
DRAFT

Mapping an Underwater Minefield with a Multi-State Swarm and
the Effects of Swarm Size on Performance

Jon H. Roach, Benjamin B. Thompson, and Robert J. Marks II

Abstract— Swarm intelligence, inspired by the group
behavior of insects in nature, can be used to design control
algorithms for groups of autonomous units in environments
where a centralized controller is not feasible. Allowing agents
within the swarm to take on one of multiple states allows the
swarm greater flexibility and the ability to accomplish multiple
objectives simultaneously. In this paper, a multi-state swarm is
designed to simulate the mapping of a modeled underwater
minefield. The rules controlling the movement of the agents are
evolved in an offline learning algorithm, which is also used to
optimize the state-switching behaviors in the swarm. In
addition, the robustness of the solution is tested by simulation
at various swarm sizes. The minimum swarm size necessary for
completion of the mission is found, along with the point at
which diminishing returns in the fitness of the swarm appears.

Index Terms—Keywords: swarm intelligence, multi-state,
task switching, fuzzy control, emergent behavior

I. INTRODUCTION

Swarm intelligence is inspired by the way that large
groups of insects work together in nature [6]. An insect can
often be modeled as following a set of simple rules, or
instincts, while a large swarm of insects are able to
coordinate and accomplish a complex objective, such as
designing a beehive or building an anthill. One of the goals
of our research is to apply some of the concepts of swarm
intelligence to a large group of autonomous underwater
vehicles (AUVs). These drones operate in an environment
where radio waves do not travel well and communication is
very difficult. This means a centralized controller cannot be
used. Instead, we can use swarm intelligence to find a set of
rules for the agents to follow which results in the desired
emergent behavior.

An application of underwater swarms is minefield
mapping. The problem of clearing a minefield has been
studied throughout the past hundred years and recently the
use of swarm intelligence has been shown to be a viable
option [1][2]. However, for the most part, much of the work
has dealt with underground mines. In these cases, the
minefield can be marked by agents in a swarm to
communicate to other agents that an area of the field has
previously been searched for mines thoroughly. This is
similar to how ants forage for food. When an ant finds a
source of food, it returns to the anthill, releasing a trail of
pheromones as it goes. Other ants are able to follow this
pheromone trail to the food. While this emergent swarm
behavior is interesting and can be applied to underground
mine scenarios, it does not function well when dealing with
underwater mines. In an underwater scenario AUVs are
unable to leave a trail that would be unchanged by local
currents, marine life etc. Since it would be unfeasible to
mark trails underwater, a new strategy is needed.

II. MINEFIELD

An underwater minefield mapping scenario is developed
to explore possible strategies. In this scenario, a single
swarm is tasked with searching an area for mines and
reporting all the mine positions to the central base. Since we
are working with multi-state swarms, agents are able to take
on one of three states: explore, report and recharge. All
agents are initialized as explorers. When an agent approaches
an unreported mine, the agent has the option of switching to
a reporting state. When a reporter reaches the base with the
location of a mine, that location is saved. For the purposes of
the simulation, we assume that the mine’s location is
broadcast out from the base to let the rest of the swarm know
the location of previously mapped mines.

We also introduce a recharging state for the swarm. This
concept of battery life is not considered in our previous work
[3][4][5], but was something we wanted to add in order to
approach a more realistic applicable solution. All units are
initialized with a battery charge of 100. After each cycle, the
battery charge is decreased in two ways. First, there is an idle
battery discharge that occurs regardless of movement.
Second, the battery is discharged based on how far the agent
has travelled that time step. Agents have the ability to switch
from either exploring or reporting states to a recharging state
if their battery drops too low, as defined by the output of a
threshold function. Agents that are near the base are able to
recharge their batteries. In practice, this could mean
surfacing for solar cell recharging, refueling from a ship, or
other possibilities, but for simplicity, agents in this scenario
are able to recharge if they are within a set radius of the
central base. When the battery charge reaches an acceptable
level, the agents switch back to the task of exploring the
search space.

DRAFT

(1)

The movement of the agents is controlled by a series of

actuator functions. Each agent is equipped with a variety of
limited range sensors that can detect objects, such as other
agents, mines, and the base. The distances to these objects
are used as inputs for a series of actuator functions that
determine the resulting movement with respect to the object
being sensed. This combination of weighting functions is an
example of disjunctive, or Combs, control [13]. In addition
to the summation of the vectors generated from the group of
actuator functions, each agent also takes a random step. The
weighting functions themselves are simple piece-wise
defined linear functions, as dictated by the y-values at three
points. The y-values are set as adjustable parameters that can
be modified to produce different behaviors. These
parameters can then be optimized by using an evolutionary
learning algorithm [8][9][10][11][12]. Agents are allowed to
move off the edge of the map, but the swarm is penalized
through their fitness scores if any agents are off the map at
the end of the simulation. To prevent this, agents are also
equipped with a center sensor that allows them to always
sense how far away they are from the center of the map. If
they move too far away, the center sensor’s actuator function
can be used to pull the agent back toward the center of the
map. The point at which the agent are pulled back in is
another evolved parameter.

Our optimization process begins by initializing a
population of 80 swarms with random parameters. Then a
Monte Carlo simulation of the entire population of swarms is
performed. After simulation, the teams each receive a fitness
score, described below, that defines how well the swarm
performed in the previous round of simulations. The teams
are then ranked by their fitness scores. Next, teams in the
half of the population with lower fitness scores are removed
from the population of possible solutions and replaced with
copies of the better teams, along with a small amount of
randomly generated solutions. The copies are then mutated
by adding random Gaussian noise to the swarms’ parameters.
This concludes on cycle, or generation, of evolution. After

hundreds of generations of evolution, poor solutions are
filtered out and the algorithm can approach an optimum set
of parameters.

In evolving the swarm, a fitness function is needed to
determine how well the swarm maps out the minefield. Our
resulting fitness function is computed as a product of scores
that represents how well the swarm achieves some specific
objectives. The first, and most obvious, objective to track is
how many mines the swarm is able to find. Our goal is for
the swarms to successfully find at least 90% of the mines. It
is important to note that these goals are adjustable and
simply reflect what we consider success. In practice, a swarm
designer needs to define what a “successful” swarm means to
them. Expecting 100% completion of a task 100% of the
time may be setting the bar too high, so for our purposes,
90% is used. The second objective tracked is how many
mines are reported. We do not want the swarm to simply find
the mines. They need to report the mine positions to their
home base as well, and 90% is set as an acceptable
percentage for the purposes of evolution. Thirdly, the swarm
should keep as many agents alive as possible, so the
percentage of agents remaining alive, within the field of play
when time expired is also tracked. Agents are considered
dead if either their battery level drops to zero or if they bump
into a mine. 95% is used as the success threshold here.
Finally, we would like the swarm to perform its task as fast
as possible, so the time remaining was used as well. The
fitness score is computed using the following formula:

ݏݏ݁݊ݐ݅ܨ ൌ ሺ1 ൅ ிܲሻሺ1 ൅ ோܲሻሺ1 ൅ ௌܲሻ ൬1 ൅
ܶ

2000
൰

In equation (1), PF is the percent of mines found, PR is the

percent of mines reported, PS is the percent of swarm
remaining and T is the time remaining (out of the total time
limit of 2000, assuming all of the mines are reported).
However, if any of the three percentages is greater than the
set success threshold, the threshold value is used instead. In a
successful evolution, the swarm’s percentages of mines
reported, mines found and swarm remaining should
eventually increase to be greater than the predefined
thresholds. When this happens, the swarm has a successful
strategy, and the evolutionary algorithm begins optimizing
the swarm’s strategy for speed.

III. RESULTS

Figures 2-5 represent the progress of improving these
objective percentages over the course of the evolution
process. Figure 6 shows the resulting fitness scores over the
same period of evolution.

Figure 1. Screenshot from Minefield simulation. The small circles
represent agents in the explore mode. The small triangles are agents in
the recharging state and the small square agent is acting as a reporter.
The larger dots indicate the location of the mines. The ring in the
center of the map represents the sensor range of the central base (not
pictured) as well as the recharging radius for the agents.

DRAFT

When this simulation was first designed, the goal was to
produce an emergent behavior similar to the leaf-cutter ant
[6]. Certain species of leaf-cutter ants have a very efficient
assembly line strategy to transport pieces of leaves. Instead
of taking its piece of a leaf all the way to the anthill, each ant
only carries its piece until it bumps into an ant headed the
other way. The ant hands off the piece to the newcomer and
returns to the leaf, while the newcomer turns back to the
anthill with the leaf. This method is actually the most
efficient strategy. Without these handoffs, the entire line of
ants would be slowed down by the slowest ant, as all of the
faster ants would get stuck behind slower ants.

Similarly, for our minefield simulation, agents were
given different maximum speeds and reporters were given
the ability to “hand off” information to nearby explorers,
switching states with them. The decision making algorithm
was controlled via a simple three input aggregator equivalent
to a neural network perceptron [7]. The inputs included the
agent’s maximum speed, its distance to the base, and its
battery charge. Each input was multiplied by an adjustable
weight and summed together. If the result was greater than a
pre-set threshold, than the agent decided to perform the state-
switching action. Reporters were able to request a handoff
with an explorer and the explorers were able to decide
whether or not to accept the request. If both the reporter and

Figure 2. Mines Found. The average percentage of mines found
reaches 97%, exceeding the goal of 95%. The maximum
percentage found is 100%.

Figure 3. Mines Reported. The average percentage of mines
reported for each generation is shown by the solid line. Maximum
and minimum percentages for each generation are also indicated
by x’s. the average percent reported reaches the 95% threshold by
the end of the evolution. The maximum scores approach 100% as

Figure 4. Swarm Left. On average, over 90% of the swarm
survives the simulation by the end of the evolution process, which
meets the requirement of 90% survival. Also, the maximum
percentage of the swarm remaining reaches approximately 99%.

Figure 5. Time Remaining. The average time remaining at the end of
a simulation converges to approximately 500. The maximum time
remaining reaches 1000.

Figure 6. Fitness Scores. Average fitness scores settle at 8.5, with
maximum scores greater than 10.

DRAFT

the explorer agreed to handoff the mine location information,
then the agents would switch states with each other.

Unfortunately, it was discovered that this method of

handing off bits of information does not improve the
swarm’s speed or efficiency in this scenario. In a two-
dimensional grid, fast agents do not get stuck waiting behind
slower agents. Instead of needing to hand of off their
information to the slow unit, fast agents can just maneuver
around the slower ones. This was learned by comparing
swarms’ fitness scores after being evolved both with and
without these hand-offs. As shown in Figure 7, the results
proved than there is essentially no difference between
swarms evolved with and without this ability. This does
demonstrate an inherent pruning ability of swarm inversion.
Through analysis, handoffs were shown to be a useless
ability, and therefore may not be a necessary technological
addition. The handoff capabilities can be removed from the
simulation to simplify the rules without negatively affecting
the emergent behaviors of the swarms.

Even though the solution did not achieve the method we

were expecting, the swarms were eventually able to find an
efficient method of searching the area for mines. The
emergent behavior of this minefield swarm is fairly simple,
but produces a solution that successfully maps out all of the
mine locations within the given time limit. Explorers spread
out until they find a mine. If its location hasn’t already been
reported, the explorer switches to a reporting state and
returns to the base in order to report the location of the mine.
This is accomplished by reducing the center sensor radius to
a small value for reporters. Agents also switch to their
recharging state when their battery level drops too low.
Recharging agents return to the base to recharge and switch
back to explorers when the recharging is complete. Examples
of these behaviors are shown in Figure 8.

IV. SWARM SIZE

One of the more “fuzzy” concepts in swarm intelligence
relates to how large (or small) a group of agents should be in
order to be considered a swarm. Obviously a group of two
simple agents is probably not going to be able to perform
many complex behaviors. Conversely, a group of a million
agents would almost certainly be able to achieve its
objectives, but the cost of having such a large swarm would
vastly outperform the benefits. Finding the optimum number
of agents to successfully and efficiently accomplish an
objective would be a useful problem to solve. We decided to
test our Minefield simulation with a wide variety of swarm
population sizes in order to determine the best swarm size for
our particular model and difficulty.

While designing the minefield scenario, it was initially
tested with a population size of 30 agents. Our goal was to
design a swarm that would be large enough to have complex
emergent behavior, but still small enough to be relatively
inexpensive. We expected the fitness scores to increase as
the population sizes increase. At some point, however, we
anticipated seeing diminishing returns as we increase the

Figure 7. Comparison of Fitness Scores during evolution with and
without handoffs. The red lines represent the scores generated by an
evolution with handoffs. The blue show the fitness scores generated
without handoffs. The results are essentially the same.

Figure 8. Examples of emergent behaviors. In A, a scout (circle) has
just found an unreported mine. The scout switches to become a square
reporter and returns to base. In B, the reporter reaches the base and
reverts to scout mode. In C, a blue scout realizes its battery is too low
and switches to a recharging state (triangle). In D, it has finished
recharging at the base, and becomes a scout again.

DRAFT

swarm sizes. To test this, we took a highly evolved swarm
solution and tested its performance when we changed the
number of agents in the swarm. During the size test, the
solution was tested 5000 times at each of the population
sizes, which ranged from a swarm of one to fifty.

Figure 9 shows the increase of the fitness scores as the
swarm size changes. As expected, we start to see diminishing
returns and the swarm size gets unnecessarily large. Figures
10 and 11 show the percentages of mines found and reported.
It can be seen that a swarm of fifteen agents can successfully
meet the criteria of finding and reporting 90% of the mines.
However, a 100% success rate is not approached until the
swarm size reaches 36 agents. After 36, there is not much
difference in these two graphs. Figure 12 shows how the
percentage of swarm remaining changes due to differences in
population size. While a very small swarm is able to keep the
required 95% of the swarm alive, it is not able to properly
search the area for mines. It is not until the swarm size
increases to around 12 that the swarm completed this
objective and the mine search objectives. Another benefit of
increasing the swarm size is shown in Figure 13, the
speeding up of the swarm’s success time. After a swarm
completes the three required objectives, the next step is to try
and perform those tasks as fast as possible. The time
remaining increases rapidly around a size of 36 agents and
slows down after that. Figure 14 provides a clearer insight
into how swarm size impacts speed. In this graph, the time
remaining is divided by the swarm size, resulting in a peak
that represents when the swarm is performing its objectives
quickly and efficiently.

From analyzing these data it is evident that a population

size of at least 15 is necessary for a successful swarm and the
swarms begin experiencing diminishing returns at a
population size of 36 agents. Therefore, the optimum swarm
size for this particular Minefield application, as described, is
approximately 36 agents. The solution is robust enough that
slight variations in the swarm size do not greatly impact the
success or efficiency of the emergent behaviors. This
optimum swarm size is based on the difficulty of the
scenario, which can easily be changed by adjusting a variety
of factors. First, increasing the time limit would lower the
difficulty greatly. Also, modifying the size of the search
space, by either changing the actual size of the playing area,
or the sensor ranges of the agents would result in either an
easier or harder scenario, depending on if you increased or
decreased the relative size of the search space. In
comparison, it would take 213 stationary units with the
designed sensor ranges of 25 units to completely cover the
area required by the problem which has a radius of 800 units.

Figure 9. Fitness Scores vs Swarm Size. The average fitness scores for
each swarm size, along with errorbars representing one standard
deviation from the mean, are shown in this figure. A score of at least 7
represents a swarm that has successfully completed its objectives.
Here, the average fitness scores reach this threshold at a size of 13.

Figure 10. Mines Found. The percentage of mines found reaches the
threshold of 90% at a swarm size of 13 agents, and begins
experiencing noticeable diminishing returns around 36.

Figure 11. Mines Reported. Similar to Figure 10, a swarm of 15 agents
is required to meet the threshold of the mines reported and again,
diminished returns can be seen near 36 agents.

Figure 12. Swarm Left. 12 agents are required to meet, on average, the
95% survival criterion.

DRAFT

Or, a single unit with could explore the entire search space in
213 time frames, assuming it had a global source of
information guiding it to prevent it from returning to a
previously searched location. Both of those examples are
extreme cases, but they show how the Minefield scenario can
be solved over a period of time with a much smaller
population size than 213 and without the use of global
information as needed by the single agent.

V. CONCLUSION

We have designed a simple model of a minefield and
evolved a swarm that can successfully map out all of the
mines’ locations within a set time limit. In order to determine
a “successful” swarm simulation, we set thresholds on three
separate objectives. When those criteria were met, the swarm
was optimized for speed. We also test for the optimum
swarm size needed in this simulation and found that a
population size of 15 is required while approximately 36
agents would be ideal. By simply adjusting some parameters,
a user could set criteria for success, and then test to see if the
required swarm size was feasible for their specific
application.

ACKNOWLEDGMENT

Special thanks to Baylor University, the Applied
Research Laboratory at the Pennsylvania State University
and especially the Office of Naval Research’s University
Laboratory Initiative for funding for this project.

REFERENCES

[1] V. Kumar, F. Sahin, “Foraging in ant colonies applied to the mine

detection problem,” Soft Computing in Industrial Applications, 2003.
SMCia/03. Proceedings of the 2003 IEEE International Workshop on
, vol., no., pp.61,66,23-25 June 2003

[2] E. chapman, F. Sahin, “Application of swarm intelligence to the mine
detection problem,” Systems, Man and Cybernetics, 2004 IEEE
International Conference on, vol.6,no., pp.5429,5434 vol.6, 10-13
Oct. 2004

[3] W. Ewert. R.J. Marks II, B.B. Thompson & Albert Yu, “Evolutionary
Inversion of Swarm Emergence Using Disjunctive Combs Control,”
IEEE Transactions on System, Man and Cybernetics (2013).

[4] Jon Roach, Winston Ewert, Robert J. Marks II and Benjamin B.
Thompson, “Unexpected Emergent Behaviors From Elementary
Swarms,” Proceedings of the 2013 IEEE 45th Southeastern
Symposium on Systems Theory (SSST), Baylor University, March 11,
2013

[5] I. Gravagne and R.J. Marks II, “Emergent Behaviors of Protector,
Refuge, and Aggressor Swarms,” IEEE Transactions on Systems,
Man and Cybernetics – Part B: Cybernetics, vol.37, no.2, pp.471-
476, Apr. 2007

[6] E. Bonabeau et al, Swarm Intelligence: From Natural to Artificial
Systems. Oxford, NY: Oxford University Press, 1999.

[7] R. Reed & R.J. Marks II, Neuralsmithing (MIT Press, 1999)

[8] C. Fonseca and P. Fleming, “An Overview of Evolutionary
Algorithms in Multiobjective Optimization, “Dept. Automatic
Control and Systems Eng. University of Sheffield, Sheffield S1 4DU.
U.K. July, 1994.

[9] Z. Yuan, “Continuous Optimization Algorithms for Tuning Real and
Integer Parameters of Swarm Intelligence Algorithms,” ANTS 2010,
pp. 203-214, 2010

[10] M. Clerc and J. Kennedy, “The Particle Swarm – Explosion, Stability,
and Convergence in a Multidimensional Complex Space,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-72,
Feb, 2002

[11] D. Cvetkovic and I. Parmee, “Evolutionary Design and Multi-
objective Optimisation,” Plymouth Engineering Design Centre,
University of Plymouth. Drake Circus, Plymouth PL4 8AA, U.K.

[12] F. Kursawe, “A Variant of Evolution Strategies for Vector
Optimization,” University of Dortmund, Department of Computer
Science XI, D 44221 Dortmund, Germany.

[13] W. Ewert, R.J. Marks, II, B.B. Thompson & Albert Yu,
“Evolutionary Inversion of Swarm Emergence Using Disjunctive
Combs Control,” IEEE Transactions on Systems, Man & Cybernetics

Figure 13. Time Remaining. The time remaining at the end of a
successful search increases with swarm size.

Figure 14. Time Remaining / Swarm Size. A shown here, the average
time remaining divided by the swarm size peaks at a swarm size of
approximately 36. This means that increasing the size of the swarm up
to approximately 36 agents increases the speed of the swarm. After 36
agents, however, the addition of agents does not speed up the swarm
enough to justify the cost of additional units.

