The time remaining at the end of a 
successful search increases with swarm size. 

 
Figure 14. Time Remaining / Swarm Size. A shown here, the average 
time remaining divided by the swarm size peaks at a swarm size of 
approximately 36. This means that increasing the size of the swarm up 
to approximately 36 agents increases the speed of the swarm. After 36 
agents, however, the addition of agents does not speed up the swarm 
enough to justify the cost of additional units. 




