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Abstract—Woodward’s ambiguity function, introduced in the
literature in the mid-20th century, has been a staple topic in the
study of radar performance. There exists an inherent trade-off in
the ability of a signal to accurately measure both the range and
velocity of a target. Woodward’s ambiguity function measures
this uncertainty for narrowband RF signals for monostatic radar.
Despite its popularity and widespread description in both radar
texts and the literature, there has been a wide variation in
description of the ambiguity function. There are, for example,
numerous similar albeit different definitions of the ambiguity
function. There are also false statements made including claims
that an ambiguity function is not invertable to its underlying
signal and that best estimates of the range and Doppler of an
object is found by analyzing the maximum of the magnitude of a
correlation. In this paper, these and other questions are answered
through derivation of the ambiguity function from first principles.
Tables of ambiguity functions and their properties are presented,
and 2-D Fourier analysis is shown to provide deeper insight into
the ambiguity function structure.

I. INTRODUCTION

Woodward’s ambiguity function [49], [50] describes the

ability of a radar waveform x(t) to uniquely specify the range

and Doppler of a target. The literature is rich with application

[2], [38], synthesis [17], [25], [27], [31], [45] and analysis [1],

[7], [13]. The topic is a staple in most radar texts [11], [20],

[21], [23], [39], [40], [43], [44].

Although there have been a number of tutorials on the

topic [8], [32], [18], there remains significant deviation in the

manner the ambiguity function is presented in the literature.

There are, for example, a number of different definitions of the

ambiguity function [14]. There are also unfortunate erroneous

statements in the literature, including that the ambiguity func-

tion is not invertable (it is), the magnitude of the ambiguity

function (rather than its real part) determines Doppler and

range, and that the ambiguity function of the baseband signal

is identical to that of the corresponding RF signal. (It’s not.)

[14].

Our goal is to develop in detail the ambiguity function from

fundamentals and illustrate its proper interpretation. We derive

the ambiguity function from basic principles. The function is

shown to stem from intuitive minimum mean square error

nearest neighbor principles. Tables of ambiguity function

examples and properties are given. Finally, two dimensional

Fourier analysis reveals interesting and useful properties of the

ambiguity function in different domains.

II. THE AMBIGUITY FUNCTION

The ambiguity of a possibly complex signal x(t) can be

defined as as [16], [21], [25], [27], [48]:

χ(τ, u) =

∫ ∞
−∞

x(t)x∗(t− τ)e−j2πutdt (1)

where τ and u are the range and Doppler errors relative to the

actual range and Doppler of a measured target.

III. DERIVATION

The following is a derivation of the ambiguity function from

first principles.

A. Nearest Neighbor and Matched Filters

Assume we have a library of N possibly complex signals

{gn(t)|1 ≤ n ≤ N} (2)

all of whom have the same energy. That is, for all 1 ≤ n ≤ N ,

‖gn(t)‖2 = C (3)

where the signal’s energy is defined as

‖h(t)‖2 :=

∫
t

|h(t)|2dt.

For an arbitrary signal, f(t), which of these N signals is

closest? If we define closest in the mean square sense, we want

to find the gn that minimizes the distance ‖f(t)−gn(t)‖2. The

best match to f(t) (we’ll call it g†(t)) is then

g†(t) = arg min
n
‖f(t)− gn(t)‖2. (4)

Since, for complex numbers w and z,

|w − z|2 = |w|2 + |z|2 − 2�wz∗,
where � denotes “the real part of,” this is equivalent to

g†(t) = arg min
n

(
‖f(t)‖2 + ‖gn(t)‖2 − 2

∫
t

�f(t)g∗n(t)dt
)
.

(5)

Using the identical energy property in (3), the ‖gn(t)‖2 term

is the same for all n and, when finding extrema, can be

ignored. Likewise, ‖f(t)‖2 is just a nonnegative constant. The

minimization thus occurs when �f(t)g∗n(t), the real part of the

inner product of f with g, is maximum. This recasts (5) as a
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maximization.

g†(t) = arg max
n

(
�
∫
t

f(t)g∗n(t)dt
)
.

This is how the matched filter works. Maximizing the real part

of the inner product of two signals is the same as minimizing

the mean square error of the signals.1

B. The Correlation Integral

The elements in the matched filter library need not be

isolated but can be positioned sequentially on a timeline. The

signal f(t) can then be slid along the timeline so that real

part of the inner product is computed at every point. Let f be

shifted τ seconds. The inner product of g(t) with f(t− τ) is

the correlation integral

g(τ) � f(τ) =

∫ ∞
−∞

g(t)f∗(t− τ)dt. (6)

Correlation is related to convolution by the relationship

g(t) � f(t) = g(t) ∗ f∗(−t). (7)

To detect the presence of f(t) in the signal g(t) we wish to

find those points that maximize � (g(t) � f(t)) .
Matched filter correlation is used extensively to detect

signals in noise [9], [11], [20], [21], [28], [29], [42].

An illustration is shown in Figure 1. A sequence of ±1
height rectangular pulses is added to white Gaussian noise

with unit variance. The encoded binary sequence of length

L = 20 is

S = [11000010110010010110]. (8)

A bipolar representation of a string of bits merely replaces all

of the 0’s with -1’s.2

Pulse locations are obscured by the noisy signal

g(t) = x(t) + ξ(t).

where ξ(t) is the noise. Correlating the signal with the rect-

angular pulse gives the plot shown at the bottom of Figure 1.

Peak values in the correlation correspond to the pulse locations

and polarity. This alignment is illustrated more clearly in

Figure 2. The decoding is simple. If the correlation is positive

at a sample location, we announce a one. If negative, a zero.

As is illustrated in Figure 2, we have successfully extracted

the signal S in (8) using a matched filter.

1 The matched filter famously maximizes detection signal to noise ratio in
the presence of white Gaussian noise. Minimizing the SNR is the basis of a
more common derivation of the matched filter [46], [35].

2 The bipolar form of S is thus B = 2S−1. Denote the rectangular pulse
by

f(t) = Π

(
t

a
− 1
2

)

where a is the pulse duration and the rectangle function is Π(x) = 1 for
|x| ≤ 1

2
and is otherwise zero. The replication of rectangular pulses can be

written as

x(t) =
L∑
�=1

B[�]f(t− �T )

where T is the pulse separation.

Fig. 1: White noise is added to a bipolar rectangular pulse

train to give g(t). Correlation of g(t) with the pulse gives a

correlation which peaks at positive pulse locations and dips

negative for negative pulses. The triangular shapes indicating

the pulse locations in the bottom plot are due to the choice of

rectangular pulses to represent the signal. The autocorrelation

of a rectangular pulse is a triangle function. (See (9)). The

alignment of the autocorrelation with the pulses is illustrated

in more detail in Figure 2.

Fig. 2: The two plots here are identical to the bipolar rectan-

gular pulse train and correlation plots in Figure 1. The peaks

and valleys of the correlation are seen to align with the pulse

train. Polarity of ±1 is also indicated. (The pulse f(t) used

in this example and Figure 1 has its right edge at t = 0.)



Fig. 3: Barker codes of length 4, 7, 11 and 13. The Barker code

is shown on the left. The autocorrelation of the corresponding

Barker code is shown on the right.

1) Choice of Signals: In Figures 1 and 2, a rectangular

pulse is used for the encoding signal f(t). If the pulse has

amplitude A and duration a, the rectangular pulse autocorre-

lation is the triangle function [30]

AΠ

(
t

a

)
� AΠ

(
t

a

)
= aA2Λ

(
t

a

)
(9)

where Λ(ξ) = 1− |ξ| for |ξ| < 1 and is otherwise zero. This

is the reason that the pulse positions Figure 1 are indicated by

triangular peaks and valleys. Ideally, we would like to have

an encoding signal f(t) with autocorrelation

f(t) � f(t) = δ(t) (10)

where δ(·) is the Dirac delta [31]. Choosing a signal with
a good autocorrelation is directly analogous to choosing a
signal with a good ambiguity function.

2) Barker Codes: There are a set of bit sequences called

Barker codes [6] that are optimal in the sense that, besides the

desired Dirac delta appearing peak at the origin, the remainder

of the autocorrelation has a magnitude less than one. Ideally,

to resemble the Dirac delta, the off peak values should be

zero - but this is the best we can do with a finite duration

encoding signal. A few Barker codes are shown in Figure 3.3

The longest known Barker code is of length 13.4

If +1 is encoded as an 13 bit Barker code of pulses and

-1 is encoded as its negative, the correlator will recover a

bipolar signal bitstream better than when using only a single

rectangular pulse as was done in Figures 1 and 2. Indeed, the

correlation of the noisy signal in Figure 4(d) is so clean, that

both the polarity and location of each pulse can be located

by simple thresholding. In Figure 4(d), thresholds of ±0.9 are

shown by horizontal gray lines.

The Barker code example in Figure 4 illustrates the perfor-

mance of a good code. To illustrate ambiguity, let’s examine a

poorly performing 13 bit code that osicllates 1,−1, 1,−1, · · ·
for 13 places and ends with a +1. The coding of the sequence

in (8) using this poorly performing code is shown on the

left in Figure 5. When the coded sequence is correlated with

the poorly performing code to recover the original signal,

we obtain the correlation shown on the right in (8). Unlike

the Barker code, decoding can not be done using a simple

threshold operation. There are both positive and negative peaks

as strong as those in the desired signal locations. These false

peaks generate an ambiguity in the threshold decoding of the

signal. This is not the ambiguity function, but illustrates that

the choice of code impacts the ability to extract information

from a noisy signal.

In temporal correlation, Barker codes are optimal. In simul-

taneous measurement of range and Doppler in radar signals,

there is no single optimal signal to transmit. Rather, there is

a tradeoff between range and Doppler resolution necessitating

different choices of signals for varying performance require-

ments.

C. The Ambiguity Function as a Matched Filter

The Fourier transform a signal g(t) is

G(u) =

∫ ∞
−∞

g(t)e−j2πutdt

and will be denoted by a double arrow

g(t)←→ G(u).

We are given a possibly complex baseband signal, g(t), with

bandwidth B. In other words,

g(t)←→ G(u) = 0 for |u| > B

Define the narrowband (RF) signal

sW (t) = �g(t)ej2πWt

= |g(t)| cos (2πWt+ ∠g(t)) (11)

where W is a carrier frequency. We will require in the specific

sense

W � B (12)

3 The Barker code of length 11 shown in Figure 3 is used in the IEEE
802.11b wireless local area network (WLAN) Standard [33], [19].

4 It has been proven that there are no further odd length Barker codes,[47]
nor even length codes less than 1022. [22]



Fig. 4: In (a), the bipolar version of the sequence in (8) is shown encoded as x(t) using a Barker code of length 13. This is

the same binary sequence used in Figures 1 and 2. The Barker code of length 13 shown on the bottom left in Figure 3. For

a one, the Barker code is used. For a zero, the negative of the Barker code is used. The axis markers in all four figures are

located at the end of each pulse. Arrow heads indicate whether the code is ±1. The correlation of x(t) with the 13 length

Barker code is shown in (b). The correlation is nicely peaked at the desired locations. The signal x(t) is corrupted in (c) by

additive zero mean white Gaussian noise, ξ(t), with a variance of 1
2 . Since the Barker pulses are always ±1, the signal level

is one and the overall SNR is 2. As is shown in (d), the correlation of the noisy signal still peaks well at the desired locations

allowing identification of the pulse as ±1. )

Under this condition, we show in Appendix VII-A1 that

‖sW (t)‖2 =
1

2
‖g(t)‖2 (13)

The narrowband signals has twice the energy of the baseband

signal.

1) Transmitted and Received: A transmitted signal sW (t)
is reflected and received as

sW+ΔW (t−Δt) = �g(t−Δt)ej2π(W+ΔW )(t−Δt)

= |g(t−Δt)| cos (2π(W +ΔW )(t−Δt) + ∠g(t−Δt))
(14)

where the unknown Doppler shift is ΔW and the unknown

time delay is Δt. To find Δt and ΔW , we compare this signal

to

sW−ν(t−τ) = |g(t−τ)| cos (2π(W − ν)(t− τ) + ∠g(t− τ))
(15)

for all possible τ and ν. Our library of signals is no longer

indexed by an integer n that indicates a specific signal in a

matched filter bank, but consists of a continuum of values.

To identify both the unknown Doppler shift ΔW and time

delay Δt, we calculate the mean square difference between the

received signal in (14) and (15) for all τ and ν and see which

gives the smallest value. Like the derivation of the matched

filter, finding τ and ν to minimize the square error

min
τ,ν
‖sW−ΔW (t−Δt)− sW−ν(t− τ)‖2

is the same as finding τ and ν to maximize the real component

of the inner product

�e−j2π(W+ν)(Δt−τ) χ(τ −Δt, ν −ΔW )

In other words,

(Δt,ΔW ) = arg min
τ,ν
‖sW+ΔW (t−Δt)− sW+ν(t− τ)‖2

= arg max
τ,ν

�
[
e−j2π(W+ν)(Δt−τ)

×χg(τ −Δt, ν −ΔW )] (16)

where χg is the ambiguity function of g as defined in (1). This

result, proven in Appendix VII-B2, shows that the ambiguity

function, χg , arises naturally in the matched filtering operation

when identifying both range and Doppler.

2) Ambiguity Function and Envelope Maximization Are
Almost the Same Thing.: The term to maximize in (16) is

�
[
e−j2π(W+ν)(Δt−τ) χ(τ −Δt, ν −ΔW )

]
(17)

For W � B, this is a high frequency sinusoid with an

envelope of

|χ (τ −Δt, ν −ΔW ) |.
Rather than maximize the oscillation details where local

minima and maxima are closely spaced, we maximize the

envelope, i.e. maximize

|χ (τ −Δt, ν −ΔW ) |. (18)



Fig. 5: The Barker code in Figure 4 is a good code choice. Illustrated here is a poorly performing code choice. The correlation

on the right presents multiple positive and negative peaks thereby introducing ambiguity into the decoding process when using

simple threshold decoding. The SNR here is the same as that used for the Barker code example in the bottom two plots in

Figure 4.

Fig. 6: Illustration that maximizing the highly oscillatory

function in (17) is approximately the same as maximizing

the envelope function in (18). In the top figure, the red curve

marked ENV corresponds to |χ| in (18) whereas the oscillation

corresponds to the � (ej shifte−j frequency t χ) term in (17).

The maximum of the envelope, denoted by the red dot, is

close to the maximum of the oscillatory signal. The bottom

figure zooms in on these points. The maxima are separated by

no more that a period of the oscillation. At radio frequencies,

this period is very short and the two maxima are equivalent

for all practical purposes.

As is illustrated in Figure 6, doing so results in almost the

same result. Thus, in lieu of (16),

(Δt,ΔW ) ≈ arg max
τ,ν

|χg (τ −Δt, ν −ΔW ) | (19)

The maximization occurs when τ = Δt and ν = ΔW .

3) Ambiguity.: Consider again one dimensional correlation.

If the rectangle is correlated with another rectangle located

somewhere on the time axis, the result is a triangle function

centered where the second rectangle is located. The triangle is

a property of the function chosen for the correlation kernel, in

this case a rectangle. If we had chosen another function instead

of the rectangle as a kernel, we would not have a triangle

function, e.g. optimal Barker codes or the poorly performing

code illustrated in Figure 5.

The ambiguity function works the same way except the

ambiguity function of g(t) replaces the autocorrelation of the

rectangular pulses or Barker code. Perhaps the most exciting

property of the solution in (19) is not that the function peaks

at the desired optimal solution (Δt,ΔW ), but that, no matter

where the optimal solution lies on the (τ, ν) plane, the matched

filter for the narrowband signal, sW , specified uniquely by the

baseband signal, g, and carrier frequency, W , is totally defined

by the ambiguity function χg. This is illustrated in Figure 7.

Note the following properties.

1) |χg| will be centered at the optimal solution in the (τ, ν)
plane but does not change shape with respect to the

measured Doppler and range, i.e. with ΔW and Δt,
2) |χg| is not a function of the carrier frequency, W , and

3) |χg| is only a function of g.

Thus, the properties of the ambiguity function χg spawned

from a g are worthy of study. Of particular interest is the

case where there are other peaks in |χg| that may have values

close to ideal. Such false maxima can occur when the returned

signal is accompanied by noise and clutter. When another peak

has a value close to that which is optimal, there is ambiguity
at which point the optimal occurs. For this reason, χg and

sometimes |χg| are referred to as ambiguity functions.

IV. AMBIGUITY FUNCTION PROPERTIES

The ambiguity function obeys many interesting and useful

properties. To facititate discussion, we will adopt the notation

of the mapping of a signal to an ambiguity function in (1) by

x(t)⇒ χ(τ, u).

In some instances, specific reference to the signal will be made

using a subscript, i.e.

x(t)⇒ χx(τ, u).

or even more explicitly,

x(t)⇒ χx(t)(τ, u).



Fig. 7: The correlation for all range values, τ and all Doppler

shifts, u, gives a matched filter output that peaks at the target’s

true range, Δt and Doppler ΔW . Shown here are the results

of two cases. Independent of the measured range and Doppler,

the function centered around the measured values always has

the same shape as shown here. This invariant shape, when

shifted to the origin, is the ambiguity function, χ(τ, u). The

shape of the ambiguity function is determined solely by the

signal g.

a) The Origin of the Ambiguity Function is the Signal
Energy: The energy of the signal x(t) is equal to the origin

of the ambiguity function.

χ(0, 0) = ‖x(t)‖2.
The proof follows immediately from the definition of the

ambiguity function in (1).

b) Ambiguity Function in Terms of Fourier Transforms:
The ambiguity function can be written in terms of a signal’s

Fourier transform

χ(τ, u) =

∫ ∞
−∞

X(f + u)X∗(f)ej2πfτdf (20)

where x(t)←→ X(u) or, equivalently by setting ν = f + u,

χ(τ, u) = e−j2πuτ
∫ ∞
−∞

X(ν)X∗(ν − u)ej2πντdν (21)

Proof: The ambiguity function in (20) can be written as

χ(τ, u) =

∫ ∞
−∞

(
x(t)e−j2πut

)
(x(t− τ))

∗
dt (22)

Let f denote the Fourier transform variable for t. From the

modulation theorem of Fourier analysis [31],

x(t)e−j2πut ←→ X(f + u).

and from the shift theorem [31],

x(t− τ)←→ X(f)e−j2πfτ .

Applying these relationships to (22) and applying the power

theorem [31] gives the expression in (20).

A. Ambiguity Functions of Some Signals

A short table of ambiguity functions is in Table I. Most can

be derived using the properties and theorems of the Fourier

transform [31].

1) Dirac delta: When

x(t) = δ(t− ξ),

application of (1) using the sifting property of the Dirac delta

gives

δ(t− ξ)⇒ χ(τ, u) =

∫ ∞
−∞

δ(t− ξ)δ ((t− ξ)− τ) ej2πtudt

= δ (τ) ej2πξu

which is a Dirac delta sheet along the u axis.

2) Complex Sinusoid: Let

x(t) = ej2πWt.

Then (1) gives

ej2πWt ⇒ χ(τ, u) =

∫ ∞
−∞

ej2πWte−j2πW (t−τ)e−j2πutdt

=

∫ ∞
−∞

e−j2π(u−W )tdt

= δ(u−W )

which is a Dirac delta sheet for u =W independent of τ .

3) Real Sinusoid: To evaluate the ambiguity function for

the real sinusoid we first take the Fourier transform

x(t) = cos(2πWt)←→ X(f) =
1

2
[δ(f −W ) + δ(f +W )] .

Substituting into (20) gives

χ(τ, u) =
1

4

∫ ∞
−∞

[δ(f + u−W ) + δ(f + u+W )]

[δ(f −W ) + δ(f +W )] ej2πfτdf

=
1

4

[
2 cos(2πWτ)δ(u) + e−j2πWτδ(u− 2W )

+ej2πWτδ(u+ 2W )
]

which is the result in Table I.

4) Gaussian.: To prove the entry for the Gaussian x(t) =
e−π(ϕt)

2

in Table I, we begin by substituting into the ambi-

guity function expression in (1).

χ(τ, u) =

∫ ∞
−∞

e−π(ϕt)
2

e−π(ϕ(t−τ))
2

e−j2πutdt

= e−π(ϕτ)
2

∫ ∞
−∞

e−2πϕ
2(t2−tτ)e−j2πutdt

(23)

Completing the square

t2 − tτ +
(τ
2

)2
=
(
t− τ

2

)2



Signal x(t) ⇒ χx(τ, u)

Dirac delta δ(t− λ) ⇒ δ(τ)ej2πλu

complex sinusoid ej2πWt ⇒ δ(u−W )
rectangular pulse Π

(
t
2T

) ⇒ e−jπuτ |2T − |τ || sinc ((2T − |τ |)u)Π ( τ
4T

)
sinc pulse sinc (2Bt) ⇒ e−jπuτ

(
a
2B

)2 |2B − |u|| × sinc ((2B − |u|)τ)Π ( u
4B

)
real sinusoid cos(2πWt) ⇒ 1

4

[
2 cos(2πWτ)δ(u) + e−j2πWτδ(u− 2W ) + ej2πWτδ(u+ 2W )

]
complex chirp ejπαt

2 ⇒ e−jπατ
2

δ(u− ατ)

Gaussian e−π(ϕt)
2 ⇒ 1√

2|ϕ|e
−π(ϕτ)2

2 e−
π
2 (

u
ϕ )

2

e−jπuτ

TABLE I: A table of some signals and their corresponding ambiguity functions derived in Section IV-A. λ, α and ϕ are real

(i.e. ∈ R), whereas T , W and B are positive.

gives

χ(τ, u) = e−π(ϕτ)
2

∫ ∞
−∞

e
−2πϕ2

(
(t− τ

2 )
2− τ2

4

)
e−j2πutdt

= e−
π
2 (ϕτ)2

∫ ∞
−∞

e−2πϕ
2(t− τ

2 )
2

e−j2πutdt (24)

Recall that the Fourier transform of a Gaussian is a Gaussian

[31]: e−πt
2 ↔ e−πu

2

. Thus, applying the scaling theorem [31]

e−2π(ϕt)
2 ←→

∫ ∞
−∞

e−2πϕ
2t2e−j2πutdt

=
1√
2 ϕ

e−
π
2 (

u
ϕ )

2

.

and then the shift theorem [31] gives

e−2πϕ
2(t− τ

2 )
2 ←→ 1√

2 ϕ
e−

π
2 (

u
ϕ )

2

e−jπτu.

Applying to (24) gives the entry in Table I.

χ(τ, u) =
1√
2ϕ

e−
π(ϕτ)2

2 e−
πu2

2ϕ e−jπuτ

The contours for |χ(τ, u)| are concentric ellipses correspond-

ing to the family of curves

(ϕτ)2 +

(
u

ϕ

)2

= constant.

5) Rectangular Pulse.: For the rectangular pulse, x(t) =
Π
(
t
2T

)
, the ambiguity function is

χ(τ, u) =

∫ ∞
−∞

Π

(
t

2T

)
Π

(
t− τ

2T

)
e−j2πutdt

=

∫ T

−T
Π

(
t− τ

2T

)
e−j2πutdt

For 0 ≤ τ ≤ 2T ,

χ(τ, u) =

∫ T

−T+τ

e−j2πutdt

=

∫ ∞
−∞

Π

(
t− τ

2

2T − τ

)
e−j2πutdt (25)

= |2T − τ | sinc ((2T − τ)u) e−jπuτ ; 0 ≤ τ ≤ 2T

Similarly, for −2T ≤ τ ≤ 0,

χ(τ, u) =

∫ τ+T

−T
e−j2πutdt

= |2T + τ | sinc ((2T + τ)u) e−jπuτ ;−2T ≤ τ ≤ 0

and we get the corresponding entry in the result in Table I.

B. Ambiguity Function Properties

Some properties of the ambiguity function are summarized

in Table II. Here are derivations of some of the less obvious

entries.

1) Temporal Correlation: Along the τ axis, the ambiguity

function is the autocorrelation of x(t).

χ(τ, 0) = x(τ) � x(τ)

=

∫ ∞
−∞

x(t)x∗(t− τ)dt (26)

This follows from setting u = 0 in the ambiguity function in

(1).

2) Spectral Correlation.: Likewise, along the u axis, the

ambiguity function is the autocorrelation of the spectrum of

x(t).

χ(0, u) = X(u) � X(u)

=

∫ ∞
−∞

X(ν)X∗(ν − u)dν (27)

This follows from setting τ = 0 in the ambiguity function

expression in (21).

3) Ambiguity Function Origin: The origin of the ambiguity

function is the signal energy.

χ(0, 0) = ‖x(t)‖2 =

∫ ∞
−∞

|x(t)|2dt (28)

= ‖X(u)‖2 =

∫ ∞
−∞

|X(u)|2du. (29)

Equation (28) follows from (26) and (29) from (27) for u = 0.5

4) Ambiguity Function Area:∫
τ

∫
u

χ(τ, u)dτdu = x(0)X∗(0) (30)

5 Equivalently, (29) follows from (28) and Parseval’s theorem.



Property Ambiguity Function Properties

Definition x(t)⇒ χx(τ, u)

Quadratic ax(t)⇒ |a|2χx(τ, u)
Homog.

Conjugate x∗(t)⇒ χ∗x(τ,−u)

Transpose x(−t)⇒ χx(τ,−u)

Conjugate x∗(−t)⇒ χ∗x(τ, u)
Transpose

Shift x(t− T )⇒ e−j2πuTχx(τ, u)

Scale x
(
t
S

)⇒ |S| χx
(
τ
S , Su

)

Temporal χ(τ, 0) = x(τ) � x(τ)
Corr.

Spectral χ(0, u) = X(u) � X(u)
Corr.

AF Area
∫
τ

∫
u
χx(τ, u)dτdu = x(0)X∗(0)

AF Energy
∫
τ

∫
u
|χx(τ, u)|2 dτdu = |χx(0, 0)|2

Symmetry χ∗(−τ, u) = χ(τ,−u)e−j2πuτ
(General)

Symmetry χ(τ, u) = χ∗(τ,−u)
(Real x(t))

Preservation x(t)ej2πWt ⇒ χx(τ, u)e
j2πWτ

Frequency

Duality if x(t)←→ X(u), then

χX(t)(τ, u) = ej2πuτχx(t)(−u, τ).
Chirped w(t) = x(t)ejπαt

2 ⇒ e−jπατ
2

χ(τ, u− ατ)
Signals

Chirped W (u) � W (u) = X(u) � X(u)
Spectral

Siebert’s
∫
τ

∫
u
|χ(τ, u|2 e−j2π(τf−ut)dτdu = |χ(f, t|2

theorem

Siebert’s
∫
τ

∫
u
|χ(τ, u|2 e−j2π(τf−ut)dτdu = |χ(f, t|2

theorem

Moyal’s |χx(0, 0)|2 =
∫
τ

∫
u
|χx(τ, u|2 du

Identity

Maxima χx(0, 0) ≥ ‖χx·k(τ, u)‖

Product χx·k(τ, u) = χg(τ, u) ∗
u
χk(τ, u)

Convolution χx∗h(τ, u) = χx(τ, u) ∗
τ
χh(τ, u)

TABLE II: Properties of the ambiguity function. Homog =

Homogeneity, Corr = Correlation, AF = Ambiguity Function.

“∗
η
” means convolution with respect to η.

Fig. 8: Illustration of the symmetry of the ambiguity function

of an arbitrary signal as described in (31) and (32).

Proof: Using the ambiguity function definition in (1),∫
τ

∫
u

χ(τ, u)dτdu

=

∫
τ

∫
u

[∫
t

x(t)x∗(t− τ)e−j2πutdt
]
dτdu

=

∫
τ

∫
t

x(t)x∗(t− τ)

[∫
u

e−j2πutdu
]
dtdτ

=

∫
τ

[∫
t

x(t)x∗(t− τ) δ(t)dt

]
dτ

=

∫
τ

x(0)x∗(−τ)dτ
= x(0)X∗(0)

5) Ambiguity Function Symmetry:
a) General.: For an arbitrary complex signal, the ambi-

guity function has the following symmetry.

χ∗(−τ, u) = χ(τ,−u)e−j2πuτ (31)

from which it follows that

|χ∗(−τ, u)| = |χ(τ,−u)|. (32)

This symmetry is illustrated in Figure 8.

Proof: From the definition of the ambiguity function in

(1),

χ∗(−τ, u) =
∫ ∞
−∞

x∗(ξ)x(ξ + τ)ej2πuξdξ.

Setting t = ξ + τ gives

χ∗(−τ, u) =

∫ ∞
−∞

x∗(t− τ)x(t)ej2πu(t−τ)dt

= e−j2πuτ
∫ ∞
−∞

x(t)x∗(t− τ)ej2πutdt

which gives the desired answer in (31).

b) For Real Signals.: If x(t) is real, then

χ(τ, u) = χ∗(τ,−u). (33)

This is the same conjugate symmetric relationship character-

istic of the Fourier transform of real signals and is illustrated

in Figure 9. Combined with the general symmetry illustrated



Fig. 9: Illustration of the symmetry of the ambiguity function

of real signals as described in (33).

Fig. 10: Illustration of the four fold symmetry of the ambiguity

function of real signals summarized in (34).

in Figure 8, real signals therefore have the four fold symmetry

illustrated in Figure 10.

|χ(τ, u)| = |χ(τ,−u)| = |χ(−τ,−u)| = |χ(−τ, u)| (34)

Proof: When x(t) is real, the ambiguity function in (1)

becomes

χ(τ, u) =

∫ ∞
−∞

x(t)x(t− τ)e−j2πutdt.

Thus

χ∗(τ, u) =
∫ ∞
−∞

x(t)x(t− τ)ej2πutdt

from which (33) follows.

6) Complex Heterodyned Signals: If

y(t) = x(t)ej2πWt,

then the ambiguity functions of the two signals are related by

χy(τ, u) = χx(τ, u−W ).

Proof:

χy(τ, u) =

∫
t

y(t)y∗(t− τ)e−j2πutdt

=

∫
t

x(t)x∗(t− τ)e−j2π(u−W )tdt

= χx(τ, u−W )

7) Frequency Preservation: The linear time invariant (LTI)

system [24], [26], [31] has the property of preserving fre-

quency in the sense that a complex sinusoid input of frequency

W outputs a complex sinusoid with the same frequency with

a different amplitude and phase. Specifically, if an LTI system

has impulse response h(t) and h(t)↔ H(u) then the system’s

response to an input of ej2πWt is

h(t) ∗ ej2πWt = H(W )ej2πWt

The ambiguity function has a similar property in that, if

x(t)⇒ χx(τ, u), then

x(t)ej2πWt ⇒ χx(τ, u)e
j2πWτ . (35)

Proof: By definition

x(t)ej2πWt ⇒
∫
t

(
x(t)ej2πWt

)

×
(
x∗(t− τ)e−j2πW (t−τ)

)
e−j2πutdt

= ej2πWτ

∫
t

x(t)x∗(t− τ)e−j2πutdt

which gives (35).

8) Chirped Signals: Chirping a signal is equivalent to

a time dependent frequency shift in the ambiguity plane.

Specifically,

x(t)ejπαt
2 ⇒ e−jπατ

2

χ(τ, u− ατ) (36)

Proof:

x(t)ejπαt
2 ⇒

∫ ∞
−∞

[
x(t)ejπαt

2
]

h2×
[
x∗(t− τ)e−jπα(t−τ)

2
]
e−j2πutdt

= e−jπατ
2

∫ ∞
−∞

x(t)x∗(t− τ)e−j2πt(u−ατ)dt

= e−jπατ
2

χ(τ, u− ατ) (37)

A geometric visualization of the chirped signal theorem is in

Figure 11 where, on the left, we see6

ϑ(τ, u) = Π
( τ

2T

)
Π
( u

2B

)
(38)

Then

ϑ(τ, u− ατ) = Π
( τ

2T

)
Π

(
u− ατ

2B

)
(39)

is illustrated on the right hand side. The function Π
(
u−ατ
2B

)
is Π

(
u
2B

)
centered on the line u = ατ .

a) The Ambiguity Function of an Infinite Chirp: . The

ambiguity function for x(t) = 1, from (1), is

χ(τ, u)⇒
∫
t

e−j2πutdt = δ(u)

6 The function in (38) and pictured in Figure 11 cannot be an ambiguity
function and is used only for purposes of illustrating the functional relationship
in the chirped signal theorem in (36).



Fig. 11: Illustration of the effect on an ambiguity function by

chirping. (See (37).) The rectangle in on the left from (38) has

a width or 2T and a height of 2B. The time shift in (39) is

shown on the right.

From (37), it follows that the ambiguity of an infinity duration

chirp is

ejπαt
2 ⇒ e−jπατ

2

δ(u− ατ)

b) The Ambiguity Function of a Finite Chirp: . The

ambiguity function for a chirp on the interval −T ≤ t ≤ T
follows from the ambiguity function of the rectangle in Table I

and the chirp theorem in (37).

ejπαt
2

Π

(
t

2T

)
⇒ e−jπuτ |2T − |τ ||

× sinc ((2T − |τ |)(u− ατ)))Π
( τ

4T

)

c) Chirped Spectral Correlation: The spectral correla-

tion of a chirped signal is the same as the spectral correlation

of the unchirped signal. If the chirped signal be

w(t) = x(t)ejπαt
2

.

then

W (u) � W (u) = X(u) � X(u). (40)

Proof: Using the chirp ambiguity function relationship in

(36)

χw(0, u) = χx(0, u)

Using the spectral correlation in (27) immediately gives (40).

9) Duality: Fourier transform duality [31] says that if

x(t)←→ X(u),

then

X(t)←→ x(−u).
We can use this property to find the ambiguity function of

X(t) if we know the ambiguity function of x(t).

The ambiguity function for X(t) is

χX(t)(τ, u) =

∫ ∞
−∞

X(t)X∗(t− τ)e−j2πtudt (41)

and is related to χx(t) by

χX(t)(τ, u) = e−j2πuτχx(t)(−u, τ). (42)

Proof: Reverse τ and u in (41).

χX(t)(u, τ) =

∫ ∞
−∞

X(ξ)X∗(ξ − u)e−j2πξτdξ. (43)

Using (43) we can write (21) as

χx(t)(τ, u) = e−j2πuτ
∫ ∞
−∞

X(ξ)X∗(ξ − u)ej2πξτdξ

= e−j2πuτχX(t)(u,−τ) (44)

or

χX(t)(u,−τ) = ej2πuτχx(t)(τ, u).

Replacing τ → −τ gives

χX(t)(u, τ) = e−j2πuτχx(t)(−τ, u).
Switching τ and u results in

χX(t)(τ, u) = e−j2πuτχx(t)(−u, τ)
which is (42).

a) Example: Duality for a Rectangular Pulse is a Sinc
Pulse: For x(t) = Π

(
t

2Υ

)
in Table I7

χx(t)(τ, u) = e−jπuτ |2Υ− |τ || sinc ((2Υ− |τ |)u)Π
( τ

4Υ

)
.

The duality zero can be applied to this result to generate the

ambiguity function for a sinc.

Reversing u and τ ,

χx(t)(u, τ) = e−jπuτ |2Υ− |u|| sinc ((2Υ− |u|)τ)Π
( u

4Υ

)
.

and, setting u→ −u,

χx(t)(−u, τ) = ejπuτ |2Υ− |u|| sinc ((2Υ− |u|)τ)Π
( u

4Υ

)
.

(45)

Using symmetry

χX(t)(τ, u) = e−jπuτ |2Υ− |u|| sinc ((2Υ− |u|)τ)Π
( u

4Υ

)
.

(46)

If we multiply (45) by e−j2πuτ , we obtain (46) thereby

verifying the duality theorem in (42) and the corresponding

entry in Table I for the sinc function.

10) Product :

χg·k(τ, u) = χg(τ, u) ∗
u
χk(τ, u). (47)

In other words, if

x(t) = g(t)k(t),

then

χx(τ, u) = χg(τ, u) ∗
u
χk(τ, u).

7 We will use Υ for both T and B to avoid comparative confusion.



Proof:

χg·k(τ.u) =

∫
t

g(t)k(t)g∗(t− τ)k∗(t− τ)e−j2πutdt

=

∫
t

p(t)q∗(t)dt (48)

where

p(t) = g(t)g∗(t− τ)

and

q(t) = k∗(t)k(t− τ)ej2πut.

Applying the power theorem [31] to (48).

χg·k(τ, u) =
∫
f

P (f)Q∗(f)df. (49)

Since

P (f) =

∫
t

g(t)g∗(t− τ)e−j2πftdt

= χg(τ, f) (50)

and

Q(f) =

∫
t

k∗(t)k(t− τ)e−j2π(f−u)tdt

=

[∫
t

k(t)k∗(t− τ)e−j2π(u−f)tdt
]∗
dt

= χ∗k(τ, u− f). (51)

Substituting (50) and (51) into (49) gives

χg·k(τ, u) =
∫
f

χg(τ, f)χk(τ, u− f)df

which can be written as (47).

11) Convolution: Let x(t) be passed through a filter with

impulse response h(t). The filter output is

z(t) = x(t) ∗ h(t). (52)

Then

χz(τ, u) = χx(τ, u) ∗
τ
χh(τ, u). (53)

or

χx∗h(τ, u) = χx(τ, u) ∗
τ
χh(τ, u). (54)

This is proved in Appendix VII-B1

12) Siebert’s Theorem: Siebert’s theorem [41] shows that

the two dimensional Fourier transform of the squared magni-

tude of the ambiguity function is the same function rotated

90◦. Specifically

∫
τ

∫
u

|χ(τ, u)|2 e−j2π(τf−ut)dτdu = |χ(f, t)|2 (55)

Proof: From Figure 13 and (66), we can discern the 2D

Fourier transform of the ambiguity function.∫
τ

∫
u

χ(τ, u)e−j2π(τf−ut)dτdu = Ψ(f, t)

= x(t)X∗(f)e−j2πft

Therefore the integral in (55) is a two dimensional autocorre-

lation ∫
τ

∫
u

|χx(τ, u)|2 e−j2π(τf−ut)dτdu
= Ψ(f, t) �Ψ(f, t)

=

∫
τ

∫
u

[
x(τ)X∗(u)e−j2πuτ

]

×
[
x(τ − t)X∗(u− f)e−j2π(u−f)(τ−t)

]∗
dudτ

=

∫
τ

∫
u

[
x(τ)X∗(u)e−j2πuτ

]

×
[
x∗(τ − t)X(u− f)ej2π(u−f)(τ−t)

]
dudτ

=

∫
u

{[∫
τ

x(τ)x∗(τ − t)e−j2πuτej2π(u−f)τdτ
]

×X∗(u)X(u− f)e−j2π(u−f)t
}
du

=

∫
τ

x(τ)x∗(τ − t)e−j2πfτdτ

×
∫
u

X∗(u)X(u− f)e−j2π(u−f)du

= χx(f, t)

[
e−j2πf

∫
u

X(u)X∗(u− f)ej2πudu

]∗

Using the ambiguity expression in (21) gives∫
τ

∫
u

|χx(τ, u|2 e−j2π(τf−ut)dτdu = χx(f, t)χ
∗
x(f, t) (56)

which is Siebert’s Theorem in (55).

a) Moyal’s Identity: [15] The area of the magnitude

squared of the ambiguity function is equal to the magnitude

squared of the origin.

|χx(0, 0)|2 =

∫
τ

∫
u

|χx(τ, u|2 du

This follows immediately from Siebert’s theorem in (56) for

f = t = 0. ∫
τ

∫
u

|χ(τ.u)|2 dτdu

V. AMBIGUITY FUNCTIONS OF NARROWBAND SIGNALS

The ambiguity function of a baseband signal differs from the

ambiguity of the signal modulated by an RF signal. Consider

again the RF signal in (11)

sW (t) = � [g(t)ej2πWt
]

(57)

where

g(t) = |g(t)|ej∠g(t) (58)

= i(t) + jq(t). (59)

g(t) is a complex baseband signal with bandwidth B. Then

sW (t) is a narrowband signal with carrier frequency W > B.

The real part of g(t) is i(t) and is referred to as the in phase



Fig. 12: Generation of the narrowband signal in (60). The sin

and cos can be generated by a single oscillator using a 45o

phase shift.

component while the imaginary part, q(t), is the quadrature
signal.

A. Generating the Narrowband Signal

Substituting (59) in (57) gives

sW (t) = � (i(t) + jq(t)) (cos(2πWt) + j sin(2πWt))

= i(t) cos(2πWt)− q(t) sin(2πWt) (60)

Generation of sW (t) is shown in Figure 12.

B. Baseband vs. Narrowband Ambiguity

Since the narrowband signal sW (t) is uniquely defined by

the baseband signal, g(t), it makes sense that the ambiguity

function of sW should be able to expressed in terms of the

ambiguity function of g. The relationship of the ambiguity

functions of g(t) and sW (t) is

χsw(τ, u) =
1

4

[
ej2πWτχg(τ, u) + e−j2πWτχ∗g(τ,−u)

]

+
1

4

[
e−j2πWτψg(τ, u+ 2W )

+ej2πWτψ∗g(τ,−(u+ 2W ))
]

(61)

where

ψg(τ, u) =

∫
t

g(t)g(t− τ)e−j2πutdt (62)

The ψg terms are sufficiently shifted on the frequency axis

to be of little or no concern. For a proof of (62), see

Appendix VII-B2.

VI. 2D FOURIER ANALYSIS

The ambiguity function is a two dimensional function and

is therefore subject to 2D Fourier analysis. The Fourier time-

frequency variable pairs are (τ, f) and (t, u) and we adopt the

notation

Fτ→fχ(τ, u) := Λ(f, u)

=

∫ ∞
−∞

χ(τ, u)e−j2πτfdτ (63)

Here are the mappings between all of the possible frequency

and time variables.

χ(τ, u) τ → f−−−−→ Γ(f, u)

t→ u ↑ 2D ↗ ↑ t→ u

Λ(τ, t)
−−−−→
τ → f Ψ(f, t)

These Fourier mappings are pictured in Figure 13 in more

detail. The ambiguity function is on the top left in Figure 13.

The arrows denote the direction of a one-dimensional Fourier

transform along either rows or columns.

1) On the (τ, u) plane: Using (20), the projection [31], [34]

of χ(τ, u) on u is∫
τ

χx(τ, u)dτ =

∫
β

X(β + u)X∗(β)
[∫

τ

ej2πβτdτ

]
dβ

=

∫
β

X(β + u)X∗(β)δ(β)dβ

= X(u)X∗(0) (64)

Likewise, on τ ,∫
u

χ(τ, u)du =

∫
β

[∫
u

X(β + u)du

]
X∗(β)ej2πβτdβ

= x(0)

[∫
β

X(β)e−j2πβτ
]∗
dβ

= x(0)x∗(−τ) (65)

The axes and projection properties are illustrated in the upper

left figure in Figure 13.

We conclude from (64) and (65) that, to within a propor-

tionality constant, the ambiguity function can be inverted to

the single or spectrum that gave rise to the ambiguity function.

2) On the (f, u) plane: The expression in (63) is the

transform of the top left function to the top right in Figure 13.

We can show that Λ(f, u) is simply the product of two

functions.

Λ(f, u) = X∗(f)X(u+ f).

Proof: The ambiguity function in (20) is recognized as

the inverse Fourier transform of Λ(f, u).

The value along the u and f axes are X∗(0)X(u) and

|X(f)|2 as shown in Figure 13. Note that the projection on u
of Λ(f, u) is∫ ∞

f=−∞
Λ(f, u)du =

∫ ∞
f=−∞

X∗(f)X(u+ f)df

=

∫ ∞
ξ=−∞

X(ξ)X∗(ξ − u)

= X(u) � X(u)

This is shown in the upper right in Figure 13.



Fig. 13: 2D Fourier Analysis.

Likewise, the projection on f is∫ ∞
u=−∞

Λ(f, u)du = X∗(f)
∫ ∞
u=−∞

X(u+ f)du

= X∗(f)
∫ ∞
u=−∞

X(u)du

= x(0)X∗(f)

This projection is also shown in the upper right in Figure 13.

3) On the (f, t) plane: Define, as shown on the bottom

right of Figure 13,

Ψx(f, t) := x(t)X∗(f)e−j2πft, (66)

Since

Ft→ux(t)e
−j2πut =

∫ ∞
t=−∞

x(t)e−j2π(u+f)tdt

= X(u+ f).

We conclude

Ft→u Ψx(f, t) = X∗(f)X(u+ f)

= Λ(f, u)

The values on the axes as shown in the bottom right figure of

Figure 13 are X∗(0)x(t) and x(0)X∗(f). The projection on

t is ∫
f

Ψx(f, t)df = x(t)

∫
f

X∗(f)e−j2πftdf

= x(t)

[∫
f

X(f)ej2πftdf

]∗

= x(t)x∗(t)
= |x(t)|2



and the projection on f is∫
t

Ψx(f, t)dt = X∗(f)
∫
t

x(t)e−j2πftdt

= X∗(f)X(f)

= |X(f)|2

These projections are shown on the lower right in Figure 13.

4) On the (τ, t) plane: The ambiguity function is recog-

nized as the Fourier transform in t of

Λ(τ, t) = x(t)x∗(t− τ).

That is

Ft→uΛ(τ, t) = χx(τ, u).

As is shown on the lower left of the figure in Figure 13, the

axes values are |x(t)|2 and x(0)x∗(−τ). The projection on t
is ∫

t

Λ(τ, t)dt = x(t) � x(t)

and on τ , we have∫
τ

Λ(τ, t)dτ = x(t)

∫
τ

x∗(t− τ)dτ

= x(t)

∫
τ

x∗(−τ)dτ

= x(t)

[∫
ξ

x(ξ)dξ

]∗

= x(t)x∗(0)

These properties are shown on the lower left figure in Fig-

ure 13.

VII. APPENDIX

A. Derivation Details

1) Equation 13: From (11), the squared norm of sW (t) is

‖sW (t)‖2 =

∫ ∞
t=−∞

|sW (t)|2 dt

=

∫ ∞
t=−∞

|g(t)|2 cos2 (2πWt+ ∠g(t)) dt

Using a trig identity

‖sW (t)‖2 =
1

2

∫ ∞
t=−∞

|g(t)|2

× [1 + cos (4πWt+ 2∠g(t))] dt

=
1

2
‖g(t)‖2 + 1

2

∫ ∞
t=−∞

|g(t)|2

× cos (4πWt+ 2∠g(t)) dt

=
1

2
‖g(t)‖2

+
1

2
�
∫ ∞
t=−∞

|g(t)|2ej(4πWt)+2∠g(t))dt

=
1

2
‖g(t)‖2

= +
1

2
�
∫ ∞
t=−∞

g2(t)ej4πWtdt (67)

From the modulation theorem of Fourier analysis [31],

g2(t)←→
∫ ∞
t=−∞

g2(t)ej2πutdt = G(u) ∗G(u)

we conclude∫ ∞
t=−∞

g2(t)ej2π(2W )tdt = [G(u) ∗G(u)]

∣∣∣∣
u=2W

. (68)

Since g(t) has bandwidth B, we see that G(u)∗G(u) = 0 for

|u| > 2B. From (12), since 2W > 2B, (68) is therefore zero

and (67) becomes (13), i.e.

‖sW (t)‖2 =
1

2
‖g(t)‖2

2) Equation 16: To prove the matched filter result in (16),

we wish to find

min
τ,ν
‖sW+ΔW (t−Δt)− sW+ν(t− τ)‖2

= min
τ,ν

[
‖sW+ΔW (t−Δt)‖2 + ‖sW+ν(t− τ)‖2

−2�
∫ ∞
t=−∞

sW+ΔW (t−Δt)s∗W+ν(t− τ)dt

]

From (13),

‖sW+ΔW (t−Δt)‖2 = ‖sW+ν(t− τ)‖2 =
1

2
‖g(t)‖2 ,

so that

min
τ,ν
‖sW+ΔW (t−Δt)− sW+ν(t− τ)‖2

= min
τ,ν

[
‖g(t)‖2 − 2� 〈sW+ΔW (t−Δt)|sW+ν(t− τ)〉

]
.

(69)

The quantity ‖g(t)‖2 is not a function of either τ or ν and

therefore has no effect on the maximization. The minimization

in (69) is therefore equivalent to maximization of

�
∫ ∞
−∞

sW+ΔW (t−Δt)s∗W+ν(t− τ)dt (70)

This correlation can be expressed using the ambiguity func-

tion. Since z+z∗ = 2�z, (11) can be written as the conjugate

sum

sW (t) =
1

2
g(t)ej2πWt +

1

2
g∗(t)e−j2πWt

and

�
∫ ∞
−∞

sW+ΔW (t−Δt)s∗W+ν(t− τ)dt

=
1

4
�
∫ ∞
−∞

sW+ΔW (t−Δt)s∗W+ν(t− τ)dt

=
1

4

∫ ∞
−∞

[
g(t−Δt)ej2π(W+ΔW )(t−Δt)

+g∗(t−Δt)e−j2π(W+ΔW )(t−Δt)
]

×
[
g∗(t− τ)e−j2π(W+ν)(t−τ)

+g(t− τ)ej2π(W+ν)(t−τ)
]
dt



=
1

4

∫ ∞
−∞

g(t−Δt)g∗(t− τ)ej2π(W+ΔW )(t−Δt)

×e−j2π(W+ν)(t−τ)dt

+
1

4

∫ ∞
−∞

g∗(t−Δt)g(t− τ)e−j2π(W+ΔW )(t−Δt)

×ej2π(W+ν)(t−τ)dt

+
1

4

∫ ∞
−∞

g(t−Δt)g(t− τ)ej2π(W+ΔW )(t−Δt)

×ej2π(W+ν)(t−τ)dt

+
1

4

∫ ∞
−∞

g∗(t−Δt)g∗(t− τ)e−j2π(W+ΔW )(t−Δt)

×e−j2π(W+ν)(t−τ)dt

In the above four terms, the first two are complex conjugate

pairs as are the last two. Thus

� 〈sW+ΔW (t−Δt)|sW+ν(t− τ)(t− τ)〉
= 2�

[(
e−j2π(W+ΔW )Δtej2π(W+ν)τ

×
∫ ∞
−∞

g(t−Δt)g∗(t− τ)e−j2π((W+ν)−(W+ΔW ))tdt

)

+
(
e−j2π(W+ΔW )Δte−j2πuτ

×
∫ ∞
−∞

g(t−Δt)g(t− τ)ej2π((W+ν)+(W+ΔW ))tdt

)]

= 2� e−j2π(W+ΔW )Δt
[(
ej2π(W+ν)τ

×
∫ ∞
−∞

g(t−Δt)g∗(t− τ)e−j2π(ν−ΔW ))tdt

)

+
(
e−j2π(ν−ΔW )τ

×
∫ ∞
−∞

g(t−Δt)g(t− τ)ej2π(2W+ν+ΔW ))tdt

)]
(71)

The product g(t − Δt)g(t − τ) with τ and Δt fixed has a

Fourier transform that is zero for |u| > 2B. Thus, for

2W + ν +ΔW > 2B,

the second integral in (71) is zero. This is almost certainly the

case when W � B. Thus (71) becomes

� 〈sW−ΔW (t−Δt)|sW+ν(t− τ)〉
= 2�e−j2π(W+ΔW )Δtej2π(W+ν)τ

×
∫ ∞
−∞

g(t−Δt)g∗(t− τ)e−j2π(ν−ΔW )tdt

= 2�e−j2π(W+ΔW )Δtej2π(W+ν)τ

×
∫ ∞
−∞

g(t)g∗(t− (τ −Δt))e−j2π(ν−ΔW )(t+Δt)dt

= 2�e−j2π(ν−ΔW )Δtej2π(W+ν)τ

×
∫ ∞
−∞

g(t)g∗(t− (τ −Δt))e−j2π(ν−ΔW )t)dt

= 2�e−j2π(W+ν)(Δt−τ)ej2π(W+ν)τ

×χg(τ −Δt, ν −ΔW )

Therefore

(Δt,ΔW ) = argmax
τ,ν

� e−j2π(W+ν)(Δt−τ)

×χg(τ −Δt, ν −ΔW )

and we have proven (16).

B. Some Additional Derivations

1) Equation 54 : The ambiguity function for z(t) in (52)

is

χz(τ, u) =

∫
t

z(t)z∗(t− τ)e−j2πutdt

=

∫
t

{[∫
α

x(α))h(t− α)dα

]
[∫

β

x∗(β)h∗(t− β − τ)dβ

]
e−j2πut

}
dt

=

∫
α

∫
β

h(α)h∗(β)
[∫

t

x(t− α)x∗(t− τ − β)

×e−j2πutdt] dαdβ
Set ξ = t− α so that t = ξ + α. Then

χz(τ, u) =

∫
α

∫
β

h(α)h∗(β)
[∫

ξ

x(ξ)x∗(ξ + α− τ − β)

×e−j2πu(ξ+α)dξ
]
dαdβ

=

∫
α

∫
β

h(α)h∗(β)

× [χx(τ − (α− β), u)e−j2πuα
]
dαdβ

Set γ = α− β so that β = α− γ.

χz(τ, u) =

∫
α

∫
γ

h(α)h∗(α− γ)χx(τ − γ, u)

×e−j2πuαdαdγ
=

∫
γ

[∫
α

h(α)h∗α− γ)e−j2πuαdα
]

×χx(τ − γ, u)dγ

=

∫
γ

χh(γ, u)χx(τ − γ, u)dγ

= χh(τ, u) ∗
τ
χx(τ, u) (72)

which is the desired result in (53).

2) Equation 61: To prove the relationship between narrow

band and baseband ambiguity function in (61), first consider

χsw(τ, u) =

∫
t

sW (t)sW (t− τ)e−j2πutdt

=

∫
t

(�g(t)ej2πWt
)� (g(t− τ)

×ej2πW (t−τ)
)
e−j2πutdt

Since � z = 1
2 (z + z∗),



χsw(τ, u)

=
1

4

∫
t

(
g(t)ej2πWt + g∗(t)e−j2πWt

)

×
(
g(t− τ)ej2πW (t−τ) + g∗(t− τ)e−j2πW (t−τ)

)
×e−j2πutdt

=
1

4

∫
t

[
g(t)ej2πWtg∗(t− τ)e−j2πW (t−τ)dt

+g∗(t)e−j2πWtg(t− τ)ej2πW (t−τ)

+g(t)ej2πWtg(t− τ)ej2πW (t−τ)

+g∗(t)e−j2πWtg∗(t− τ)e−j2πW (t−τ)
]
e−j2πutdt

=
1

4

[
ej2πWτ

∫
t

g(t)g∗(t− τ)e−j2πutdt

+e−j2πWτ

∫
t

g∗(t)g(t− τ)e−j2πutdt

+e−j2πWτ

∫
t

g(t)g(t− τ)e−j2π(u−2W )tdt

+ej2πWτ

(∫
t

g(t)g(t− τ)ej2π(u+2W )tdt

)∗]

=
1

4

[
ej2πWτχg(τ, u) + e−j2πWτχ∗g(τ,−u)

]

+
1

4

[
e−j2πWτψg(τ, u+ 2W )

+ej2πWτψ∗g(τ,−(u+ 2W ))
]

where ψg(τ, u) is given in (62).
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