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Abstract Coordinating the dynamics of large groups, or swarms, of
autonomous underwater vehicles in order to search a given target area
can be difficult due to the plurality of the system, environmental com-
plications, and the prolonged and indefinite duration of the patrol. This
paper examines the use of swarm inversion to optimize the behavioral
dynamics of a swarm of autonomous agents in a patrol search with
underwater morphological and environmental constraints. In partic-
ular, the range of the forward-looking sensor range of agents varies
spatially, requiring more search time in dark areas to maintain a high
level of surveillance. This results in a tradeoff between the uniform
coverage and surveillance frequency. The patrol fitness is determined
via simulation feedback, and particle swarm optimization is used to
invert and refine the behavior of the swarm. The tradeoffs between high
search frequency and search uniformity are examined, as well as the
evolved swarm’s adaptability to varying environmental conditions and
robustness of agent numbers. Results demonstrate that swarm inver-
sion can yield effective agent behaviors for maintaining a presence in
a given target zone despite stochastic navigation and an anisotropic
environment.

Keywords swarm intelligence; multi-agent systems; patrol tactics;
particle swarm optimization

1 Introduction

Unmanned vehicle autonomy is an increasingly active area
of artificial intelligence research that seeks to implement
effective decision-making algorithms in undirected vehicles.
Designing the appropriate control scheme to achieve the
desired vehicular response in all possible circumstances, and
thus fully characterizing the explanation facility, is often a
difficult if not unobtainable objective. Thus, the state-of-the-
art autonomous control is largely comprised of ad hoc expert
systems that may exhibit undesirable emergent behaviors
when the operational theater is perturbed. Nevertheless,
autonomous systems are necessary as direct and timely
human control of all factors may be outside the capability
of the operator, and deterministic control is limited by scope
and adaptability, and thus has potential for vulnerability.

The details of autonomy become increasingly complex
when dealing with unmanned, multi-agent systems. Large
groups of autonomous, interacting agents, or swarms,

can have emergent behaviors that are difficult to predict
without simulation or physical implementation. However,
the endeavor is worthwhile as large, interacting groups can
often accomplish tasks individuals cannot, but the nature of
mission execution and other subsequent emergent charac-
teristics can be difficult to predict via analytic inspection [3,
10]. Swarm technology and evolutionary techniques address
this issue by offering a robust and adaptive approach.

Swarm intelligence refers to large groups of agents
interacting under simple rules that exhibit some emergent
behavior and has applications in communications [5,
12], robotics [2], and optimization [6,17,18]. Prospective
advantages of swarm intelligence include swarm robustness,
plasticity, and decentralization [3], ideal characteristics for
governing the interactions of a large group of autonomous
vehicles. Emergent behaviors are often observed as a
consequence of a given set of antecedents (e.g., sensor
readings). The inversion of this process is to define criteria
for the consequent or agent action and then refine the
antecedents. Swarm inversion is the specific application of
an optimization technique to multi-agent systems that seeks
to develop optimal rules of operation for all agents by refin-
ing their behavioral responses. These responses are the focus
of the optimization, since swarms that grow in capability
can make the problem trivial. Variant techniques based on
evolutionary algorithms have been applied to large groups,
primarily in simulation and robotics [9,11,15,17,19].

Our proposed application of swarm inversion addresses
the problem of dynamic undirected searches, specifically
applied to an underwater patrol scenario. Here, a swarm
of autonomous underwater vehicles with multi-channel
sensing capabilities is given a limited amount of time
to establish and maintain a presence in a given target
zone. The primary difference between this scenario and
similar work [8,9,11] is the inversion algorithm, the nature
of the agent’s control parameters, and specific underwater
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morphological constraints. There is no external performance
behavior being sought. Any emergent behavior that
performs well within the imposed physics-based constraints
is acceptable. We use the Combs swarm inversion method
which involves the coevolution of disjunctive fuzzy
logic [7]. The reader is referred to this work for a discussion
of details on the inversion process as well as a discussion of
prior work which leads to use of the Combs method.

The agents we use do not leave pheromone trails [8]
for other agents to find nor will they follow waypoints or
landmarks. They will not be able to directly communicate
among each other or to any central controller. Although this
agent ability could be added, neither of these capabilities
were deemed characteristic of the agents we have in mind
for the operation of surveillance [4].

An illustrative analogy to our problem is the patrol of
a field at night by agents with limited vision. The field in
some areas is illuminated so that the surveillance can be
performed quickly over a large area. In darker areas, more
time is required to assess safety status with the same cer-
tainty. The field can be occupied at a point at any time by
an enemy agent, so the same regions must be repeatedly
inspected. The average overall surveillance frequency of the
field can be made high by agents spending all of their time
patrolling well-lit areas. This, however, leaves darker areas
uninspected for long periods of time. Requiring inspection
of darker areas when there are fixed resources leaves well-
lit areas less frequently visited. There is therefore a tradeoff
between overall average surveillance frequency and the uni-
formity of coverage.

There are sensible, deterministic tactics to search
a given terrain. Agents can line abreast and move in
formation, comb the area, or follow a pre-planned path.
However, path planning in an anisotropic environment is
not a trivial task. Planned paths also display behaviors that
are relatively easy to observe, ascertain, and subsequently
circumvent. The stochastic nature of swarms makes the
patrolling agents much more difficult to predict and counter,
while the robust and adaptive nature of swarm intelligence
would be advantageous in execution.

2 Model description

2.1 Patrol scenario

The underwater environment affects an agent’s ability to
search its surroundings by restricting communication and
obscuring visibility. Unlike surface or aerial vehicles, an
underwater vehicle utilizing acoustic sensing has limited
channels available and often has few forms of direct
communication. Thus, their interactions are modeled here
as indirect and passive; agents become aware of each other
by observing proximity noise or crosstalk. The underwater
environment can also contain acoustic shadow zones, areas
where deviations in the sound speed profile cause refraction

in acoustic transmissions, limiting an agent’s effective
viewable distance. For our simulation, a high-level surface
attenuation map is assumed to be known or approximately
calculable by the agent, whether a priori or in real time via
environmental readings.

2.2 Agent morphology and coverage maps

The swarming model considered assumes a high-level
environment attenuation map. Agents are modeled to
have a maximum speed and yaw rate, and their acoustic
sensing capabilities are approximated as a visibility arc
representing the ensonified area with the highest probability
of detection by that agent. As an agent travels, the previously
ensonified areas are retained as a tail representing a memory
component that is only known to that particular agent
(Figure 1). Each tail decays exponentially and eventually
requires the agent to revisit and refresh these areas.

As each agent travels, an aggregate pixel coverage map
is assembled, representing the combined coverage that a
given pixel has been searched by any agent. This aggregate
includes the decaying memory component of each agent.
After a fixed iteration interval, the scenario is terminated,
and the theater’s final combined mean coverage and pixel
standard deviation is recorded.

2.3 Visibility attenuation and interference

A high-level attenuation map is applied to the field. Each
pixel in the map is assigned a value from 0 to 1 that
represents a scale modifier to the agent’s visibility. Lower
values reduce the ensonified area of any agent on that pixel.
Agents may also interfere with each other due to channel
constraints. Whereas two agents in different channels will
see each other if encountered, two agents operating in the
same band generate crosstalk and confusion. Similarly,
two agents within a close distance will generate proximity
noise and overload all other acoustic signals, confusing both
agents. This results in the agent’s ensonified arc becoming
void for that particular time step, and no contribution is
made to the aggregate confidence map.

3 Swarm inversion

3.1 Genomic parameterization

The evolved agent genome is an array representation of each
behavioral response parameter to a given sensor. A total
of 10 evolvable parameters (initialized as uniform random
variables over their entire dynamic range), characterize
three primary sensors. Agents have sensors for their current
position in the attenuation map via a Global Positioning
System (GPS) or Inertial Navigation System (INS). Agents
also have sensors for interference and are aware of the
general direction but not range of the offending source.
Finally, agents develop a response to the closest visible
agent. Disjunctive fuzzy Combs control is achieved through
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Figure 1: (a) Ensonified arc approximation with memory decay component, (b) channel interference, and (c) proximity
interference: agents can conflict with each other in the above manners, and their resulting ensonified swaths are considered
void for the relevant time steps. Agents indirectly communicate their relative bearing through this interference.

use of an activator function for each sensor. The activator
function is parametered by a fuzzification vector. Each
sensor consequent is scaled against an inertial component,
aggregated, and applied as a final heading change decision
subject to noise, yaw, and speed constraints. These three
sensors and 10 evolvable parameters are:

(1) a0, weighted response of vector toward nearest visible
ally, if applicable;

(2) b0, weighted response to direction of source of interfer-
ence, if applicable; and

(3) {v0, . . . ,v7}, piecewise-linear visibility response to the
attenuation map.

For sensors 1 and 2, the agent responds with a unit vector
in the direction of the nearest visible ally or noise source
scaled by the evolved parameter value. For sensor 3, each
agent retains its previous two headings and visibility levels
in order to estimate the local visibility gradient of the attenu-
ation map. The agent then responds with a unit vector in the
direction of the maximum decreasing gradient, multiplied
by a factor determined by the piecewise linear function and
its current visibility level. The maximum decreasing gradi-
ent is calculated from the cross-product of the two previous
headings, adjusted for the agent’s turn direction. This allows
the agent to estimate the direction of decreasing visibility.

3.2 Fitness function

Developing a well-tuned fitness function is imperative
to optimizing the swarm’s behavior for this simulation.
Gaudiano et al. [8] examined evolving state transition
parameters for a multi-agent system of missiles, concluding
that the inversion process’s performance was heavily
influenced by agent initialization and fitness function,
and that the formulation of the fitness function could
introduce unwanted biases. Small adjustments made to
the fitness function can drastically shift the inversion’s
solution, and each solution may have a range of fitness
values due to initializations and noise. Several known

strategies in developing the fitness function include the use
of prior knowledge to limit the search space and fixed or
de-randomized initializations [12]. To reduce the impact of
initialization on the performance of the swarm, agents are
initialized randomly around a fixed ring at the center of the
field and given an outward initial trajectory.

The goal of this inversion is to direct agents into search-
ing the field frequently and uniformly. However, there is
an inherent imbalance between these two factors; perfect
mean coverage is unobtainable due to the limited number
of agents, but perfect uniformity can easily be achieved if
all agents interfere with each other, contributing nothing to
the aggregate map and resulting in zero standard deviation.
As this solution is relatively simple to discover, a third term
regarding agent interference was required to prevent the evo-
lution from circumventing the true goal of the mission. To
this end, the three major objectives were to maximize mean
coverage μ of all pixels in the zone, maximize uniformity of
coverage via minimizing the standard deviation σ among all
pixels on the map, and minimize average ratio of time spent
blinded by interference b. A uniformity weighting factor λ
was incorporated to tweak the fitness function and direct
the optimization between mean and uniformity, expressed
below. The λ variable is a tactical variable chosen by the
user in accordance with the degree of importance of σ. In
Pareto optimization, such parameters are commonly used to
tune between competing attributes in the design process.

The goal is to maximize this fitness value through sim-
ulation feedback. An exponential term was used to reshape
the fitness landscape to reward higher scores.

fλ(μ,σ,b) = eμ−λσ−b. (1)

3.3 Parameter inversion

Under default conditions with zero behavioral responses
to the environment and ally interactions, agents produce a
mean, per-pixel confidence map that reflects the high-level
attenuation map, as depicted in Figure 2. The shadow zone is
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Figure 2: An (a) example high-level attenuation map representing a scaling modifier on an agent’s effective visibility range
and (b) the resulting mean pixel confidence of agents patrolling for 10,000 time steps with no specific responses to sensory
inputs, displayed in contour form for clarity. Agents within the shadow zone in (a) have their visibility significantly reduced,
and this is reflected in the mean patrol coverage (b) of the pre-evolved agents.

Figure 3: Swarms were evolved to search up to five different visibility attenuation maps, depicted in the upper row. With
no specific behavioral responses, the swarms produce non-adapted mean pixel confidence maps (lower row) that reflect its
respective attenuation map. The ideal swarm should search these areas uniformly at high mean confidence.

covered poorly on average relative to higher-visibility areas.
An ideal swarm model should search all areas frequently
and uniformly.

A variant of Shi and Eberhart’s modified particle swarm
optimizer (PSO) [20] with re-initialization is utilized in opti-
mizing the agents’ response functions. Each PSO agent is a
solution genome that is run through the simulation in order
to evolve the fitness of the population. In general, a popula-
tion size of 100 genomes searching over 200 generations is
used. The PSO is used to optimize the 10 evolvable param-
eters of the agent behavioral response genome.

3.4 Simulation setup and scenarios

For this simulation, a fixed number of homogeneous agents
are initialized randomly about a ring formation at the center
of a 128×128 pixel square theater. Agents may freely leave

the field but are attracted to the center once outside theater
bounds. The simulation’s frame rate is fixed and corresponds
to a maximum step size of 1 pixel, giving an effective max-
imum velocity of 1 pixel per unit time. All agents are syn-
chronized, updating their actions simultaneously, once per
frame or time step. Agents have a maximum viewable dis-
tance of 5 pixels and a memory decay rate of 0.99 per time
step. The swarm is allotted 10,000 time steps to complete
their patrol. In the base scenario, there are 60 agents limited
to two channels. A C++ program was written to perform the
simulation and execute the PSO.

Several simulation variants are tested. First, agents
evolve on a fixed map (map 1 in Figure 3) with varying
values of λ in order to observe the impact of the fitness
function on average confidence and coverage uniformity.
The second variant introduces the different attenuation maps
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Figure 4: On map 1, the (a) the evolved swarm for λ = −1, emphasizing high coverage, and (b) the evolved swarm for
λ= 10, emphasizing uniformity. Swarm (a)’s piecewise visibility response indicating repulsion from the shadow zone below
0.6 visibility scale. Conversely, swarm (b)’s response is mostly positive, with various levels of attraction toward the shadow
zone.

in Figure 3 into the training process in order to improve
universal performance and demonstrate swarm adaptability.
Finally, swarm robustness is examined by observing the
performance of the evolved swarms with varying numbers
of available starting agents.

For the second variant, there is an issue with calculating
a fitness function for different visibility maps. Fitness scores
are not even across maps: some maps inherently have higher
mean visibilities or standard deviations, which directly influ-
ences the swarm’s performance and fitness calculation. To
address this issue, quick optimizations are run separately
for λ = −1 and λ = 10 on each map. The fitness values for
these two results are mapped to zero and one linearly. A final
evolution cycling through all five maps is used to generate
the solution.

4 Results

4.1 Single map evolution using multi-objective fitness

Multi-objective optimization [14] demonstrates the inver-
sion’s ability to search the shadow zone given a specific
fitness function. The fitness function portrayed in (1) yields
a higher fitness value for swarms that achieve high mean
coverage μ, low pixel image standard deviation σ, and

low average blind-time ratio b. The weighting factor λ

directly influences the fitness calculation: high values of
λ correspond to a higher weighting on uniformity, or low
standard deviation, while low values of λ signify higher
emphasis on the overall mean pixel search. Intuitively,
this means that when λ is low, the agents should avoid
the shadow zone as it will decrease their visibility and
thus the total mean pixel coverage. When λ is high, total
coverage is deemphasized, and the evolution trades higher
pixel coverage mean for the improved uniformity gained by
searching the shadow zone.

A qualitative examination of the behaviors of the
evolved swarms demonstrates these characteristics. Figure
2(a) presents the tested attenuation map. There is a readily
apparent repulsion from the shadow zone in the λ = −1
solution, demonstrated in Figure 4(a). Most agents actively
turn away from the shadow zone when they encounter the
0.6 visibility threshold. These actions reflect the largely
negative repulsion in the evolved genome depicted in the
simulation snapshot. For λ= 10, there is a visible swarming
of the shadow zone due to the various levels of attraction
provided by the corresponding piecewise response genome
in Figure 4(b).
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Figure 5: Final evolved confidence map examples for varying values λ. As λ increases, agents venture into the shadow zone
as the fitness function rewards greater uniformity. There is a visible overall loss in mean coverage as more uniform solutions
trade both the dark and bright gray zones for midrange values.

Figure 6: Map pixel mean confidence, standard deviation,
and blind time for λ = −1 to 10, with 30 trials each. There
is very little variation in mean and blind time beyond λ= 1.

Figure 5 depicts examples of the final resulting coverage
maps for various values of λ and the transition from avoiding
to searching the shadow zone. Due to random initializations
and agent noise during the mission, final evolved confidence
maps can vary noticeably in appearance. The results of 30
random initializations of the simulation for each value of
λ are depicted in Figure 6. Despite the stochastic nature of
the swarm leading to variations in final confidence maps for
repeated runs, the final confidence maps are uniform. The

evolution stresses lower standard deviation with increasing
λ. To drive the swarm toward more uniform searches in sub-
sequent calculations, a weighting factor of λ= 10 is used in
the optimization process.

As expected, single-objective variants of the fitness
function did not yield promising results. Simply maximizing
the mean is insufficient as this encourages the agents
to confine their search to areas of high returns, leading to
agents avoiding the shadow zone. Alternatively, maximizing
the minimum pixel confidence had trivial improvement
over the same evolution time due to the strictness of the
condition. Uniformity constraints were found to require the
blindness term b as otherwise fitness was driven to zero via
interference at the expense of high coverage.

4.2 Map training and adaptability

The performance of the swarm was dependent on the visi-
bility map. Agents that were optimized for one attenuation
map did not necessarily maintain their performance for alter-
native fields, as demonstrated in Figure 7. This was expected
as the crafted fitness function and resulting evolutionary pro-
cess was not map invariant. However, these evolutions were
still useful, as they provided information on what range of μ,
σ, and b an optimized swarm on a given map will yield. Var-
ious representative maps were needed in the training process
in order to address adaptability, and these extremes provide
a method for comparison.
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Figure 7: The performance of swarm trained specifically for map 1 (top row) or map 5 (middle row) suffers on alternate
maps. The performance of the evolved solution trained on all five maps (bottom row), using normalized scores to calculate
fitness. The performance of this swarm is comparable with that of solutions evolved specifically for each map.

Table 1: Average fitness scores on attenuation maps.

Average fitness (30 trials each, λ= 1)

Solution Map 1 Map 2 Map 3 Map 4 Map 5

Map 1 only 1.702 1.678 1.649 1.648 1.516

Map 2 only 1.700 1.684 1.652 1.646 1.548

Map 3 only 1.693 1.675 1.651 1.642 1.502

Map 4 only 1.703 1.684 1.653 1.655 1.670

Map 5 only 1.656 1.634 1.601 1.617 1.744

Sum fitness 1.693 1.679 1.646 1.644 1.702

Normalized fitness 1.705 1.685 1.653 1.652 1.715

Simply summing the scores on all five training maps
in order to calculate a genome’s fitness is insufficient.
Map scores vary with structure, leading to some maps
rewarding disproportionately or having relatively lenient
solutions. Map 5, in particular, improves the most, leading
to the agents preferentially optimizing this map, often
at the expense of the others. Normalizing the individual
evolved performances was observed to reduce the bias in
this process, displayed in Figure 7 (bottom row). Table 1
lists the average fitness values of 30 trials for each of the
conditions. Agents trained on all the available maps with
their fitness scores normalized performed consistently well

on all maps. While map-specific evolutions often achieved
the highest scores of any swarm for that map, they regularly
underperformed on other attenuation maps.

4.3 Agent robustness

The robustness of the agents about the λ = 10 solution is
depicted in Figure 8, calculated from 30 trials each. In the
vicinity of 60 starting agents, there was little variation in
the standard deviation of the agents. The mean confidence
and average blind time do drift upward as agent numbers
increase, but this is expected as more agents mean more
coverage and also more opportunities for interference. How-
ever, these values do not change much. For the given cir-
cumstances, the swarm is robust and can maintain its per-
formance despite slight variations in agent numbers.

5 Conclusions

Swarm inversion can be an effective tool in refining the
behavior of a homogenous group of autonomous agents
in order to complete a given task, often producing clever
or unexpected solutions for the problem scenario. The
classical advantages of swarms are demonstrable as the
resulting agents were robust to changes in initial swarm
size and adaptive to changes in the attenuation map. The
inversion process was capable of developing an effective and
robust behavioral guide for searching the given target zone.
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Figure 8: The robustness on map 1 with λ = 10 about 60
starting agents, taken from 30 trials each. Standard deviation
is consistent, while mean coverage and blind time increase
with the number of agents. This is expected, as more agents
mean more areas searched as well as more opportunities to
encounter other agents and cause interference.

The effect of the weighting factor in the fitness function
has an appreciable effect on the evolved performance of
the swarm, where increasing the value of λ increasing the
relative importance of achieving higher uniformity. Training
on a wide range of maps can improve the general operation
of the swarm at the cost of individual map performance.

Further details on the swarms and simulations, including
results and videos, are available online at www.neoswarm.
com [1,12,13,16,21].
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