INTRODUCTION TO

EVOLUTIONARY
INFORMATICS

.ri) E—"‘u

(2 i_-:i:ﬁu?p_,‘! .'E':'::E"-'-‘I :|:."=:'-'— L)
Wi\ E=a=r S)
Lih?..i A

Robert J Marks |l
William A Dembski
Winston Ewert

“Wurtd Scientific

Publishers’ page

CONTENTS

Preface
About the Authors

1.

Introduction

1.1. The Queen of Scientists & Engineers
1.2. ScienceandModels,
1.2.1. Computermodels.
1.2.2. The improbable and the impossible
NOtES . . o

Information: What Is It?

2.1. Defining Information
2.2. Measuring Information
2.2.1. KCScomplexity
2.2.1.1. KCS information using prefix free
Programs
2.2.1.2. Random programming and the Kraft
inequality
2.2.1.3. Knowability
2.2.1.4. Application
2.2.2. Shannon information
2.2.2.1. Twenty questions: Interval
halvingandbits
2.2.2.2. Shannon information applied to interval
halving.

13
15
17
18
18
21

22

vi

Contents

23. Remarks.
NOEES . . o e

Design Search in Evolution and the Requirement
of Intelligence

3.1 DesignasSearch
3.1.1. WD-40™ and Formula409™
3.1.2. Tesla, Edison and domain expertise

3.2. Designby Computer

3.3. DesigningaGood Pancake
3.3.1. A search for agood pancake #1
3.3.2. A search for a good pancake #2: Cooking times

plusrangesetting
3.3.3. A search for a good pancake #3: More recipe
variables
3.3.4. A search for a good pancake #4: Simulating
pancakes on a computer with an artificial tongue
usingasingleagent
3.3.5. A search for a good pancake #5: Simulating
pancakes on a computer with an artificial tongue
using an evolutionary search

3.4. Sourcesof Knowledge

3.4.1. Designing antennas using evolutionary
computing.

3.5. The Curse of Dimensionality & the Need

forKnowledge

3.6. ImplicitTargets i
3.7. Skeptic Fallibility
3.7.1. Lossof function.
3.7.2. Pareto optimization and optimal sub-optimality . .
3.7.3. A man-in-the-loop sneaks in active information . .
3.7.3.1. Evolving Tic-Tac-Toe to checkers

tochess

3.7.3.2. Replacing the man-in-the-loop with a
computer-in-the-loop

26
26

29

29
30
30
31
32
32

35

36

38

40
41

43

46
47
48
50
52
52
55

55

55

3.8.
3.9.

Contents

A Smorgasbord of Search Algorithms
Conclusions

4. Determinism in Randomness

4.1.

4.2.

4.3.

4.4,

5.1
5.2.

5.3.

Bernoulli’s Principle of Insufficient Reason
4.1.1. “Nothing is that which rocks dream about”
4.1.2. Bernoulli’s Principle (PrOIR)
4121 Examples L
4.1.2.2. Criticisms of Bernoulli’s principle
4.1.2.2.1. Model variations

4.1.2.2.2. Vague definitions & ambiguity:

Bertrand’s paradox

4.1.2.2.3. Continuous versus discrete

probability
The Needfor Noise
4.2.1. Fixed pointsinrandomevents
4.2.2. Importance sampling
4.2.3. Limit cycles, strange attractors & tetherball
Basener’sceiling
431 Tierra . ..o e
4.3.2. Theedgeofevolution
FinalComments,

5.2.1. Deceptive counterexamples
5.2.2. What does learning have to do with design?
5.2.2.1. Sumo wrestlers can’t play basketball
5.2.3. A man-in-the-loop sneaks in active information . .
5.2.3.1. Backroomtuning
The Astonishing Cost of Blind Search inBits.

Vii

56
59
59

67

69
69
70
71
71
72

78

viii

54.

5.5.

5.6.

5.7.
5.8.

Contents

531 Analysis
532. Thecost
Measuring Search Difficulty in Bits
5.4.1. Endogenous information
5.4.1.1. Twospecialcases.
5.4.1.2. Endogenous information of the Cracker
Barrelpuzzle.
5.4.2. Active information
5.4.2.1. Examples of sources of knowledge
5.4.2.2. Active information per query
5.4.2.2.1. Asubtle distinction
5.4.2.3. Examples of active information
5.4.2.3.1. The Cracker Barrel puzzle . ..
5.4.2.3.2. The Monte Hall problem
5.4.2.3.3. Asibling problem
5.4.2.3.4. Multiple queries
5.4.3. Mining active information fromoracles
5.4.3.1. The Hammingoracle
5.4.3.2. Weasel ware and variations of
informationmining
Sources of Information in Evolutionary Search.
55.1. Population
55.2. Mutationrate.
5.5.3. Fitness landscapes
5.5.3.1. Initialization
Stairstep Information & Transitional Functional
Viability
5.6.1. Babysteps
5.6.2. Developmental functionality and irreducible
complexity
5.6.2.1. Example: Using an EAR_TATTER_
56.22. Analysiso
5.6.3. Irreducible complexity
Coevolution
The Search forthe Search
581 Anexample..........

151
155
155
156
156
160

160
161

5.8.2.

5.8.3.

Contents

Theproblem
5.8.2.1. Theweakcase...................
5.8.2.2. Thestrictcase
Proofs
5.8.3.1. Preliminaries.
5.8.3.2. Theweakcase...................
5.8.3.3. Thestrictcase

5.9. Conclusion

Notes . ..

6. Analysis of

Some Biologically Motivated Evolutionary Models

6.1. EV: A Software Model of Evolution

6.1.1.
6.1.2.
6.1.3.
6.1.4.

6.1.5.
6.1.6.
6.2. Avida:
6.2.1.

6.2.2.
6.2.3.

6.2.4.
6.2.5.

EVstructure
EVvivisection.
Information sources residentinEV
Thesearch
6.1.4.1. Search using the number cruncher
6.1.4.2. Evolutionary search
6.1.4.3. EV and stochastic hill climbing
6.1.4.4. Mutationrate
EVware
Thediagnosis
Stair Steps to Complexity Using NAND Logic . . .
Kitzmiller et al. versus Dover area
school district
Booleanlogic
NAND logic
6.2.3.1. Logic synthesis using NAND gates
The Avida organism and its health
Information analysis of Avida
6.2.5.1. Performance
6.2.5.1.1. The evolutionary approach . . .
6.2.5.1.2. The ratchet approach
6.2.5.1.3. Comparison
6.25.2. Minivida..
6.2.5.2.1. The full program..........

173
174
174
175
175
177
178
180
181

187

188
188
192
194
198
198
198
199
199
200
201
205

206
207
209
209
213
217
219
219
220
221
221
223

Contents

6.2.5.2.2. Remove the staircase

6.2.5.2.3. Minimal instructions

6.2.6. Avida is intelligently designed
6.2.7. Beatingadead organism

6.3. Metabiology
6.3.1. Theessenceof halting.
6.3.2. Onwiththesearch
6.3.3. The math: “intelligent design” in metabiology . . .
6.3.4. RESOUICES i

6.4. Conclusion: SweepingaDirtFloor................
6.4.1. Evolving a Steinertree
6.4.2. Time forevolution
6.4.3. Finis
NOtES . .

. Measuring Meaning: Algorithmic Specified Complexity

7.1. The MeaningofMeaning
7.2. Conditional KCS Complexity
7.3. Defining Algorithmic Specified Complexity (ASC)
7.3.1. HighASCisrare
7.4. Examplesof ASC
7.4.1. Extended alphanumerics
742, PoKer
7.43. Snowflakes L
7.4.4. ACSinthe GameofLife..................
7441 The GameofLife
7.4.4.2. Catalogingcontext
7.4.4.2.1. Still lifes and oscillators
74422 Gliders
7.4.4.2.3. Higher complexity.........
7.4.43. Measuring ASCinbits
74.43.1. Measuring I(X)

7.4.4.3.2. Measuring the conditional
KCS complexity in bits
7.4.4.3.3. OscillatorASC
7444 Measuringmeaning

Contents

7.5. Meaning is in the Eye of the Beholder.
NOtES . . .o

8. Intelligent Design & Atrtificial Intelligence

8.1. Turing & Lovelace: One is Strong and the Other
One’sDead
8.1.1. Turing’sfailure
8.1.2. The LovelacetestandID..................
8.1.3. “Flashofgenius”

8.2. ID &theUnknowable
8.2.1. Darwinian evolutionary programs have

failed the Lovelacetest
83. Finis
NOtES . .

9. Appendices

9.1. AcronymUList
9.2. Variables
9.3. Notationo

I ndex

Xi

278
279

281

282
282
284
285
287

288
288
288

291

291
292
293

295

PREFACE

“My theory of evolution is that Darwin was adopted”
Steven Wright

Science has made great strides in modeling space, time, mass, and energy
but has done little to definitively model the obvious meaningful information
ubiquitous in our universe. Today, information theory is used to measure
the storage capacity of a Blu-ray disc or for describing the bandwidth of
a Wi-Fi connection. Yet the difficulty associated with the design of the
Blu-ray contents and the meaning of data transmitted across the Wi-Fi
connection are not addressed. New results in information theory now allow
meaning and design difficulty to be measured. Explaining the foundation
of this exciting theory at an accessible level is our goal in Introduction to
Evolutionary Informatics.

Evolutionary models to date point strongly to the necessity of design.
Indeed, all current models of evolution require information from an external
designer in order to work. All current evolutionary models simply do not
work without tapping into an external information source.

Foundation

This monograph’s contents stem from the seminal works of one of your
humble co-authors, William A. Dembski,* and subsequent edited volumes.?
The authors have penned numerous papers and book chapters that contain
the foundational development of material for this monograph.® Links to
many of these papers are available on our website Evolnfo.org. In certain
places in this monograph we have lifted prose and figures from some of
these papers, in some cases verbatim. We have attempted in all cases to
make specific reference, but might have missed some.

Xiii

xiv Preface

As witnessed by this body of work, the material in this monograph
stands on firm ground. Peer-reviewed papers, though, are written at a level
where only dedicated nerds can understand them. This monograph serves
two purposes. The first is explanation of evolutionary informatics at a level
accessible to the well-informed reader. Secondly we believe a la Romans
1:20 and like verses that the implications of this work in the apologetics of
perception of meaning are profound.

The Math Herein and the T Symbol

Although we have attempted to minimize the mathematics in this book, its
use in some areas is necessary. In such cases, we have isolated the math
and give as clear an explanation of the underlying reasoning as possible.
The math material can be understood with rudimentary knowledge of

e simple logarithms,

e elementary probability,

e elementary concepts in statistics such as averages (or sample means)
being estimates of distribution means,

e numbers represented in binary (base 2), and

e simple Boolean logic operations such as AND, OR, NOT, NAND, NOR,
XOR, etc.

To aid those who wish to read the book more quickly or who are not
interested in mathematical details, sections marked with a dagger (1) can
be skipped. Some mathematical details are also relegated to footnotes and
are also marked with a dagger.

Footnotes and Endnotes

Generally notes at the end of the chapters are references whereas footnotes
contain elaboration on the chapter story. For fast or casual reading, the
footnotes can be skipped.

Chapter Summaries
Chapter 1: Introduction

Summary: Rather than placing a theory or ideology on the throne like a
Queen as scientists and philosophers often do, engineers make the Queen

Preface XV

come down from the throne and scrub the floor. And if she doesn’t work,
she is fired.

Scientists once thought evolution models running on fast computers
would someday confirm evolution. The opposite has happened. Prophets
of computer-based demonstration of undirected evolution failed to take
into account Borel’s law and the Conservation of Information. Borel’s
law dictates that events described by a sufficiently small probability are
impossible events. For example, there is a small probability that you
will experience quantum tunneling through the chair in which you sit.
The probability is so small, however, that we can categorize the event as
impossible.

Chapter 2: Information: What is It?

Summary: Information is neither matter nor energy. It stands as an
independent component of nature.

The term information is typically not well defined, whether used in
casual conversation or in a journal article. Shannon information theory is
perhaps the best-known mathematical model of information. Shannon noted
the obvious: His model of information is narrow and not applicable to the
broad range of possible definitions of information.

Kolmogorov—-Chaitin-Solomonov (KCS) information theory, also
known as algorithmic information theory, is another popular information
model. However, both the Shannon and KCS models fail to model
information in the sense of measuring the meaning or the design difficulty
associated with an object.

Chapter 3: Design Search in Evolution and the Requirement
of Intelligence

Summary: Engineering design is invariably an iterative search guided by
the domain expertise of the designer. WD-40 took 40 trials to design and
Formula 409 required 409 tries. That’s how these products got the numerical
part of their names.

The anatomy of a search is illustrated by a chef’s design of a
good pancake recipe. The important components of design are identified,
including the role of domain expertise and the curse of dimensionality that
can quickly make uninformed designs impossible.

XVi Preface

Analysis of NASA’s design of an antenna using evolutionary search
shows that the design domain expertise in evolutionary design is rich and
the search problem was not that difficult.

Trade-offs are necessary in design. Designing a car that is both
inexpensive and safe requires one criterion to be balanced against the
other. Cheap cars aren’t safe and safe cars aren’t cheap. More than
not, global optimality necessitates component suboptimality. IlI-informed
critical claims of suboptimal design in biological systems is clarified with
a discussion of the trade-offs inherent in any multi-objective design.

Chapter 4: Determinism in Randomness

Summary: It may sound like an oxymoron, but there are elements of
determinism in randomness. If, for example, a fair coin is repeatedly flipped
thousands of times, the proportion of heads will always approach the deter-
ministic value of one half. In a similar manner, many programs purporting
to demonstrate Darwinian evolution are invariably written to converge to
a specific deterministic outcome most of the time. As with the steel ball in
a pinball machine, different paths can be taken in every trial, but the steel
ball always ends up going down the little hole underneath the flippers.

Bernoulli’s Principle of Insufficient Reason (PrOIR), although fancy
sounding, simply says that the chance of winning a lottery with 1000 tickets
sold is one chance in 1000 if you have purchased only one ticket. Equal
probability is assigned to every possible outcome in the drawing. Bernoulli’s
PrOIR is used in the modeling of random blind search.

Basener’s ceiling imposes a severe restriction on any evolutionary
process. It demands that any evolutionary computer search will reach a
point where further improvement is not possible. It is common sense that
an evolutionary program written to design an antenna will not continue to
evolve to the point where, for example, the program learns to play chess. The
theory behind this limitation of evolutionary processes is firmly established
by Basener’s ceiling.

Chapter 5: Conservation of Information in Computer Search

Summary: We now have the tools needed to present the Law of Conser-
vation of Information as illustrated by the No Free Lunch Theorem. The
No Free Lunch theorem dictates that, when seeking to iteratively design an

Preface XVii

object, one procedure is as good on the average as any other procedure if the
designer has absolutely no domain expertise. The No Free Lunch Theorem
published in 1997 by Wolpert and Macready raised the eyebrows of the
machine intelligence community who often placed one search algorithm
against another to see which was best. The results of that competition, it
turns out, said nothing about the effectiveness of one search algorithm over
another. It only said that one search algorithm was better on the problem
being examined. The performance ranking was not necessarily valid for
other problems.

The No Free Lunch Theorem was also the inspiration behind Bill
Dembski’s book with a similar title.

If no domain expertise is available, we expect a random search to work
as well as any other. The problem is that random searches quickly exhaust
the probabilistic resources in the universe. Even the probability resources
of a multiverse are insufficient to generate the table of contents for the first
chapter of this book by blind chance. Design requires intelligence.

An evolutionary search can be made better than average by the use
of domain expertise. Fewer iterations are required to achieve a successful
design. Active information measures the degree to which domain expertise
helps in a search. Active information is illustrated by easily understood
examples such as the Cracker Barrel puzzle and the game show Let’s Make
a Deal.

The No Free Lunch Theorem has been claimed to be violated by the
so-called process of coevolution. We straightforwardly show that this is not
the case.

Lastly we broach the topic of a search-for-a-search. If all search
procedures work the same on average, could we not have the computer
search for a good search that works better than average? The answer
turns out to be an emphatic NO! A search-for-a-search is shown to be
exponentially more difficult than the search itself.

Chapter 6: Analysis of Some Biologically Motivated
Evolutionary Models

Summary: There are a number of computer programs that purport to
demonstrate undirected Darwinian evolution. The most celebrated is the
Avida evolution program whose performance was touted by evolution

XViii Preface

proponents at the 2004-2005 Kitzmiller versus Dover Area School District
trial. This trial examined the appropriateness of teaching intelligent design.
Conservation of information, discovered and published five years later,
soundly discredits Avida.

Since Avida is attempting to solve a moderately hard problem, the
writer of the program must have infused domain expertise into the code. We
identify the sources and measure the resulting infused active information.
Avida is shown to contain a lot of clutter used to slow down its performance.
When the clutter is removed the program converges to the solution more
quickly.

Another evolutionary program discredited through the identification
and measurement of active information is dubbed EV.

Once a source of knowledge is identified in an evolutionary program,
active information can be mined in different ways by using other search
programs. For both Avida and EV, alternative search programs are shown
to generate the same results as the evolutionary search. The computa-
tional burden of the evolutionary approach in both cases is significantly
higher.

On Evolnfo.org, we have developed online GUIs (graphical user
interfaces) to illustrate the performance of both Avida and EV. There is
also a GUI that allows experimental exploration of Richard Dawkins’s
famous Weasel search algorithm. The performance and use of these GUIs
is sufficiently explained so that the reader, if so motivated, can go online
and try the experiment themselves.

Lastly, a model proposed by Gregory Chaitin (the C in KCS) in his
2013 book Proving Darwin: Making Biology Mathematical is analyzed.
Chaitin’s model, built in the beautiful and surrealistic world of algorithmic
information theory, is shown to be overflowing with active information.
Like other computer programs written to demonstrate undirected Darwinian
evolution, it works only because it was designed to work.

Chapter 7: Measuring Meaning: Algorithmic Specified
Complexity

Summary: Specified complexity has been proposed in the intelligent design
literature as a method of assessing the degree to which an object is designed

Preface XiX

or has meaning. Algorithmic specified complexity (ASC) measures this
property in bits.

Algorithmic specified complexity assumes that meaning is based on
context. A picture of my family has more meaning to me than to someone
who has never met my family. A page of kanji characters has more meaning
to a Japanese reader than to someone who doesn’t know Japanese.

Winning hands in the game of poker is an example. For a deck of 52
distinct cards, there are 2,869,682 possible five card hands. Some hands,
like a royal flush, are more meaningful than others, e.g. a pair of twos. We
show that the ASC of a royal flush is a hefty 16 bits whereas that of a hand
with one pair is zero.

Another illustrative example deals with snowflakes. Although a single
individual snowflake displays a high degree of complexity, high complexity
events happen all the time. We show that the ASC of two different
snowflakes is near zero. But two identical snowflakes have very large ASC.

Lastly, the ASC of objects in Conway’s cellular automata Game of Life
is calculated. Invented in 1970, interest in the Game of Life continues to
grow. Today there are online user groups where intricate and complicated
objects are constructed using Conway’s four simple rules. As expected,
large complex objects are assigned high values of ASC whereas simple
objects that have a high chance of being produced randomly have low
values of ASC.

Chapter 8: Intelligent Design & Artificial Intelligence

The fields of artificial intelligence (Al) and intelligent design (ID) share
a variation of the word “intelligent.” There is a deeper relationship.
Strong Al using computers has been largely dethroned. Roger Penrose
argues convincingly that human intelligence will never be achieved by a
Turing machine (i.e. a computer). His argument, backed by the astonishing
incompleteness theorem of Kurt Goédel, is based on the inability of
computers to be creative beyond what they are told.

We see the same thing in models that purport to demonstrate Darwinian
evolution. Again and again, such models have been shown to work only
because the programmer has infused information into the process. And, of
course, these models of Darwinian evolution are run on a Turing machine.

XX Preface

Darwinian evolution cannot create information. Neither can acomputer.
For humans, Penrose believes the answer might lie in quantum phenomena
resident in our neurons. Alternatively, in both Al and ID, creation of
information can be explained by externally applied intelligence.

Notes

1. William A. Dembski, The Design Inference: Eliminating Chance through Small
Probabilities (Cambridge University Press, 1998).

William A. Dembski, Intelligent Design: The Bridge between Science and
Theology (InterVarsity Press, Downer’s Grove, Illinois, 1999).

William A. Dembski, No Free Lunch: Why Specified Complexity Cannot Be
Purchased without Intelligence (Rowman & Littlefield, Lanham, Md, 2002).
William A. Dembski, Being as Communion: A Metaphysics of Information
(Ashgate Publishing Ltd., 2014).

2. Bruce Gordon and William Dembski, editors, The Nature of Nature (Wilming-
ton, Del, 2011).

R.J. Marks Il, M.J. Behe, W.A. Dembski, B.L. Gordon, J.C. Sanford, editors,
Biological Information — New Perspectives (Cornell University, World Scien-
tific, Singapore, 2013).

3. William A. Dembski and Robert J. Marks 11, “Conservation of Information
in Search: Measuring the Cost of Success.” IEEE Transactions on Systems,
Man and Cybernetics A, Systems and Humans, vol. 39, #5, September 2009,
pp. 1051-1061.

William A. Dembski and R.J. Marks 11, “Bernoulli’s Principle of Insufficient
Reason and Conservation of Information in Computer Search.” Proceedings of
the 2009 IEEE International Conference on Systems, Man, and Cybernetics.
San Antonio, TX, USA — October 2009, pp. 2647-2652.

Winston Ewert, William A. Dembski and R.J. Marks |1, “Evolutionary Synthesis
of Nand Logic: Dissecting a Digital Organism.” Proceedings of the 2009 |EEE
International Conference on Systems, Man, and Cybernetics. San Antonio, TX,
USA — October 2009, pp. 3047-3053.

Winston Ewert, George Montafiez, William A. Dembski, Robert J. Marks
Il, “Efficient Per Query Information Extraction from a Hamming Oracle.”
Proceedings of the 42nd Meeting of the Southeastern Symposium on System
Theory. IEEE, University of Texas at Tyler, March 7-9, 2010, pp. 290-229.
William A. Dembski and Robert J. Marks IlI, “The Search for a Search:
Measuring the Information Cost of Higher Level Search.” J Adv Comput Intell
Intelligent Inf, 14(5), pp. 475-486 (2010).

Preface XXi

George Montafiez, Winston Ewert, William A. Dembski, and Robert J. Marks
11, “Vivisection of the ev Computer Organism: Identifying Sources of Active
Information.” Bio-Complexity, 2010(3), pp. 1-6 (December 2010).

William A. Dembski and Robert J. Marks I, “Life’s Conservation Law: Why
Darwinian Evolution Cannot Create Biological Information.” In Bruce Gordon
and William Dembski, eds., The Nature of Nature (ISI Books, Wilmington, Del.,
2011), pp. 360-399.

Winston Ewert, William A. Dembski, and Robert J. Marks Il, “Climbing the
Steiner Tree—Sources of Active Information in a Genetic Algorithm for Solving
the Euclidean Steiner Tree Problem.” Bio-Complexity, 2012(1), pp. 1-14 (April,
2012).

Winston Ewert, William A. Dembski, Ann K. Gauger, and Robert J. Marks
I, “Time and Information in Evolution.” Bio-Complexity, 2012(4) 7 pages.
doi:10.5048/B10-C.2012.4.

Winston Ewert, William A. Dembski and Robert J. Marks I, “On the
Improbability of Algorithmically Specified Complexity.” Proceedings of the
2013 |EEE 45th Southeastern Symposium on Systems Theory (SSST), Baylor
University, March 11, 2013, pp. 68-70,

Jon Roach, Winston Ewert, Robert J. Marks Il and Benjamin B. Thompson,
“Unexpected Emergent Behaviors from Elementary Swarms.” Proceedings of
the 2013 | EEE 45th Southeaster n Symposiumon Systems Theory (SSST), Baylor
University, March 11, 2013, pp. 41-50.

Winston Ewert, William A. Dembski and Robert J. Marks 11, “Conservation of
Information in Relative Search Performance.” Proceedings of the 2013 IEEE
45th Southeastern Symposium on Systems Theory (SSST), Baylor University,
March 11, 2013, pp. 41-50.

Albert R. Yu, Benjamin B. Thompson, and Robert J. Marks II, “Competitive
evolution of tactical multiswarm dynamics.” IEEE Transactions on Systens,
Man and Cybernetics: Systems, 43(3), pp. 563-569 (May 2013).

Robert J. Marks Il, “Information Theory & Biology: Introductory Comments.”
In Biological Information — New Perspectives, edited by R.J. Marks II,
M.J. Behe, W.A. Dembski, B.L. Gordon, and J.C. Sanford (World Scientific,
Singapore, 2013) pp. 1-10.

William A. Dembski, Winston Ewert, Robert J. Marks 11, “A General Theory of
Information Cost Incurred by Successful Search.” In Biological Information —
New Perspectives, edited by R.J. Marks Il, M.J. Behe, W.A. Dembski, B.L.
Gordon, and J.C. Sanford (World Scientific, Singapore, 2013) pp. 26-63.

W. Ewert, William A. Dembski, and Robert J. Marks |1, “Tierra: The Character
of Adaptation.” In Biological Information — New Perspectives, edited by

XXii Preface

R.J. Marks Il, M.J. Behe, W.A. Dembski, B.L. Gordon, and J.C. Sanford (World
Scientific, Singapore, 2013) pp. 105-138.

G. Montafiez, Robert J. Marks 1l, Jorge Fernandez, and John C. Sanford,
“Multiple Overlapping Genetic Codes Profoundly Reduce the Probability of
Beneficial Mutation.” In Biological Information —New Perspectives, edited by
R.J. Marks I, M.J. Behe, W.A. Dembski, B.L. Gordon, and J.C. Sanford (World
Scientific, Singapore, 2013), pp. 139-167.

W. Ewert, William A. Dembski, and Robert J. Marks 11, “Algorithmic specified
complexity.” In Engineering and the Ultimate: An Interdisciplinary Investiga-
tion of Order and Design in Nature and Craft, edited by J. Bartlett, D. Halsmer,
and M. Hall (Blyth Institute Press, 2014), pp. 131-149.

W. Ewert, Robert J. Marks Il, Benjamin B. Thompson, and Al. Yu, “Evolu-
tionary inversion of swarm emergence using disjunctive combs control.” |[EEE
Transactions on Systems, Man and Cybernetics: Systems, 43(5), pp. 1063-1076
(September 2013).

W. Ewert, William A. Dembski, and Robert J. Marks I1, “Algorithmic Specified
Complexity in the Game of Life.” |IEEE Transactions on Systems, Man and
Cybernetics: Systems, 45(4), pp. 584-594 (April 2015).

W. Ewert, William A. Dembski, and Robert J. Marks 11, “Measuring meaningful
information inimages: algorithmic specified complexity.” IET Computer Vision
(2015). DOI: 10.1049/iet-cvi.2014.0141.

ABOUT THE AUTHORS

Robert J. Marks 11 is Distinguished Professor
of Engineering in the Department of Engineering
at Baylor University, USA. Marks is Fellow of
both IEEE and The Optical Society of America.
His consulting activities include Microsoft Corpo-
ration, DARPA, and Boeing Computer Services.
His contributions include the Zhao-Atlas-Marks
(ZAM) time-frequency distribution in the field of
signal processing, and the Cheung—Marks theorem
in Shannon sampling theory. He is listed as one
of the “The 50 Most Influential Scientists in the World Today” By
TheBestSchools.org. (2014).

Marks’s research has been funded by organizations such as the National
Science Foundation, General Electric, Southern California Edison, the Air
Force Office of Scientific Research, the Office of Naval Research, the
United States Naval Research Laboratory, the Whitaker Foundation, Boeing
Defense, the National Institutes of Health, the Jet Propulsion Lab, the Army
Research Office, and NASA. His Books include Handbook of Fourier
Analysis and Its Applications (Oxford University Press), Introduction to
Shannon Sampling and Inter polation Theory (Springer Verlag), and Neural
Smithing: Supervised Learning in Feedforward Artificial Neural Networks
(MIT Press) with Russ Reed. Marks has edited/co-edited five other volumes
in fields such as power engineering, neural networks, and fuzzy logic. He
was instrumental in defining the discipline of Computational intelligence
(Cl) and is a coeditor of the first book using Cl in the title: Computational

XXiii

XXiV About the Authors

Intelligence: Imitating Life (IEEE Press, 1994). His authored/coauthored
book chapters include nine papers reprinted in collections of classic
papers. Other book chapters include contributions to Michael Arbib’s The
Handbook of Brain Theory and Neural Networks (MIT Press, 1996), and
Michael Licona et al.’s Evidence for God (Baker Books, 2010). Marks
served for 17 years as the faculty advisor for Campus Crusade for Christ at
the University of Washington, Seattle. His Erdés-Bacon is five.

William A. Dembski is Senior Research Scientist
at the Evolutionary Informatics Lab in McGregor,
Texas; and also an entrepreneur developing educa-
tional websites and software. He holds a B.A. in
psychology, M.S. in statistics, Ph.D. in philosophy,
and a Ph.D. in mathematics (awarded in 1988 by
the University of Chicago, Chicago, Illinois, USA),
and an M.Div. degree from Princeton Theologi-
cal Seminary (1996, New Jersey, USA). Demb-
ski’s work experience includes being an Associate
Research Professor with the Conceptual Foundations of Science, Baylor
University, Waco, Texas, USA; where he also headed the first intelligent
design think-tank at a major research university: The Michael Polanyi
Center. He has taught at Northwestern University, Evanston, Illinois,
USA; the University of Notre Dame, Notre Dame, Indiana, USA; and
the University of Dallas, Irving, Texas, USA. He has done postdoctoral
work in mathematics with the Massachusetts Institute of Technology,
Cambridge, USA; in physics with the University of Chicago, USA; and in
computer science with Princeton University, Princeton, New Jersey, USA.
He is a Mathematician and Philosopher. He has held National Science
Foundation graduate and postdoctoral fellowships, and has published
articles in mathematics, engineering, philosophy, and theology journals and
is the author/editor of more than twenty books. In The Design Inference:
Eliminating Chance Through Small Probabilities (Cambridge University
Press, 1998), he examined the design argument in a post-Darwinian context
and analyzed the connections linking chance, probability, and intelligent
causation. The sequel to The Design Inference critiques Darwinian and

About the Authors XXV

other naturalistic accounts of evolution; it is titled No Free Lunch: Why
Foecified Complexity Cannot Be Purchased Without Intelligence (Rowman
& Littlefield, 2002). He has edited several influential anthologies, including
Uncommon Dissent: Intellectuals Who Find Darwinism Unconvincing
(IS1, 2004) and Debating Design: From Darwin to DNA (Cambridge
University Press, 2004, coedited with M. Ruse). His newest book is Being as
Communion: A Metaphysics of Information (Ashgate Pub. Co., 2014). His
area of interest in intelligent design has grown in the wider culture; he has
assumed the role of public intellectual. In addition to lecturing around the
world at colleges and universities, he has been interviewed extensively on
radio and television. His work has been cited in numerous newspaper and
magazine articles, including three front-page stories in The New York Times
as well as the August 15, 2005 Time Magazine cover story on intelligent
design. He has appeared on the BBC, NPR (Diane Rehm, etc.), PBS (Inside
the Law with Jack Ford and Uncommon Knowledge with Peter Robinson),
CSPAN2, CNN, Fox News, ABC Nightline, and the Daily Show with Jon
Stewart.

Winston Ewert is currently a Software Engineer
in Vancouver, Canada. He is a Senior Research
Scientist at the Evolutionary Informatics Lab.
Ewert holds a Ph.D. from Baylor University, Waco,
Texas, USA. He has written a number of papers
relating to search, information, and complexity
including studies of computer models purporting
to describe Darwinian evolution and developing
information theoretic models to measure specified
complexity. Dr. Ewert is a frequent contributor to
EvolutionNews.org.

1
INTRODUCTION

“The honor of mathematics requires us to come up with a mathematical theory of
evolution and either prove that Darwin was wrong or right!”

Gregory Chaitin®

In order to establish solid credibility, a science should be backed by
mathematics and models. Even some soft sciences, such as finance, offer
compelling mathematical and computer models that win Nobel prizes. The
purpose of evolutionary informatics is to scrutinize the mathematics and
models underlying evolution and the science of design.

There is a recognized difference between models and reality. A mantra
popular with engineers is: “In theory, theory and reality are the same.
In reality they are not.” Models in physics have been shown to display
incredible experimental agreement with theory. But what of Darwinian
evolution? There have been numerous models proposed for Darwinian
evolution. Some are examined in this monograph. Each, however, is
intelligently designed and the degree to which they are designed can be
measured, in bits, using active information. If these models do indeed
capture the Darwinian process, then we must conclude that evolution is
guided by an intelligence. Without the application of this intelligence, the
evolutionary models simply do not work. The computational resources of
our universe and, indeed, the current model of the multiverse proposed by
string theory are insufficient to allow the small probabilities of evolution
by pure chance. The participation of a designer is mandatory.

Our work was initially motivated by attempts of others to describe
Darwinian evolution by computer simulation or mathematical models.?
The authors of these papers purport that their work relates to biological

2 Introduction to Evolutionary Informatics

evolution. We show repeatedly that the proposed models all require
inclusion of significant knowledge about the problem being solved. If a
goal of a model is specified in advance, that’s not Darwinian evolution:
it’s intelligent design. So ironically, these models of evolution purported
to demonstrate Darwinian evolution necessitate an intelligent designer.
The programmer’s contribution to success, dubbed active information, is
measured in bits.

Mount Rushmore’s carved busts of United States presidents indicate
design when compared to, say, Mount Fuji. The Search for Extraterrestrial
Intelligence (SETI) assumes that signals received from space containing
intelligence can be detected. A model to measure meaningful information
from observations is the topic of Chapter 7.

1.1 The Queen of Scientists & Engineers

Engineers don’t brag enough. Scientists did not put man on the moon.
Engineers did. Scientists are not responsible for the Internet. Engineers
are. The latest medical breakthrough is most likely the work of an engineer,
not a scientist or a medical doctor. And from whose viewpoint is it better
to address intelligent design? Engineers design things.

The engineer’s job is to understand science and mathematics, apply this
understanding to reality, and make things work.

There are fundamental philosophical differences between engineers
and scientists. Scientists are generally more interested in simply understand-
ing nature. They formulate models, often beautiful and powerful models,
and scrutinize them. Once vetted by the acceptance of most, the models are
placed on a throne like a queen where they are worshiped. It often takes a
major coup to overthrow a scientist’s ensconced dogma. Engineers, on the
other hand, make the queen come down from the throne and scrub the floor.
If she works, we use her talents. And if she doesn’t work, we fire her.

The story of the queen describes this monograph. We analyze the
computer models of evolution offered by scientists and conclude they work
only because the programmers designed them to work. There is no creation
of information or spontaneous increase in meaningful complexity. The
law of conservation of information precludes it. We are able to examine
the proposed computer models, identify the source of active information,
and show that the evolutionary process, although successful, is a poor

Introduction 3

way to use available resources. Since the proposed models do not display
characteristics of undirected Darwinian search, the reigning queen of
undirected Darwinian evolution must be given a pink slip.

1.2 Science and Models

Science requires explanative models. Darwinian evolution, using the
repeated processes of mutation and survival of the fittest, looks on the
surface to be a science well positioned for modeling using probabilistically
based simulation.

Repeatedly observable laws, such as Newton’s law of motion or the
laws of thermodynamics, can be confirmed by repeating experiments again
and again. Such laws are said to be formed by the application of inductive
inference. Non-repeatable phenomena cannot be modeled this way. The
theory of the creation of the universe from the Big Bang is an example. In
such cases, abductive inference or inference to the best explanation is used
to establish laws. Abductive inference has certainly not been a hindrance
in forming a rich theoretical explanation of the Big Bang or the science of
geology.

The entirety of Darwinian evolution theory over eons of life on earth
cannot be repeated in the laboratory. We have, though, some supportive
repeatable science to help. Dogs and horses can be bred, bacteria strains lose
their vulnerability to antibiotics and the beaks of finches vary in accordance
with food sources on the Galapagos Islands. Cannot we extrapolate a
viable model of evolution from these phenomena? Those who support
Darwinian evolution say yes. Mathematically, though, extrapolation models
of temporal processes can be useless. Small perturbations in observations
can result in wildly varying extrapolation results.®:3 Chapter 6 contains
a discussion of published models whose proponents feel they have a
successful model of Darwinian evolution. They have not. At best, they have

@t Example characteristics of extrapolation and forecasting include ill-conditioned and ill-
posed processes. An ill-conditioned process is one in which small changes in the observed
data can result in enormous variations in extrapolation. An ill-posed process is the extreme
of this. No matter how little the known portion of the process is perturbed, the variation in
the extrapolation error becomes unknowable in the sense that it cannot be bounded.

4 Introduction to Evolutionary Informatics

guided the goal-seeking breeding of a thoroughbred horse from available
stock.

1.2.1 Computer models

The invention of the computer in the mid-20th century gave rise to
expectations in the science of evolution. It was hoped the evolutionary
process could, for the first time, be modeled and demonstrated by a computer
program. Evolutionary computation was founded on the assumption
that, unlike glacially slow biological wetware, the speed of a computer
would allow sufficient generations to conclusively demonstrate Darwinian
evolution. In 1962, Nils Barricelli wrote*

“The Darwinian idea that evolution takes place by random hereditary changes and
selection has from the beginning been handicapped by the fact that no proper test
has been found to decide whether such evolution was possible and how it would
develop under controlled conditions.”

In the mid-1960s J. L. Crosby® looked to the computer of the future as a
remedy for this condition.

“In general, it is usually impossible or impracticable to test hypotheses about
evolution in a particular species by the deliberate setting up of controlled
experiments with living organisms of that species. We can attempt to partially
to get around this difficulty by constructing [computer] models representing the
evolutionary system we wish to study, and use these to test at least the theoretical
validity of our ideas.”

1.2.2 Theimprobable and the impossible

Contrary to expectation, computer science research has revealed numerous
problems for a model of evolution without an intelligent designer. The
principle of conservation of information shows that evolutionary processes
on average are incapable of generating information. Rather, they are
restricted to extracting information from a source of knowledge. The
success of any evolutionary process is not due to any magic in the process
itself, but rather to the creative knowledge available to that process.
Computer simulation of evolution has demonstrated that information
sources are created by programmers exploiting their knowledge of problem
spaces, a process with no analog in a non-teleological world.

Introduction 5

Evolutionary models are stochastic, so one might argue “Sure, it’s not
probable. Butit’s possible!” This is right in the sense that all probable things
are possible but not all possible things are probable or, in the contrapositive
sense, everything impossible is improbable but improbable events need not
be impossible. But, like many contrasts, there comes a point where the
improbable and impossible blur together and, within the resources of our
finite universe (or even the hypothesized multiverse), an event can be so
improbable as to be accurately labeled as impossible. This proposition is
commonly referred to as Borel’s Law.® When | stand, is it possible part of my
foot will experience quantum tunneling through the floor? Yes. But the event
is so improbable that | can stand and sit every picosecond since the creation
of the universe and my toes will never experience quantum tunneling. We
argue that this technically possible event is, indeed, impossible in practice.
Here’s another example. Suppose | randomly choose a billion atoms in
the known universe and, without consulting me, you choose a billion.
In the strictest of senses, it is possible that the billion atoms you choose
are the same as mine. But the probability of matching atoms is so small we
could both choose atoms over and over for trillions of years and there would
be no chance our billion atoms would exactly match. A successful matching
is impossible with the probability resources available in our universe—or
even the largest multiverse predicted by string theorists.

Could the biology we observe today have been created by undirected
Darwinian evolution? There may be a minuscule probability but, like the
examples of quantum tunneling and atom choosing, the development is
impossible. Evolutionary informatics shows the observed universe (or a
multiverse) is not large enough nor old enough to allow it.

Notes

1. G.J. Chaitin, Proving Darwin: Making Biology Mathematical (Pantheon,
2012).

2. H.S.Wilfand W.J. Ewens, “There’s plenty of time for evolution.” P Natl Acad
Sci, 107, pp. 22454-22456 (2010).
R.E. Lenski, C. Ofria, R.T. Pennock and C. Adami, “The evolutionary origin
of complex features.” Nature, 423, pp. 139-144 (2003).
T.D. Schneider, “Evolution of biological information.” Nucleic Acids Res, 28,
pp. 2794-2799 (2000).

Introduction to Evolutionary Informatics

R. Dawkins, The Blind Watchmaker: Why the Evidence of Evolution Reveals
a Universe Without Design (Norton, New York, 1996).

D. Thomas, “War of the Weasels: An evolutionary algorithm beats intelligent
design.” Skeptical Inquirer, 43, pp. 42-46 (2010).

G.J. Chaitin, Proving Darwin: Making Biology Mathematical (Pantheon,
2012).

R.J. Marks Il, Handbook of Fourier Analysis and its Applications (Oxford
University Press, 2008).

R.J. Marks I, “Gerchberg’s extrapolation algorithm in two dimensions.” Appl
Opt, 20, pp. 1815-1820 (1981).

D.K. Smithand R.J. Marks 11, “Closed form bandlimited image extrapolation.”
Appl Opt, 20, pp. 2476-2483 (1981).

R.J. Marks Il, “Posedness of a bandlimited image extension problem in
tomography.” Opt Lett, 7, pp. 376-377 (1982).

D. Kaplan and R.J. Marks Il, “Noise sensitivity of interpolation and extrapo-
lation matrices.” Appl Opt, 21, pp. 4489-4492 (1982).

R.J. Marks 11, “Restoration of continuously sampled bandlimited signals from
aliased data.” IEEE Transactions on Acoustics, Speech and Signal Processing,
ASSP-30, pp. 937-942 (1982).

R.J. Marks Il and D.K. Smith, “Gerchberg-type linear deconvolution and
extrapolation algorithms.” in Transformations in Optical Signal Processing,
W.T. Rhodes, J.R. Fienup and B.E.A. Saleh (eds.), SPIE 373, pp. 161-178
(1984).

K.F. Cheung, R.J. Marks Il and L.E. Atlas, “Convergence of Howard’s
minimum negativity constraint extrapolation algorithm.” J Opt Soc Am A,
5, pp. 2008-2009 (1988).

N.A. Barricelli, “Numerical testing of evolution theories, Part I: theoretical
introduction and basic tests.” Acta Biotheor, 16(1-2), pp. 69-98 (1962).
Reprinted in David B. Fogel (ed.), Evolutionary Computation: The Fossil
Record (IEEE Press, Piscataway N.J., 1998).

J.L. Croshy, “Computers in the study of evolution.” Sci Prog Oxf, 55, pp. 279—
292 (1967).

David J. Hand, The Improbability Principle: Why Coincidences, Miracles, and
Rare Events Happen Every Day (Macmillan, 2014).

2
INFORMATION: WHAT IS IT?

“Every new body of discovery is mathematical in form, because there is no other
guidance we can have.”

Charles Darwinl

2.1 Defining Information?

The term information is commonly used in science but its precise definition
varies widely. A number of questions arise in attempting to precisely define
information:

e A Blu-ray disc is capable of storing about 50 GB. Is the amount

of information on the disk different if the disc contains the movie
Braveheart or a collection of random noise?

When a book is shredded beyond recovery, is information being
destroyed? Does it matter whether there is another copy of the book
or not?

Likewise, when a digital picture is taken, is digital information being
created or merely captured?

If you are shown a document written in Mandarin, does the document
contain information even if you do not read Mandarin? What if the
document is written in an alien language unknown to any human? If
not, does the document suddenly contain information if we discover a
Rosetta stone allowing for its translation?

The answers to these questions vary in accordance with the definition

of information used.

Information can be written on energy. Examples include acoustic

audio waves which are used by humans and other animals to audibly
communicate, or electromagnetic waves which are used by radio stations

7

8 Introduction to Evolutionary Informatics

to transmit their signal. As is the case with books and Blu-ray discs,
information can also be etched onto matter. But energy and matter serve
only as transcription media for information. Norbert Weiner,? the father of
cybernetics, noted*

“Information is information, neither matter nor energy.”

Information is resident in design, and engineers and inventors copy
nature’s designs all the time. The idea for Velcro, for example, came
from close examination of burrs stuck to the clothes of a Swiss engineer
after a hunting trip. The function of the human eyelid was the inspiration
for the invention of the intermittent windshield wiper.®> The IEEE Com-
putational Intelligence Society,® a professional electrical and computer
engineering organization,® has as its motto, “Nature-inspired problem
solving.” Structure in nature, when examined, can be a rich source of useful
information.

Matter and energy are modeled and well-studied by physicists. There is,
though, no universal model of information. Claude Shannon recognized that
his theory of Shannon information was not the last word in the mathematical
modeling of information.’

“It seems to me that we all define ‘information’ as we choose; and, depending
upon what field we are working in, we will choose different definitions. My own
model of information theory . . . was framed precisely to work with the problem
of communication.”

Shannon’s definition of information suffers from an inability to measure
meaning. A Blu-ray of random noise can have the same number of bits as
a Blu-ray containing the movie Braveheart.

A frequently used example of design information is shown in Fig. 2.1.
On the left is an image of an obviously designed Mount Rushmore. On
the right, shadows resemble a man’s face. The photo is from the surface of
Mars taken during NASA’s 1976 Viking 1 mission. Given the thousands of
shadows on the surface of Mars which change according to the sun’s angle of
illumination, itis not surprising that some patterns should resemble a man’s

31EEE, the Institute of Electrical and Electronic Engineers, is the world’s largest professional
society. In 2016, there were 421,000 members in 160 countries.

Information: What Is It? 9

Fig. 2.1. Mount Rushmore, on the left, displays design information. The shadow on the
right resembling a man’s face looks to be a chance shape.®

face. The image on the right is due to chance. The information property that
allows us to differentiate the meaningful design of Mount Rushmore from
the Mars face on the right is specified complexity. The Rushmore images
are more than just the faces of men. They are specific men: Washington,
Jefferson, Roosevelt and Lincoln. To most, the face on Mars resembles no
one in particular. The images on Rushmore are complex. Details in the
depiction of the eyes, the hair, the nostrils, the mouths and the facial hair
are intricate and specified. As with Blu-ray discs of Braveheart and noise,
pure Shannon information is unable to examine the two pictures in Fig. 2.1
and announce the presence or the absence of specified complexity from
simple pixel statistics.

The presence of design in observation is obvious.? Behe’s irreducible
complexity,1® Gitt’s universal information,’* Durston et al.’s functional
information,!2 and Dembski’s specified complexity®® offer descriptions
of the properties of meaningful information. A number of mathematical
models address the measuring of meaning, including sophistication,'*
pragmatic information theory,® functional information,'® LMC informa-
tion!” and Kolmogorov sufficient statistics.®-1° In Chapter 7.3, we present
a model dubbed algorithmic specified complexity which can be used
mathematically to successfully assess the meaning contained in a sequence
of bits depicting an image, a sound, etc.

We can also apply the mathematics of information measures to
(a) monitor the design process from which design arises and (b) measure
the contextual complexity of the final design. A purpose of this monograph

10 Introduction to Evolutionary Informatics

is to explain mathematical methods of measuring the information content
of designed objects.

2.2 Measuring Information

There are many ways to quantify information. The most common are Shan-
non information?® and Kolmogorov—Chaitin-Solomonov (KCS) informa-
tion (or complexity). Shannon information is based on probability whereas
KCS complexity deals with existing structures described by computer
programs. The two measures are related and share the same unit of measure
(bits), but are formalized differently.?!

2.2.1 KCS complexity

Those familiar with computers know about compression software that
produces zip files and JPGP images. Large files are made smaller by
taking into account redundancy. Compressed files transmit more quickly
and are reconstructed by the receiver. The rationale for compressing files
is similar for dehydrated food. Water is removed at the factory. The
waterless food is light and can be shipped inexpensively. The customer
rehydrates and, ideally, reconstructs the original food at the receiving end.
Likewise, compressed files can be transmitted using limited bandwidth and
be rehydrated at the receiver.

Rehydrated food rarely tastes as good as the original. The dehydration
process often loses or undesirably modifies the original food’s taste, aroma
or texture. Some image compression techniques, such as JPG image
compression, are likewise lossy. As illustrated in Fig. 2.2, the recovered
image is a slightly corrupted version of the original. If an original computer
file can be recovered from a compressed file exactly, the compression
is said to be lossless. Lossless dehydration would result in reconstituted
food indistinguishable from the original. Portable network graphic (PNG)
images are examples of lossless compression. KCS information is con-
cerned only with lossless compression.

For a given file, we might expect that there is a way to compress
maximally. The smallest lossless compression of a file, in bits, is the KCS

bpronounced “JAY-peg”.

Information: What Is 1t? 11

Fig. 2.2. JPG compression of images is lossy. Compression is performed in blocks of 8 x 8
pixels. A zoom of the JPG image on the left is shown in the middle where the 8 x 8 blocks
can be seen. One of the blocks is outlined on the right. The boundaries on the boxes betray
the lossy compression offered by the JPG algorithm. KCS compressed information, on the
other hand, must be lossless. PNG files are lossless. Their compressed size can be taken as
a bound for the KCS information. (The contrast of the right two images has been increased
to allow for easier viewing.)

complexity of the file. The compression is typically cast in terms of a
descriptive computer program able to reproduce the object. What is the
shortest computer program able to accurately characterize the file?

How large can we expect the KCS information to be? A large file of
B bits can obviously not be compressed into a single bit. And a file of B
bits can obviously be represented with an uncompressed file about B bits
long. We simply state the bits in the computer program and say PRI NT
and HALT. If Y denotes the shortest program for X, then we know that the
length of Y lies somewhere between one and a few greater than B bits.°
The size of the smallest file has a length, in bits, of K(X). K(X) is the KCS
information (or complexity) content of the larger file. Chaitin calls these
programs elegant programs.?2

Structured sequences, like the repeating 01

X = 01010101010101010101010101010101010101....01

have a small KCS information. The program able to completely charac-
terize the stringis“r epeat 01 a thousand tinmes and halt.”
A sequence of 0’s and 1’s formed by flipping a fair coin B times will almost

¢+ A few additional bits are required for program commands such as PRI NT. If B is a large
number in the millions or billions, these bits are negligible in the final count.

12 Introduction to Evolutionary Informatics

assuredly have KCS information close to B bits. There is no structure or
redundancy of which to take advantage. In other words, the coin flipping
sequence is not compressible. We have to write the entire sequence of 0’s
and 1’s in order to capture the sequence with no loss. The KCS complexity
will be close to B bits.

There are deceptive strings that look to be random with large KCS
complexity but are not. One is the Champernowne constant??

0100011011000001010011100101110111000000010010. ..

This number, published when Champernowne was still an undergraduate
student, passes many tests for randomness, but has a low KCS complexity.
This is more clearly seen if the number is written as

0100011011000001010011100101 110111 0000 0001 0010...

This is simply a list of sequential numbers written in binary and, even for
an infinite sequence, is described by a short program. For some value of N
defining the length of the number,

For n=1 to N, wite all binary nunbers with n
bits in order. Stop.

In base 10, the Champernowne Constant is
012345678910111213141516171819202122232425262728293031 ...

Another example of a complex-looking sequence is the binary string
describing the number

7 = 3.1415926535897932384626433832795028841971693993751 . . .
In binary,

7 = 11.0010010000111111011010101000100010000101101000110000
1000110100110001001100011001100010100010111000000011011
1000001110011010001. ..

Information: What Is 1t? 13

The string appears random. But since 7z can be computed from the simple
formulaZ =1—%+%—3+3+..., 7 can be generated to any accuracy
desired by a short looping computer program.d

Formally, the KCS information of a string X of B bits is the length
of the smallest computer program that will generate the string X and stop.
This will depend on the computer language used. The shortest program to
generate X using C++ will have a different length than if the computer
language Python is used. However, there always exists in principle a
translating program to convert C++ code into Python code. Assume the
program to translate C++ into Python requires ¢ bits. If K¢ (X) is the
KCS complexity of X using C++, then the KCS complexity in Python,
Kpython (X), can be no greater than K¢ (X) + c bits.

For long strings, adding a translating computer program can be a
negligible contribution to the KCS information.® In all cases, the KCS
complexity between two computer languages can always be bounded by
the number ¢ that is independent of the object being described.” The KCS
complexity is therefore a universal concept that translates seamlessly from
one computer language to another. We adopt the notation2*

KPython (X) f Kct++(X)
to mean equality to within a constant c.

t2.2.1.1 KCS information using prefix free programs

Another illustration of KCS complexity is provided in Fig. 2.3. Shown is
a binary tree where, going from left to right, new branches grow based
on branching using 0’s and 1’s. In some instances, the branching ends.
Terminated branches are called leaves. The sequences of 0’s and 1’s leading

dt For N sufficiently large to give the desired accuracy, we can use the following
short program. S=1; for n=1: N, S=S+(-1)"/(2xn+1); end; pi=4xS;
PRI NT pi; halt.
€+ KCS information is often expressed in big O notation. Let |Y| be the number of bits
in the binary string Y. The expression |Y| = O(e!X1y means that, as |X| increases, |Y|
asymptotically approaches a curve proportional to e!X!. O(c + !Xy = O(e!X!) since e!X!
will soon dwarf c.
f+ Specifically,

[Kc++(X) — Kpython (X)| < c.

14 Introduction to Evolutionary Informatics

0
! ——O)| 1000 || 0) 5
O . @l 10010 |
< 1 g 1
0

0
—0 (o0] . o[oowo |

tFig. 2.3. The leaves in this tree denote prefix free computer programs. The leaves marked
with a square esult in printing X = 0101010101 and stopping. The shortest program
in the tree that prints X contains three bits: 101. The KCS information of X is therefore
K(X) = 3 bits.

to this termination are written as binary strings and correspond to bits
comprising a computer program. For any meaningful computer language,
this tree will branch billions of times and the tree will be enormous in size.
The toy example tree in Fig. 2.3 does however serve as an illustration.

The computer language illustrated by the tree is dubbed prefix free to
signify that no binary string corresponding to a leaf can form the beginning
of another program. Since any computer language can be translated into
any other computer language, a program in C++ or Python can always be
translated into a prefix free computer language. To illustrate the nature of a
prefix free code, consider the leaf labeled 101 in Fig. 2.3. The program 101
is a leaf in the tree. For a prefix free language, no other computer program
can start with 101. In other words, 101 cannot be the prefix of any other
computer program in the tree.

Information: What Is 1t? 15

Consider, then, the string
X = 0101010101.

There are numerous programs that will generate X. We have depicted them
in Fig. 2.3 as leaves with squares: Four such programs are shown. Since
all of the leaves of the tree are not shown, there could be others deeper in
the tree. The four bit program 1110 prints out X and might correspond to
something like®

1110 - Print 0101 two tinmes and stop.

The longer 5 bit program, 11001, might correspond to

11001 — Print 01, then Print 01 three tines and
st op.

The shortest program that prints X is the 3 bit program 101 which might
correspond to

101 — Print 01 four tinmes and stop.

Although a number of programs print X = 0101010101, this is the shortest.
The KCS complexity for X is therefore

K(X) = 3 bits.

t2.2.1.2 Random programming and the Kraft inequality

A prefix free coding tree is shown in Fig. 2.4. Interestingly, the tree suggests
that we can randomly choose programs by repeatedly flipping a fair coin.
If a head is assigned a logic one and a tail a zero, then repeated coin
flipping can guide us from the left of Fig. 2.4 to the right. The coin is
flipped until a terminal leaf is encountered. If the coin flip is HTTHT, for
example, we arrive at the leaf 10010. Since each coin flip has a probability

9t The program 1110 is almost certainly too short to correspond to Print 0101 two
ti mes and st op. We could make the 1110 program longer or even offer the binary
equivalent of Matlab code to generate X = 0101010101, but the tree in Fig. 2.3 would
become too large to represent onasingle page. So bear with us in our pedagogically expedient
example using 1110 as a program.

16 Introduction to Evolutionary Informatics

1
B 11111 12
1

0

1
0 —B 11001 11
1
0 —8 11000 10
1 1

0

0
1 ——8| 1000 |5 | o
B 1 —— B | 10010 |0
1
. ——® | oo11 |~

0

0

0
ek °» om0
tFig. 2.4. lllustration of the Kraft inequality for prefix free binary programs.

of % the probability of flipping the five bit sequence HTTHT = 10010 is

101010101 (1N _ 1 4 : : .
53X 3X5x5%x5=(5) = 3. It'seasy to generalize this to any terminal

leaf with / bits. The probability of flipping a coin and ending on a specific
leaf with / bits is (%)l We can take advantage of this observation to derive
an interesting property dubbed the Kraft inequality.?®

The programs at the leaves in Fig. 2.4 can be numbered, i.e. lexico-
graphically ordered, by placing all of the two bit programs in numerical
order followed by the three bit programs, etc. The ordering would be as
shown in Table 2.1. The first (p = 1) program on the list is the only two bit
program. The length of this program is /1 = 2 and the probability of getting
this program by flipping a coin is (%)ll = 1 There are two 3 bit programs.
Numerically, the smallest is 000. This is therefore program p = 2 with
length I, = 3 bits. The chance of getting this program by a coin flip is
(%)12 = % We can repeat this by continuing down the list for all of the
programs. The Kraft inequality results from recognizing that all of these

programs are mutually exclusive, i.e. when you flip a coin, you can end

Information: What Is 1t? 17

tTable 2.1. Lexiographic order-
ing of the programs in Fig. 2.4.
The ordering is shown in the Fig-
ure where leaves are numbered.

)4 Program Ip
1 01 2
2 000 3
3 101 3
4 0011 4
5 1000 4
6 1101 4
7 1110 4
8 00110 5
9 10010 5

10 11000 5

11 11001 5

12 11111 5

13 etc. 6

up at only one leaf (or program). Assuming all of the leaves are viable
programs and the tree is finite in depth, the probabilities must therefore add
to one. If not, the sum must add to a number not greater than one. The Kraft
inequality for binary codes is"

1\’
> (E) <1 (2.1)

2.2.1.3 Knowability

Finding the KCS complexity of arbitrary sequence of bits can be shown
to be algorithmically unknowable.?8' In other words, there is no computer

l 2
ht Probability mass functions with all masses only of the form (%) " where [p is a positive

integer are called dyadic.

I+ Unknowability can be proved using proof by contradiction. Assume a program Cexist so
that when presented an arbitrary binary string X the program computes the KCS complexity
of the string. In other C(X) outputs the KCS complexity K(X). Given C, we can write the
following program that, including the function C, is M bits long. We’ll call the program P.

Set B=M

18 Introduction to Evolutionary Informatics

program that when presented an arbitrary object outputs the object’s KCS
complexity. We can, though, bound the object’s KCS complexity. If we are
able to losslessly compress a billion bits into a thousand bits, we know that
the KCS complexity of the original bit stream is, at most, a thousand bits. If
the actual unknown KCS of a string X is K and we have successfully com-
pressed the string losslessly to a length K, then we are assured that K < K.

2.2.1.4 Application

The Kraft inequality and the KCS measure of complexity will find use later
in a model to measure algorithmic specified complexity (ASC)J Gregory
Chaitin, the “C” in KCS, has proposed a model of evolution based on
algorithmic information theory. We revisit KCS complexity and the Kraft
inequality there also.X

2.2.2 Shannon information

Shannon information is based on probability rather than existing bit strings.
There are links between KCS complexity and Shannon information,?’ but
their foundations differ.

In his original and classic 1948 paper where the term “bits” was first
used as a contraction for “binary digits,” Shannon reasoned that quantified
information should have two properties. First, the lower the probability,
the greater the information. If I tell you the sun will rise tomorrow, | have

For all prograns of length B bits, evaluate K=C(X)
I f K>M

Print X and K

Hal t
O herwi se, increnent B=B+1 and repeat

Since we are assured there are an infinite number of elegant programs of unbounded length,
this program is guaranteed to halt.

Here is the problem. When the program P stops, it outputs a bit string Xits KCS complexity
of K(X) which is larger than the length Mof the program P. But P computes the KCS
complexity of X using less than K(X) bits! P only uses M<K(X) bits. This violates the
definition of KCS as being the shortest program that can output the binary string X. The
contradiction therefore shows there can be no computer program C of finite length that
computes the KCS complexity of an arbitrary object X.

JIn Chapter 7.3.
KAs discussed in Chapter 6.3.

Information: What Is 1t? 19

-~

~NOo o h~jON -2 O
~N oo
D

OINOoO Ok~ wWwN - O

T b [[

Fig. 2.5. There are 16 boxes. The quizmaster chooses one and the questioner must find
it. The probability of choosing the target in one query is 1/16 corresponding to 4 bits of
information. Using interval halving, the target can be isolated using interval halving and
asking four “yes” (1) or “no” (0) questions. The sequence of answers, {0110}, is the binary
representation for the final answer which is 6.

conveyed little information. It is a near certain event. If | tell you the sun
will explode tomorrow, I’m giving you lots of information. The probability
the sun will explode tomorrow is very very small. The second property
information should have is additivity when two events are not related.! If
“stuttering” conveys information I; and “professor” conveys information
I, then “stuttering professor” should convey information 73 + I. Thus,
information should obey the following two properties.

1. The smaller the probability, p, of an event, the greater the information.
2. The information from two independent events should equal the sum of
the information from each event separately.

't In order to add, the information from two sources must be unrelated. The information
from jumping kangaroo, for example, is the same as from kangaroo alone. All kangaroos
jump. Statistically, in order to add, the events’ occurrence must be independent. Events A
and B are independent if Pr(A and B) = Pr(A) x Pr(B).

20 Introduction to Evolutionary Informatics

Remarkably, there is only one relationship between the probability of
an event and the information it conveys that obeys both properties.™
Itis

I =—logp. (2.2)

The base of the log determines the units of information. For base two, I is
measured in bits." I is also commonly referred to as self-information.

When measured in bits, Shannon self-information can be viewed simply
as probability measured in coin flips. For example, we flip a fair coin
10 times. What is the probability that we get the following sequence of
heads and tails?

HHHTTTHHTT

Since each flip has a 50-50 chance of being a heads or a tails and each

flip’s outcome is independent, the chance of getting this exact sequence of
heads and tails is p = (%)10 = 105+ And the corresponding information is

I = —log, p = log, 2'° = 10 bits. If the flip sequence is rewritten using
a one for a heads and a 0 for a tails, we get

111000110 0.

This is, indeed, 10 bits of information.®

M+t This satisfies Shannon’s two requirements for information. (1) As p decreases, I
increases. (2) For statistically independent events 1 and 2, the composite probability is
p = p1p2 and, from (2.2), I = —log p1p2» = —log p1 — log po = I1 + D>.

N+ When the log is base 10, information is measured in Hartleys. For the natural log,
information is in nats for natural logarithms. A base 3 log results in trits (trinary digit).
Base 21/8 gives a byte. Like miles converted to inches, the various information measures
have multiplicative conversion factors. Eight bits, for example, is a byte and one nat is
logoe ~ 1.443 bits.

1 Generally, the probability of forecasting any specified binary sequence of B bits is (%)B

and
l B
B = —logy (5) .

This equation provides a translation from probability to bits. 10 bits equates to about one
chance in a thousand, 20 bits to one in a million, and 40 to one in a trillion.

Information: What Is 1t? 21

2.2.2.1 Twenty questions: Interval halving and bits

We can illustrate Shannon information with the familiar game of “twenty
questions”. A player chooses an arbitrary object and the opponent has up
to 20 “yes—no” questions to identify it.

An example of a variation of the game of twenty questions (only six
questions were asked) is the Genesis account of the destruction of Sodom.28
God would spare Sodom if some righteous people lived there. Abraham
wanted to find out the minimum number of righteous people and tried to
find the answer by querying God with “yes or no” questions. Abraham’s
search can be paraphrased as follows.

1. Abraham: If there are at least 50 righteous people in the city of Sodom,
will you spare the city?
e God: Yes.
2. Abraham: What if the number of the righteous is at least 45?
e God: Yes.
3. Abraham: What about 40?
e God: Yes.
4. Abraham: Will you spare the city if there are at least 30 righteous people?
e God: Yes.
5. Abraham: 20?
e God: Yes.
6. Abraham: How about 10?
e God: Yes.

We will never know the threshold God had in mind because the questioning
stops here. We do know that 10 righteous people did not reside in Sodom
because God destroyed the city.

In the game of twenty questions there are stupid and smart questions to
ask. Suppose a game has just started and you are asking the first question.
Aspecific initial question like “Is itthe big toe on your left foot?” is generally
not useful. An initial general question like “Is it in the North America?” is
better. It splits the possible answers into two large groups. An answer of
“yes” rules out all objects on other continents. Using such questions to zero
in on one answer by sequentially cutting the possibilities into two groups

22 Introduction to Evolutionary Informatics

is akin to interval halving and will generally guide the questioner to the
correct answer with fewer queries.P

2.2.2.2 Shannon information applied to interval halving

Interval halving® divides all possibilities into two groups. By answering
yes or no to a query, the questioner can eliminate half of the possibilities
with each question.

Interval halving search is nicely described by Shannon information.
Assume we are tasked to choose a box numbered between 1 and 16. If
Bob and Monika choose a box unknown to each other, the chance Monika
chooses Bob’s box in one guess is

1
P=16 corresponding to an information of 7 = log, (16) = 4 bits."

The value of 4 bits also dictates for this problem the minimum number of
“yes—no” questions the questioner needs to ask the quizmaster to find the
target box. There are 16 squares numbered from 0 to 15. Bob starts the game
by saying “l am thinking of a box numbered between 0 and 15.” Monika
the questioner must guess this number by asking “yes” or “no” questions.
Bob the quizmaster promises to be an oracle and correctly respond to each
of her questions.

There are stupid sets of questions Monika can ask and smart sets. Here
is a set of stupid questions.

“Is it square six?”
“No.”

“Is it 15?7
“No.”

“Is it square two?”
“No.” etc.

PA foundation of conservation of information is that external sources of knowledge can get
the questioner to an answer faster. If the quizmaster has stubbed the big toe on his left foot
earlier in the day and has spent the day complaining that it was throbbing, “Is it the big toe
on your left foot?” is no longer a stupid initial question.

Anterval halving is foundational in Chaitin’s metabiology model as discussed in Chapter 6.3.
"In Chapter 5.4.1, we will formally dub this the endogenous information. It measures the
difficulty of the questioner finding the box when there is no information about where the
box might be.

Information: What Is 1t? 23

The questioner might be lucky and get the right number on the second or
third guess, but if she asks about one square per query, it will in general
take her eight questions on average (half of the 16 possibilities) to guess
the number. A smart set of “yes-no” questions uses the process of interval
halving. The following process is illustrated in Fig. 2.5.

1. Thequestioner firstasks “Isiteight or more?”” No matter what the answer,
the number of solutions is cut in half. Assume the quizmaster has picked
six, so the quizmaster responds “No!”.

2. Monika now knows the answer is between zero and seven. This new
interval is likewise cut in two when Monika asks “Is the number between
four and seven (inclusive)?” The answer is yes.

3. The number is between four and seven, so Monika asks “Is it six or
seven?” Bob answers “yes”.

4. Lastly Monika asks if the answer is seven. Bob says “no”.

So Monika identifies box six as the correct one using four questions. Bob’s
answers were

No Yes Yes No

Substituting a one for a yes and a zero for a no translates to (0, 1, 1, 0)
which specifies box six since in base 2

(0110); = 6.

Four questions are required because there are 16 boxes each with a
probability of 1—16 The information corresponding to each box is therefore
log, (1—16) = 4 bits. For box six, these bits are (0, 1, 1, 0).

Abraham could have applied interval halving to his querying of God.
Abraham asked six “yes or no” questions of God. Let’s be presumptuous
and assume the number of righteous people is somewhere between 0
and 63 inclusive. Using interval halving, Abraham could have found the
exact number in log, 64 = 6 queries by using interval halving. Here is a
hypothetical scenario.

1. Abraham: If there are 31 or more righteous people in the city of Sodom,
will you spare the city?

24 Introduction to Evolutionary Informatics

e God: Yes.
o We now know the answer lies between 0 and 31.

2. Abraham: What if the number of the righteous is at least 15?
e God: Yes, I'll spare the city.
o We now know the answer lies between 0 and 15.
3. Abraham: At least 7?
e God: No.
o We now know the answer lies between 8 and 15 inclusive.
4. Abraham: Will you spare the city if there are at least 11 righteous people?
e God: Yes.
o We now know the answer lies between 8 and 11 inclusive.
5. Abraham: At least 10 righteous people?
e God: Yes.
o We now know the answer is either 8 or 9.
6. Abraham: Will you spare the city if there are at least 8 righteous people?
e God: No.
o We now know the answer is nine or more righteous people.

The city will be spared if there are nine or more righteous people.

Each answer to a query by Abraham corresponds to a single bit of
information. If we assign a zero to a “yes” and a one to a “no”, the yes—
yes—no-yes—yes—no sequence of God’s hypothetical answers is the binary
encoding of the answer of “nine righteous people.” Specifically, the six bits
of information are decoded as®

(001001); = 9.

$t Generalizing, a number between 1 and 2% can be identified in K guesses. Twenty
questions can identify any number between 1 and 229 = 1,048,576. Thirty questions at
most are required to specify a number between 1 and a billion < 230,

questions for guessing numbers is shown in Table 2.2.

Information: What Is 1t?

25

There are more interesting ways to play the number guessing game
without directly revealing the interval is being used. A subtle set of a smart

Table 2.2. (For caption see next page)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

8

9
10
11
12
13
14
15
24
25
26
27
28
29
30
31
40
41
42
43
44
45
46
47
56
57
58
59
60
61
62
63

D W N

11
14
15
18
19
22
23
26
27
30
31
34
35
38
39
42
43
46
47
50
51
54
55
58
59
62
63

26 Introduction to Evolutionary Informatics

Table 2.2. Here is an interval game to astonish those not technically inclined. Have a
player choose a number between 0 and 63. Ask them if their number is the leftmost
column of the numbers. The second column? The third, When a yes or no answer for
the last column is offered, the chosen number can be stated immediately. For example,
an answer of “Yes, no, yes, no, no, yes” is 41. A quick inspection confirms that 41 is the
only number that is in the first, third, and last column. Most players will be astonished.

Here is how it works. The player is giving a binary number. “Yes, no, yes, no, no,
yes” is (101001), = 41.

But it’s even simpler than that. There is no need of any knowledge of binary
numbers. The top number in each “yes” column simply needs to be added. For example,
41 = 324+ 8 + 1. Prior to the last column, the sum of the numbers to that point can be
added mentally. The last answer for the last column tells whether to add one or not.

This is interval halving disguised. The numbers between 0 and 63 can all be
expressed with six bits. There are 32 numbers per column. In asking whether a number
is in a column, one is asking whether the chosen number has a one in the location
corresponding to the column position.

The table can be easily extended to 127, or 255 or to any value of 2" — 1. Increasing
n by one adds a column and doubles the number of rows.

2.3 Remarks

Neither the KCS nor Shannon models answer all of the questions about
information posed at the start of this chapter. On a Blu-ray disc, 50 GB =
400,000,000,000 bits can correspond to the movie Braveheart or noise.
Likewise, neither KCS nor Shannon information measures whether the
contents of the Blu-ray have meaning or were designed. However, these
measures, as we will see, can be used as tools in making such assessments.

Notes

1. Quoted in Eric Temple Bell. Men of Mathematics (Simon and Schuster, 2014).

2. Portions of this section are taken from: Robert J. Marks Il, “Information
Theory & Biology: Introductory Comments,” in Biological Information —
New Perspectives, Cornell University, edited by R.J. Marks I, M.J. Behe,
W.A. Dembski, B.L. Gordon, and J.C. Sanford (World Scientific, Singapore,
2013), pp. 1-10.

3. W. Gitt, R. Compton and J. Fernandez, “Biological Information — What is
It?” in Biological Information — New Perspectives, Cornell University, edited
by R.J. Marks 11, M.J. Behe, W.A. Dembski, B.L. Gordon, J.C. Sanford (World
Scientific, Singapore, 2013).

10.

11.

12.

13.

14.

15.

16.
17.

18.

Information: What Is 1t? 27

See also N. Wiener, Cybernetics: Or Control and Communication in the Animal
and the Machine (Technology Press, MIT, 1968).

See also W. Gitt, In the Beginning Was Information: A Scientist Explains the
Incredible Design in Nature (Green Forest, Master Books, 2005).

. Stuart J.D. Schwartzstein. The Information Revolution and National Security

(Center for Strategic and International Studies, Washington DC, 1992), p. 196.

. J. Seabrook, “The Flash of Genius.” The New Yorker, 11 January, 1993.
. IEEE Computational Intelligence Society, http://cis.ieee.org/ (URL date

May 2, 2016).

. P. Mirowski, Machine Dreams: Economics Becomes a Cyborg Science

(Cambridge University Press, 2002).

. Photo credits: Mount Rushmore by Dean Franklin [CC-BY-2.0 (http://

creativecommons.org/licenses/by/2.0)], via Wikimedia Commons. The image
on the right is from the National Aeronautics and Space Adminis-
tration (NASA): http://science.nasa.gov/science-news/science-at-nasa/2001/
ast24may_1/ (URL date May 2, 2016).

. J. Hibner, “A Christian Theory of Information,” a RPM Magazine, 13(28),

July 10 to July 16 (2011), http://www.reformedperspectives.org/ (URL date
May 2, 2016).

Michael J. Behe, Darwin’s Black Box: The Biochemical Challenge to Evolution
(Free Press, 1998).

Werner Gitt, op. cit.

Kirk K. Durston, David K.Y. Chiu, David L. Abel and Jack T. Trevors,
“Measuring the functional sequence complexity of proteins.” Theor Biol Med
Modell, 47(4) (2007).

William A. Dembski, No Free Lunch: Why Specified Complexity Cannot Be
Purchased without Intelligence (Rowman & Littlefield Publishers, 2007).

H. Atlan and M. Koppel, “The Cellular Computer DNA: Program or Data,”
Bull Math Biol, 52(3), pp. 335-348 (1990).

Edward D. Weinberger, “A theory of pragmatic information and its application
to the quasispecies model of biological evolution.” BioSystems, 66(3), pp. 105-
119 (2002).

Kirk C. Durston, op. cit.

R. Lopez-Ruiz, “Shannon information, LMC complexity and Rényi entropies:
a straightforward approach,” Biophys Chem, 115(2-3), pp. 215-218 (2005).
Theinitials LMC appear to refer to the authors of the original idea: L6pez-Ruiz,
Mancini and Calbet.

Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, 2nd
edition (Wiley-Interscience, Hoboken, NJ, 2006).

28

19

20.

21.
22.
23.

24,

25.
26.
27.
28.

Introduction to Evolutionary Informatics

. M. Li and P.M. Vitanyi, An Introduction to Kolmogorov Complexity and its
Applications (Springer, 2008).

C. Shannon and W. Weaver, The Mathematical Theory of Communication
(University of lllinois Press, Urbana, Ill., 1949), p. 32.

Cover and Thomas, op.cit.

G. J. Chaitin, Meta Math!: The Quest for Omega (Vintage, 2006).

D. G. Champernowne, “The construction of decimals normal in the scale of
ten.” J London Math Soc, 8, pp. 254-260 (1933).

P.D. Grinwald and P. Vitanyi, “Kolmogorov complexity and information
theory,” J Logic Lang Inf, 12(4), pp. 497-529 (2003).

C.H. Bennett, P. G&cs, M. Li, P.M. Vitanyi, and W.H. Zurek, “Information
distance,” IEEE Trans. Inf. Theory, pp. 1-29 (1998).

Cover and Thomas, op.cit.

Ibid.

Ibid.

Genesis 18:20-33.

3

DESIGN SEARCH IN EVOLUTION AND THE
REQUIREMENT OF INTELLIGENCE

“The formation in geological time of the human body by the laws of physics (or any
other laws of similar nature), starting from a random distribution of elementary
particles and the field is as unlikely as the separation of the atmosphere into
its components. The complexity of the living things has to be present within the
material [from which they are derived] or in the laws [governing their formation].”

Kurt Godelt

3.1 Design as Search

Evolution is often modeled by as a search process.2 Mutation, survival
of the fittest and repopulation are the components of evolutionary search.
Evolutionary search computer programs used by computer scientists for
design are typically teleological—they have a goal in mind. This is a
significant departure from the off-heard claim that Darwinian evolution
has no goal in mind.

Information in computer search can be illustrated using engineering
design. Engineering design invariably involves

e domain expertise,
e design criteria, and
e an iterative search.

A first prototype is constructed and tested. If the design criteria are not met,
the prototype is refined and the test repeated. The design criteria constitute
the teleological goal. The process is quicker when the problem is easier
or the designer has greater domain expertise.

For those with domain expertise, success can occur on the first try or
in only a few iterations. The domain knowledge of the designer reduces the

29

30 Introduction to Evolutionary Informatics

possibilities that require exploring. When expertise is lacking, the design
process is lengthier. Expertise saves time.

3.1.1 WD-40™ and Formula 4097

Outcomes of iterative design are probably resident in your home. Formula
409™ the spray cleaner sold by the Clorox company, was perfected
after 409 attempts at meeting a design criterion—hence the name.’
A similar example is the petroleum-based lubricant and protectant, WD-
40™ invented in 1953 by Norman B. Larsen. We know the design was
iterative because WD-40™ stands for* “water displacement, formulation
successful in 40th attempt.” The success of these designs is a function
of the expertise of the designer. A high school student just completing an
introductory course in chemistry, for example, will require far more that the
40 iterations required by industrial chemist Norman B. Larsen. We would
instead be using something named WD-5120.

3.1.2 Tesla, Edison and domain expertise

Domain expertise requires general knowledge from experience and educa-
tion. This knowledge needs to be folded intelligently into the process by
the expert to simplify the design process. If the design is difficult and there
is little expertise, then many iterations are typically required for success.

Inventor Thomas Edison had little experience in the properties of
materials when searching for a light bulb filament that met his performance
criteria.>® Unable to bring expertise into his design, Edison resorted to a
somewhat random search for possible solutions. An 1887 newspaper article
lists some of the materials tried by Edison.

“[Elight thousand kinds of chemicals, every kind of screw made, every size of
needle, every kind of cord or wire, hair of humans, horses, hogs, cows, rabbits,
goats, minx, camels. ..silk in every texture, cocoons, various kinds of hoofs,
shark’s teeth, deer horns, tortoise shell...cork, resin, varnish and oil, ostrich
feathers, a peacock’s tail, jet, amber, rubber, all ores. ..” etc.”

Edison is famous for his quote:

“Genius is one percent inspiration, ninety-nine percent perspiration.”

Design Search in Evolution and the Requirement of Intelligence 31

Brilliant electrical engineer Nikola Tesla disagreed. Tesla felt that 99%
perspiration is not necessary for those who know what they are doing. He
admonished Edison for his lack of domain expertise and the consequent
busywork required for Edison’s invention process. In his own career, Tesla
brilliantly manipulated visions and foundational theory in his creative
mind and conceived of astonishing inventions such as brushless alternating
current induction motors and wireless energy transfer. Tesla wrote that
Edison required a large number of trials because of his lack of domain
expertise. Tesla writes®

“[Edison’s] method [of design] was inefficient in the extreme, for an immense
ground had to be covered to get anything at all unless blind chance intervened
and, at first, | was almost a sorry witness of his doings, knowing that just a little
theory and calculation would have saved him 90 percent of the labor. But he
had a veritable contempt for book learning and mathematical knowledge, trusting
himself entirely to his inventor’s instinct and practical American sense.”?

From the numbers he used, Tesla apparently believed that genius is
0.1 x 90% = 9% perspiration and the remaining 91% inspiration.

In the quotation above, Tesla makes mention of blind chance. A blind
search results when there is no domain expertise. We will hear much more
about this later.

Tesla engaged in a famous battle against Edison concerning the use of
alternating versus direct current. As witnessed by the output of the electrical
outlets in your home today, Tesla’s technology prevailed.

3.2 Design by Computer

With the advent of computer models, lab experimentation has been
replaced in some instances by computer software simulations in the design
process. The performance of antennas, for example, can be simulated

@t Tesla argues that Edison’s lack of domain expertise resulted in a more lengthy design
process. Edison would have invented WD-5120, not WD-40. In Chapter 5.4.2, we show
that domain expertise in a design process is an information source that can be mined by
the designer to contribute active information to the search. We will show the separation
of expertise in the design of between WD-5120 and WD-40 can be estimated as active
information

40
I+ = —logy (ﬁ) = 7 bits of active information.

32 Introduction to Evolutionary Informatics

using long-established mathematical models describing propagation of
electromagnetic waves. When a process can be modeled by software,
the design process requires less laboratory simulation. Values of design
parameters can be provided to the software which in turn provides, as
an output, the design performance. As in laboratory testing, the human
designer can look at the performance, refine the parameters, and try running
the program with new parameters. The process, still iterative, now uses
computer software simulations in place of laboratory experimentation.

A clever programmer can better the process by taking the human out of
the design iteration loop. The programmer anticipates how a subpar design
can be subsequently improved in future iterations and includes this in the
software. The entire design process is then turned over to the computer.
When the program is run, we expect the final result to meet the specified
design criteria. The iterative process that looks for a successful design
is dubbed computer search. Evolutionary programming is an example.
Success, of course, depends on the successful transfer of the programmer’s
domain expertise into the software. As is the case in the writing of any
software, garbage-in-garbage-out.

3.3 Designing a Good Pancake

To introduce search problems, we consider the problem of designing
delicious pancakes and high-performance antennas. Pancakes are first.

3.3.1 A search for a good pancake #1

Here is the first search problem. Culinarily challenged Chef Ray is given
pancake batter and must decide how long to cook a pancake on each of its
two sides. To determine how good a pancake is, we employ the services of
Bob, the Master Taster.? Bob will taste a pancake and tell us on a scale on
one (terrible) to 10 (delicious) how good the pancake tastes. Chef Ray’s job
is to figure out how long to cook the pancake on each side to give a rating of
nine or higher. The measure “nine or higher” is the design criterion for the
pancake. It tells us beforehand what is considered an acceptable solution

bCoffee manufacturers engage master tasters to assess the quality of coffee beans. We are
assuming an equivalent talent exists for pancakes.

Design Search in Evolution and the Requirement of Intelligence 33

of the search. Since the design goal is known, the search is teleological.
When the design criterion is achieved the search is done and is announced
a success.

In order to search for the best cooking times, let’s assume Chef Ray
can cook each side of the pancake in intervals of 15 seconds. We assign
the numbers 1-10 to represent cooking times. A one is 15 seconds, two is
30 seconds, three is 45, all the way up to 10 which is two and a half minutes
(150 seconds.) Each cooking time can be expressed as an ordered pair.
The pair (5,3), for our example, means side one of the pancake is cooked
75 seconds on the first side, flipped and cooked 45 seconds on the second
side. As shown in Fig. 3.1, there are a total of 10 x 10 = 100 ways to cook
the pancake.

To search® for the best cooking times, Chef Ray chooses a random
ordered pair, say (5,3) = (75 seconds, 45 seconds). He cooks the pancake
for 75 seconds on one side, flips the pancake, and cooks for 45 seconds on the

Side 2

= MNWLONO0~0OO

Side 1

Fig. 3.1. A 10 x 10 grid showing the cooking times for the pancake on side one and side
two. The shaded square corresponds to (5, 3) = (75 seconds on side one, 45 seconds on
side two).

®Note that we can’t use interval halving to search for the best looking pancake. Doing so
would require numbering the recipes from one to one hundred and asking the first question
“Is the best tasting recipe numbered between one and fifty?” To answer this and subsequent
questions, the oracle, Bob the Taster, would need to know the identity of the best recipe prior
to the start of the questioning. We are assuming we know nothing about the recipes and Bob
the Taster can only respond with a ranking of pancakes he has tasted. Search using interval
halving for problems of this type are simply not possible without intimate knowledge of the
search domain.

34 Introduction to Evolutionary Informatics

Fig. 3.2. The fitness landscape for cooking pancakes.

other side. He then serves it to Bob the Taster who slowly and thoughtfully
chews a mouthful. Bob stops chewing and looks thoughtfully upward. He
then swallows, looks at Chef Ray and announces “Six!” Thus, on a scale
of 1 to 10, Chef Ray has a recipe rated six. This is not good enough to meet
the design criterion of nine, so Chef Ray returns to the stove to try another
ordered pair.

If Chef Ray were to try all 100 recipes, each of the squares in Fig. 3.1
would be assigned a number between one and ten by Bob the Taster. The
fitness of all 100 recipes can then be represented by the plot shown in
Fig. 3.2. Each recipe has an assigned number and all of the points are
connected for purposes of display. Bob the Taster’s ranking of a recipe
can be viewed as fitness—bad-tasting pancakes have a low fitness and
great-tasting pancakes have high fitness. For this reason, Fig. 3.2 is referred
to as the fitness landscape of the search. Before the search begins, Chef Ray
is totally ignorant of the fitness landscape. If he knew it, the search would
not be necessary. To Chef Ray, knowledge of the fitness landscape comes
only after repeated experiments.

Chef Ray does not have to test all 100 recipes to find an acceptable
recipe. He only needs to find a recipe that Bob the Taster rates 9 or higher.
He might be lucky and get a good recipe the first time. If, on the other

Design Search in Evolution and the Requirement of Intelligence 35

hand, Chef Ray’s goal is to find the absolutely best-tasting recipe, not just
an acceptable recipe, he would need to try all 100 recipes.

Note that, prior to the search, Chef Ray does not even know if an
acceptable solution exists. If Bob the Taster chooses to be finicky, none of
the points in the fitness landscape would lie at 9 or above and there would
be no pancake that meets the design criteria. In order to know this, Bob the
Taster would need to taste all 100 recipes. On the other extreme, maybe all
the recipes rate a 9 or a 10 and a single try gets an acceptable recipe.

Looking at the fitness landscape in Fig. 3.2, there are nine acceptable
recipes ranking 9 or more. A value of 6, 7 or 8 translates to 90-120 seconds
for side one, and 5, 6, 7, from 105 to 135 seconds, for side two. Since there
are nine acceptable recipes, the chances of Chef Ray randomly choosing
winning cooking times on his first query is 9 chances out of 100 which is
a probability of success of

9

= 2 —=0.00.
P =700

This number is unknown prior to the design process. It can be known exactly
only if all 100 recipes are tried.

3.3.2 A search for a good pancake #2: Cooking times plus
range setting

In our previous example, the stove was assumed to be set on a fixed heat
level. We can make the search problem harder for Chef Ray by assuming
we not only have to determine cooking times for the first and second sides
of a pancake, but must also determine the heat setting of the stove. Suppose
the stove is calibrated with heat settings from 1 (low heat) to 10 (high).
With these 10 extra parameters, we now have 10 x 10 x 10 = 1,000
recipes. This is illustrated in Fig. 3.3 where the large cube consists of
1,000 smaller cubes, each corresponding to a recipe. To assign a number
to each little cube, Bob the Taster needs to taste 1,000 recipes. The idea
of a fitness landscape is here not as evident as in Fig. 3.2. This is because
we are in three rather than two dimensions. The fitness landscape in three
dimensions (3-D) can be visualized as a cloud, dense when the fitness is high
and clear when low. When we go to searches in even higher dimensions,
the fitness landscape becomes difficult, if not impossible, to visualize.

36 Introduction to Evolutionary Informatics

Side 1
12345678910,
< iy
1 U’Y ’oé
‘)\6‘_‘)
>
{PD
‘o

Heat Setting
Ll LI LY - R -]

Fig. 3.3. The search space for cooking pancakes with three parameters.

Descriptions such as “smooth,” however, are still often used as fitness
landscape descriptors.

3.3.3 A search for a good pancake #3: More recipe variables

The search for the best solution when there are three parameters (time
on side one, time on side two, and range setting) is more difficult than
when there are two parameters. Fewer parameters can mean some of the
design has already been done. In the pancake example, we have assumed
the pancake batter has already been mixed. Searching for a pancake
batter recipe in addition to cooking parameters makes the problem even
more difficult. Assume there are nine search parameters. Three of the
parameters are as before (cooking time on side one of the pancake, time
on side two and the range’s heat setting) and the remaining six parameters
are recipe ingredients. Each of the parameters of the pancake recipe has 10
possibilities. Here’s a list of parameters including the batter recipe.

1. Pancake mix: How much pancake mix do we use? One cup? Two cups?
All the way to 10 cups is possible.

2. Eggs: How many eggs do we use? No eggs? One egg? Two eggs? All
the way up to nine eggs, which makes 10 total possibilities.

Design Search in Evolution and the Requirement of Intelligence 37

3. Milk: How many cups of milk do we add? One cup? Two cups? All the
way to nine cups.

4. Water: How many cups of water do we use? Maybe none. Let’s start
with zero cups of water and work our way to nine. There are a total of
10 possibilities.

5. Salt: How much salt do we add? 1 pinch to 10 pinches.

6. Butter: How much fresh butter do we melt in the skillet before putting
in the pancake batter? Assume zero pats to nine.

7. Side one: How long do we cook the pancake on the first side? Let’s
assume, as before, that there are 10 possibilities starting at 15 seconds
and increasing in intervals of 15 seconds.

8. Side two: Using the same timing that was used for the first side, how
long do we cook the second side after the pancake is flipped?

9. Temperature: How hot do we heat the iron skillet? Assume, as before,
the burner has 10 settings for heat.

With 9 parameters each divided into 10 possibilities, there are now 10° =
one billion recipes! That’s a lot of pancake possibilities.

Chef Ray’s job to find a recipe for a delicious pancake is how much
more difficult. (To put some meaning to the number, a billion seconds is
almost 32 years.) We assume, as before, Chef Ray knows nothing about
what makes a good recipe. As far as Chef Ray knows, a recipe that tastes
like moldy pumpernickel could be made perfect by using one more pinch
of salt, or that mixing one cup of pancake mix with five cups of milk and
seven cups of water might make a good pancake. Knowing nothing about
the recipe means we could try the same values next except add 10 cups of
milk and 10 cups of water. The batter will be even more watery, but we
try it anyway. That is the price of knowing “nothing.” For this example, it
is necessary to suspend all your culinarily knowledge and assume we are
ignorant in the kitchen and don’t know things like this.

How do we go about finding a good recipe for pancakes from the
1 billion possibilities? The only search option culinarily challenged Chef
Ray has is as before. Choose one of the billion possible recipes, prepare the
pancake, and present it to Bob the Taster. The design criterion, as before,
is to find a recipe with a fitness of 9 or more.

38 Introduction to Evolutionary Informatics

Our simple pancake recipe example nicely illustrates the so called
combinatoric explosion of solutions (recipes) as the number of parameters
increases. In the language of search algorithms, the 9 ingredients of the
recipe are dubbed design parameters and the set of all possible recipes is
called the search space. For our example, there are 9 design parameters
and the search space has 1 billion elements. If there are N parameters each
with 10 possibilities, there are 10" recipes. The number of elements in the
search space thus increases exponentially with respect to the number of
design parameters.

3.3.4 A search for a good pancake #4: Simulating pancakes
on a computer with an artificial tongue using a single
agent

Computers have replaced many workers. We now replace Bob the Taster
with a computer program. Let’s suppose that, using mathematical laws of
physics and chemistry, the cooking of a pancake can be simulated by a
software program called COOK. The input to COOK is an array of nine
specific parameters needed to define the recipe. The output of COOK is data
that defines the taste of the pancake. We will also assume that Bob the Taster
is replaced by a taste simulation computer program dubbed TONGUE.
TONGUE simulates what Bob the Taster does. The input to TONGUE is
the output of COOK, namely the same taste parameters of the pancake used
by Bob the Taster to rate the pancake’s taste. The output of TONGUE is the
rating of the pancake’s taste on a scale of one to ten. Because Chef Ray has
written these computer programs, he no longer needs to physically cook
nor does he need to employ Bob the Taster’s expensive finely tuned palate.
Bob the Taster files for unemployment.

The cascaded COOK and TONGUE programs, as shown on the top
of Fig. 3.4, is an exampled of an oracle. For a price, an oracle will tell
you how good something is. Bob the Taster was an oracle. For the pancake
recipe search, the oracle input is the recipe. The output, the taste ranking,
tells us how good the recipe is. The price we pay is computation time.
Before computerizing the problem we paid Bob the Taster for his rankings.

dIn the example of finding the secret square, the quizmaster is the questioner’s oracle.

Design Search in Evolution and the Requirement of Intelligence 39

REC

k
FITNESS
{

SURVIVAL
F‘TNESSf OF THE FITTEST
&

REPOPULATION

o
FITNESS
f

RECIPE #N

RECIPE #2 _—

RECIPE #1

Fig. 3.4. (TOP) A single agent search for a good tasting pancake. The SEARCH algorithm
is designed by the programmer to take advantage of any knowledge about the search.
(BOTTOM) A generic evolutionary search.

In searches like the pancake search, the oracle typically consumes the vast
majority of the computational resources. Time is the price we often pay.

Chef Ray is still faced with the problem of choosing recipes to input
into the oracle. He could feed the computer the recipe, look at the result
and decide which recipe to try next. Or he could write more computer code
to examine each output and decide the next recipe to try. We will call a
program that specifies the next recipe SEARCH. With the ability to use the
results of previous queries, SEARCH has to determine which recipe to next
feed to COOK. The design process can then be viewed as a loop shown at
the top of Fig. 3.4. The loop exits when TONGUE announces a score that
meets the design criterion.

We can’tdraw in nine dimensions, so let’s return to the two-dimensional
(2-D) search example shown in Fig. 3.1. Recall our job here is to determine

40 Introduction to Evolutionary Informatics

6 7 8 9 10
Side 1

Fig. 3.5. We COOK 4 pancakes and get the 4 taste ratings shown from TONGUE. We
are sampling the fitness function in Fig. 3.2 without knowledge of the target or the fitness
surface. The job of the SEARCH program at the top of Fig. 3.4 is to choose the next recipe
query based on the information we know.

how long to cook the pancake on side one and then side two. Although not
explicitly shown on the top of Fig. 3.4, the SEARCH program has access
to all or part of the previous query results. It can use this information
to help choose the next query. In Fig. 3.5, the results of 4 recipes are
shown. The job of SEARCH is to determine the next recipe to present
to the COOK computer program. With no understanding of the shape of
the fitness function or where the target is, there is not much guidance to
choose the next recipe. The best we can do is not revisit a recipe that has
already been tried. This is a type of blind search.

3.3.5 Asearch for a good pancake #5: Simulating pancakes
on a computer with an artificial tongue using an
evolutionary search

A blind search corresponds to a single sightless agent with a good memory
walking around the search space and asking an oracle what the fitness is
at its current location. For fast parallel computers, the situation can be
improved. Instead of one agent, a team of agents can be searching the
landscape, communicating with each other on walkie-talkies. A diamond

Design Search in Evolution and the Requirement of Intelligence 41

necklace lost in a field is better found by a moving line of searchers holding
hands than a single searcher walking the field in a Zamboni pattern.

Evolutionary search is a special case of multiple agent search.® For
the pancake problem, a simple evolutionary search is shown on the bottom
of Fig. 3.4. N recipes are first presented to the oracle (consisting of the
COOK and TONGUE algorithms). Only recipes with high taste rankings
are kept (survival of the fittest). Low taste rankings are discarded. To keep
the population at a count of N, the discarded recipes are replaced with
copies of recipes with higher rankings. We have repopulated. Each of the
N recipes is now changed slightly. The changes are minor in hopes that
the new recipe maintains the features that made it good in the first place.
This corresponds to the mutation step in evolution.® One generation of
evolution has occurred. The N new recipes are then subjected to a new
cycle of selection (survival of the fittest), repopulation and mutation. The
hope of evolutionary programs is that the population will become stronger
and stronger as witnessed by ever increasing fitness scores and, in the
case of the pancake design, ultimately result in a recipe for a delicious
pancake.f

3.4 Sources of Knowledge

For many search approaches, there is generally no way to know how long
a search program will run before finding an acceptable search result. Chef
Ray could be lucky and find an acceptable pancake recipe with a taste of
9 on the first try. Or Chef Ray might end up testing every possibility and
identify the good recipe on the last try.

€Another step in evolutionary search often used is crossover. It is loosely akin to the shuffling
of father’s, and mother’s genes that ends up in the child. An example of crossover consists
of (a) choosing two recipes, (b) choosing a set of ingredients, e.g. the number of eggs and
the number of pinches of salt, and (c) swapping these values between recipes.

fComputer design must ultimately be implemented and tested. This is done in the laboratory.
Before computers, more lab time was needed to tune a design to proper performance criteria.
Computers allow initial stages of design on a computer. Even if the computer says the result
is magnificent, the design needs to be tested. Chef Ray would not take a computer design of
a pancake and invest millions to start a chain of Ray’s Pancake Houses without testing the
computer design by actually cooking and tasting a pancake himself. He might even tweak
the computer’s recipe a bit. Computer simulations can be accurate, but can miss subtleties
that affect the outcome.

42 Introduction to Evolutionary Informatics

Knowledge concerning the search allows a reduction of search time.
Here are some examples of knowledge Chef Ray can apply to simplifying
the search for a good pancake:

o If the batter is too watery to cook with five cups of water and two of
milk, there is no reason to try any recipes with additional cups of water
or milk. That’s a lot of recipes we need not try.

e Likewise, if 90 seconds on side two of the pancake burns it, there is no
reason to try longer cooking times.

o If all of the cooking ingredients of the batter are doubled, we’ll get the
same batter—only twice as much. The rating of the pancake in both
cases will be the same and the second recipe need not be tried.

e Wecan query the TONGUE software more in depth assuming itis willing
to answer. If we are told “The pancake is too salty,” there is no reason
to test the same recipe using more salt.

Importantly, this prior knowledge must be accurate or it may steer us away
from a good pancake. With incorrect information, the search could take
longer than choosing random recipes, and the active information could
be negative. Examples of misleading knowledge for the pancake recipe
include (a) poorly written TONGUE software that gives us inaccurate
fitness readings and (2) an unexpected fitness assessment contrary to our
expectations, such as a high fitness assigned to severely burnt pancakes.
(There is no accounting for taste.)

Knowledge about the fitness landscape can also help the search.
Suppose, for example, we have a pancake with a low fitness of 2. With
the prior knowledge of the smoothness of the fitness landscape, changing
any one parameter either way will probably not result in a pancake with a
fitness of 9. Indeed, changing parameters one unit each, either way won’t
provide success. What about two parameters away? Two parameters might
work. The programmer writing the search software must decide what to
do: exclude looking at all recipes with parameters one step either way, or
two steps either way? Different programmers with different experience will
choose differently. Such is the case for all prior knowledge about a search.
The choice made by the programmer determines the active information
infused into the search. Programmers with different skills and differing

Design Search in Evolution and the Requirement of Intelligence 43

prior knowledge from domain expertise will infuse varying degrees of active
information into the program.

Even after a search program is chosen, a clever pancake recipe
programmer can have the freedom to transfer some of his prior knowledge
about pancake recipes into the program. Most search algorithms have
associated parameters that must be chosen. We can think of a search
algorithm as a box with a number of knobs, each of which must be set
by the programmer prior to implementation. An evolutionary search, for
example, requires specifying the size of the population from generation to
generation and the type and the severity of the mutations at each generation.

Proper choice of a search algorithm and its parameters can reduce the
search time significantly. Different programmers will find different ways to
fold prior knowledge into the search algorithm. When the search program
produces a good pancake in a few hours, is it appropriate to say that the
program is the source of intelligence that has reduced the time? Of course
not. It is the computer programmer, i.e. the designer of the software that
accelerates the search.

Every iterative search procedure has other components not illustrated
in Fig. 3.4.

e Memory. A memory can store the results of previous queries.

e Initialization. The evolutionary loop in the bottom Fig. 3.4 must be
initialized. If there is some knowledge of the region where the target is,
for example, it makes sense to start the search in the region.

e Stop Criterion. No search can go on forever. Searches can go on for
trillions of years before all possibilities are exhausted. The best stop
criterion, of course, is finding an acceptable solution. No more iterations
are required if we have found the recipe for a good-tasting pancake.
Commonly used stop criteria include run time and iteration count. The
iteration count is the number of times going through the evolutionary
loop shown at the bottom of Fig. 3.4.

3.4.1 Designing antennas using evolutionary computing

The search for a good pancake, although presented solely for instructional
purposes, describes what happens in computer search. A celebrated use
of evolutionary computer search is the antenna design popularized by

44 Introduction to Evolutionary Informatics

engineersat NASA. An antenna, designed by evolutionary computer search,
is currently being used in space.

Here is a description. Assume we are given a paperclip-like length of
stiff wire able to be bent in any and all ways. Once the wire is bent, it is
tested to see how well, say, a cell phone signal is received. A success is
declared when the cell phone signal strength is sufficiently strong. This is
the design criterion. If a sufficiently strong signal is received, the design is
a success and the search is complete. If not, the paperclip is bent differently
and the experiment tried again. If the designer has no experience in antenna
design, radio waves or cell phone electronics, the search is blind not unlike
Edison’s seeking of a light bulb filament. There is no assurance that a
successful paperclip antenna even exists. Or it may turn out that almost any
bent paperclip will do the job.

To perform this experiment, physical measurements using a cell phone
are not required. The mathematical model of radio waves is well developed
and the electromagnetic performance of a bent paperclip can be analyzed by
a computer. All of the antenna design can thus be done on a computer. The
computer is programmed to try millions of different bending geometries.
The program is started. The programmer returns in a few days to see if any
of the bending geometries works. The computer does nothing creative. The
search is not substantively different than the performing painstaking bend-
and-test experiments in the laboratory. The computer simply does things
more quickly.

Designing an antenna using computer search is not simply a peda-
gogical academic illustration of computer search. NASA scientists have
designed antennas using evolutionary search where the results of previous
failed designs are used to hone in to a successful design. One of the final
designs is shown in Fig. 3.6.10:11

What goes into such a design? In one evolutionary antenna synthesis by
Venkatarayalu and Ray, 2 seven design parameters are used. Each parameter
can be viewed as an ingredient for a recipe, akin to the ingredients for
cooking a good pancake. We need to find out how much of each ingredient
to use in order to make a sufficiently delicious pancake, or a good antenna.
The final result must be good enough to meet prior design specifications.

Simulation software is often used as an oracle in search, including
evolutionary search. NASA’s evolutionary design of an X-band antenna,3

Design Search in Evolution and the Requirement of Intelligence 45

Fig. 3.6. An antenna designed by evolutionary search on a computer. The caption to the
original web picture reads “Among the new technologies to be tested aboard the ST5
spacecraft is an antenna that was designed by a computer running a simulation of Darwinian
evolution. This evolved antenna was discovered by an evolutionary algorithm running for
days on a supercomputer. Its unusual shape is expected because most human antenna
designers would never think of such a design.”

for example, requires a mathematically involved fitness evaluation of
every design proposed during the search. Akin to the COOK and TASTE
oracles in the pancake search, NASA engineers used the The Numerical
Electromagnetics Code (NEC-4)! as an oracle. NEC-4 is a widely used
and powerful modeling software package for wire and surface antennas. Use
of such software is essential in the computer design of the antennas. Note
that evolutionary search is not the only search algorithm that can be used
for the antenna design. Given the NEC oracle, for example, other search
algorithms can be used to obtain a good antenna design. The evolutionary
process itself creates no information.

46 Introduction to Evolutionary Informatics

3.5 The Curse of Dimensionality & the Need for Knowledge

Search algorithms guide us through our exploration of the search space.
For human cooks and human tongues, testing up to a billion pancake
recipes from 9 ingredients is not possible. For acomputer model, simulating
a billion pancakes is less of a problem. Suppose Chef Ray’s computer
program cooks and tests a virtual pancake at a rate of 100 recipes per
second. Chef Ray can then examine all one billion 9 ingredient recipes in
less than four months. If, though, we added only one more ingredient to
our recipe, say adding 1 to 10 teaspoons of cooking oil to the batter, the
number of possible recipes increases tenfold and becomes 10 billion. The
search will take 10 times as long. Examining all of the possible pancakes
will now take Chef Ray’s program over 3 years. That’s too long to wait for
a good pancake.

Each ingredient we add to the recipe, assuming the step needs to be
tested in 10 different ways, multiplies the computer simulation time by
10. Searching 16 parameters to a recipe would take over 3 million years.
And 22 design parameters correspond to over 3 trillion years! The curse of
dimensionality is evident from the numbers in Table 3.1.

Table 3.1. The number of years needed to try all
recipes for various numbers of pancake ingredients.

Number of pancake

ingredients Years to try all possible recipes

9 0.32

10 3.2

11 32

12 317

13 3,169

14 31,688

15 316,881

16 3,168,809

17 31,688,088

18 316,880,878

19 3,168,808,781

20 31,688,087,814

21 316,880,878,140

22 3,168,808,781,403

Design Search in Evolution and the Requirement of Intelligence 47

A search for a pancake with 22 parameters without domain expertise
is prohibitively time consuming. Chef Ray needs to be clever when he
writes his computer program. Up to now, we have assumed Chef Ray
knows nothing about cooking. His knowledge about cooking can be used
to guide the search. Doing so infuses the search with active information to
reduce its difficulty. Understanding and measuring active information is a
fundamental precept of evolutionary informatics.

3.5.1 Will Moore ever help? How about Grover?

How about computers of the future? Will they allow large undirected
blind searches within a reasonable amount of time? Even for problems
of intermediate size, the answer is no.

Moore’s law says that the number of transistors in a dense integrated
circuit doubles approximately every two years. For discussion purposes,
assume the speed of the computer doubles every year. Suppose there is a
recipe with a 1500 design parameters, each of which takes on a value of
one (use the ingredient) or zero (doesn’t use it). Assume it takes a year to
compute all of the recipes.9 Let the speed of the computer double. How
much larger a search can we now do in a year? If the speed of the computer
has doubled, the disappointing answer is that a search can be done for only
1,501 ingredients." Only 1 more ingredient can be considered. For the new
search, we’d have to do the original search where the new ingredient is not
used, and repeat the experiment for when the new ingredient is used. The
effect of the addition of a single ingredient in the search is independent of
the original search without the extra ingredient. Faster computers will not
solve our problem.

What about the field of quantum computing? A quantum computer
makes use of the strange and wonderful laws' of quantum mechanics such
as superposition and entanglement®® to perform operations on data. If
implemented, Shor’s algorithm®® for quantum computers could rapidly
decrypt many of the cryptographic systems in use today. In the area of

9For 500 ingredients that is 2500 = 3 x 10150 recipes.

hFor 501 ingredients, the number of recipes is 2501 = 2 x 10500,

iNeils Bohr, a pioneer in quantum mechanics, famously stated “If quantum mechanics hasn’t
profoundly shocked you, you haven’t understood it yet.”

48 Introduction to Evolutionary Informatics

search, however, results are not yet that dramatic. Grover’s algorithm?’ for
search using a quantum computer reduces the search difficulty by only a
square root. A trillion years on a traditional computer still translates to over
a million years on a quantum computer. So Grover’s algorithm helps a lot
but does not solve the problem.

3.6 Implicit Targets

The search for a successful antenna design is explicitly teleological,
meaning that specific design criteria are specified prior to the search.
There is also implicit teleology wherein the structure of the search space
or knowledge of the structure guides the search process to an implicit
target.

Here is a simple example. Kirk is an armadillo foraging for grubs when
he is bitten by a spider that makes him blind. Kirk wants to return to his
armadillo hole, but is disoriented. He knows, though, that his hole is at the
lowest elevation in the immediate area, so he balls up and rolls downhill
to his hole. When Kirk does this, he is not explicitly seeking his hole. His
surroundings are fortuitously designed to take him there. Kirk’s target is
thus implicit in the sense it is not specifically sought, but is a result of the
environment’s action on him. He can bounce off of trees and be kicked
around by playful kids. And repeated trials of rolling down the hill might
take drastically different paths. But ultimately, Kirk will end up in his hole
at the bottom of the hill.1® Kirk reaches his home because of information he
acquires from his environment. The environment must be designed correctly
for this to happen.

We can have implicit target information in the pancake example. Recall
the first simple pancake example where the only two variables were the
cooking times for sides one and two. The fitness landscape for this problem
is in Fig. 3.2. Suppose Chef Ray’s stove is electric and blows a fuse if
either side of the pancake is cooked for more than a minute and half.
That’s equal to 6 intervals of 15 seconds. This constraint, imposed by
the environment, changes the search to that pictured in Fig. 3.7. This
constraint limits and thereby simplifies the search. Fortuitously, there is
still a recipe that ranks sufficiently high to pass the design criterion. It is in
the corner of the curve in Fig. 3.7 and marked with a small cube. The implicit

Design Search in Evolution and the Requirement of Intelligence 49

Fig. 3.7. This is how the search is changed from Fig. 3.2 on when the electric stove blows
a fuse after 6 units of 15 seconds on either side. The search is now restricted. There is now
a single recipe that ranks 9 or higher. It is marked by the small cube.

limitations imposed by the environment simplify the search by restricting
the search space. Suppose, for some reason, the stove required that each
side of a pancake had to be cooked for 6 minutes. If this is in addition
to the constraint imposed by blowing fuses, then we find an acceptable
recipe in one try! If, however, the environment is constrained in a negative
way, the target may never be found even if it was available prior to the
alteration.

So, like application of prior knowledge in cooking the pancake,
fortuitous structure in the search space can likewise improve the search. As
when applying prior knowledge to the search, the limitations on the search
space must be such that an acceptable target can be found and will accelerate
the search for the target. A change in the search without knowledge of the
consequences will as likely have a positive as a negative impact.

Geographical maps can also illustrate the availability of active infor-
mation from search space structure. In early 2014, Max was on a mission
to raise funds for a politically liberal cause in the state of Texas. Texas is
Max’s search space. With no information about the politics of the state,
Max is as likely to successfully raise his money in one part of the state
as another. Suppose, however, Max has a copy of the results of the 2012
presidential election, as shown in Fig. 3.8. The lighter shaded areas went

50 Introduction to Evolutionary Informatics

Dallas

.ﬂush'n'

San Antohio

Fig. 3.8. A map of Texas counties. The darker shaded areas denote counties that voted for
Mitt Romney in the 2012 presidential election and lighter shaded counties voted for Barack
Obama. This map is helpful if you are raising funds for a liberal cause in Texas.

for Barack Obama and the darker shaded areas for Mitt Romney. Under
the (very reasonable) assumption that Obama is more liberal than Romney,
Max’s best bet is to spend his fundraising time in the lighter shaded counties.
The map can provide active information to Max’s search for funding for
his liberal cause.

3.7 Skeptic Fallibility

Critics of intelligent design more often than not have never designed
anything. Their assessment of intelligent design from the viewpoint of
design are often typically ill-formed or ill-informed.

Design Search in Evolution and the Requirement of Intelligence 51

Here is an oft-used critique from an anti-1D book:1

“...ideal design is a lousy argument for evolution, for it mimics the postulated
action of an omnipotent creator. Odd arrangements and funny solutions are the
proof of evolution—paths that a sensible God would never tread but that a natural
process, constrained by history, follows perforce.”

This argument against an intelligent designer is founded on the premises “If
I were the intelligent designer (e.g. God), | would design things in such and
such a way. Things were not done this way, so there must be no intelligent
designer.”

Intelligent design critic Michael Shermer writes.?°

“...vestigial structures stand as evidence of the mistakes, the misstarts, and,
especially, the leftover traces of evolutionary history.”

Shermer claims weird design and leftovers in current organisms is evidence
of evolution. Statements concerning suboptimal design presuppose that the
intelligence behind evolution will choose to optimize to the best possible
solution. Here are some problems with such statements.

1. Design can force tradeoffs so that an increase in effectiveness in one area
necessitates a reduction of effectiveness of another. Effective design is,
in part, an art of compromise. We’ll discuss this more in depth in the
Pareto Optimization section later in the chapter.

2. Optimization means finding the single absolutely best solution. Design
engineers certainly don’t do this. We’ve seen examples of single
objective cases where engineers design in accordance with design
criteria. The design is considered finished when fitness meets or exceeds
these criteria. We did not search for the best pancake possible. We
searched for any pancake with a taste rating of 9 or higher.

3. Aswitnessed by history, scientists make mistakes. Bloodletting does not
make you healthier—it kills you. Ask George Washington. There is no
aether in space that supports propagation of light. Debunking of that
widely held belief contributed to the discovery of relativity.

Yesterday’s vestigial structures often turn out to be today’s prized necessity.

52 Introduction to Evolutionary Informatics

3.7.1 Loss of function

When environment changes, design can sometimes be improved by loss
of function. A snake has no use for legs and a salamander in a dark
cave has no use for eyes. Note, however, that loss of function does not
correspond to infusion of information into the design, but is rather the
removal of previous resident information. Selective loss of function can
be beneficial for performance in temporarily changing environments and
is a characteristic of good design. Rockets shed their emptied fuel stages
to lighten the load and certain lizards shed their tails in order to avoid
predators.

Loss of function is often erroneously diagnosed as proof of Darwinian
evolution. But ignorance of function today is often replaced by newly dis-
covered functional properties tomorrow. As the old saying goes, “absence of
evidence is not evidence of absence.” Just because we don’t know whether
or not an object has function doesn’t mean it has no function.

A classic example is the human appendix, once thought to be a useless
artifact of evolution. In 1912, Joseph McCabe wrote that the human
appendix is “a large and normal intestine of a remote ancestor.”?* Modern
medicine, however, has found the appendix assists the immune system,22 23
manufactures hormones during fetal development,?* and provides a safe
haven for flora bacteria.?®

Another historical mistake concerning vestigial function concerns the
role of DNA. Since most of our DNA does not encode proteins, the
non-protein-coding portion was identified as useless vestigial “junk DNA.”
Junk DNA was thought to be the leavings of Darwinian evolution. It was
later found to provide invaluable functions, including the transcriptional
and translational regulation of protein-coding sequences.®

3.7.2 Pareto optimization and optimal sub-optimality

Often a search attempts to achieve two or more objectives. Besides a good-
tasting pancake, we might also want an inexpensive pancake. These are
conflicting criteria because delicious pancakes aren’t cheap and cheap
pancakes aren’t delicious.

Conflicting criteria require application of the theory of multi-objective,
or Pareto, optimization.2”-28 Although there must be compromise, the final

Design Search in Evolution and the Requirement of Intelligence 53

design can still be optimal in the sense it’s the best we can get under
conflicting design criteria.

An example is elementary detection theory. We are tasked to design
a box where a red light flashes when we are being attacked by terrorists.
A green light indicates we are safe. The performance of the detector can be
discussed without knowing the details of its design. Here are two design
criteria for our detector box:

1. Maximize Detection Probability. We want a detector whose probability
of detection of a terrorist attack is high, i.e. when we are attacked the
probability that the red light will flash should be high.

2. Minimize False Alarm Probability. When no terrorists are attacking we
want the green light on with high probability. A red light flashing would
be a false alarm when there is no attack.

Maximizing the detection probability alone is easy: always have the red light
flashing. Then anytime we are being attacked by terrorists we will be 100%
sure the red light is flashing. This, of course, is silly. The detector would be
useless. It will also be useless if the false alarm probability is minimized
in which case the green light is always left on. Since the red light never
goes on, there are no false alarms. In detection theory, there is always a
trade-off between detection and false alarm probabilities. When one goes
up, so does the other. The Neyman-Pearson optimal detector maximizes
detection probability for a fixed false alarm rate.)-2-31 But there is no single
best solution. The solution must be chosen in accordance with what the final
user deems appropriate. One user’s choice of an optimal design will often
be different from another’s.

Another example is the design of a personal motorized vehicle. If the
design criterion is “inexpensive”, a scooter is a good design. If the design
criterion is “safety”, however, then an armored SUV is the best design. But
you can’t have both extremes because cheap vehicles are not safe and safe
vehicles are not cheap. The design tradeoff for this example is illustrated
in Fig. 3.9.

quuivaIentIy, in the parlance of statistics, detection and false alarm probabilities relate to
Type | and Type Il errors, or false positives and false negatives.

54 Introduction to Evolutionary Informatics

=

e | N
& | T oo \
®
e % ® W
T//% ©g© @ @© Armored
n’ ® ® @@ @@ ® ® .
@ ® 09 ©

Cost — 855

Safety
|-
®

Fig. 3.9. Anillustration of the design trade-off between safety and cost of a personal vehicle.
In the example shown here, a number of vehicles are tested and assigned a number in
accordance to safety. This number is plotted against the vehicle’s cost. The squares are on
the Pareto front and are connected with a dashed line. A vehicle makes the Pareto front if no
other vehicle at the same cost is safer or no vehicle as safe cost less. Both the scooter and
the armored SUV are on the Pareto front. Significantly, there is no single optimal design.
The choice of the Pareto optimum on the Pareto front is a matter of informed choice. A
frequently used solution is to fix one parameter and optimize the second. One might, for
example, fix the maximum affordable cost and, under this constraint, purchase the safest
possible vehicle. The circles below the Pareto front correspond to other vehicles that were
tested. In the Pareto sense, these vehicles are suboptimal.

The final design must make a compromise. Design engineers are taught
this art of compromise.

The field of multi-objective optimization is well-developed3! in evo-
lutionary search as elsewhere. A design is said to be optimal in the Pareto
sense if the design is such that no individual design criterion can be bettered
when the other criteria are fixed.

The lesson to be learned is this: in multi-objective or Pareto design, the
critique of a design attribute cannot be made in a vacuum but must be made
knowing the entire function of the final product and with consideration
of other competing design criteria. Those criticizing design in nature by

Design Search in Evolution and the Requirement of Intelligence 55

pointing to a less than optimal isolated performance of, say, the human eye
without consideration of the entire physiology are unfamiliar with design
and have probably never designed anything complex themselves.

3.7.3 A man-in-the-loop sneaks in active information

Computer programs, including evolutionary search, are invariably itera-
tively designed through debugging and tweaking.

3.7.3.1 Evolving Tic-Tac-Toe to checkers to chess

An interesting take on iterative design with a man-in-the-loop starts in 1993
when an evolutionary program “taught itself” to play tic-tac-toe.32 The
same researchers who developed the tic-tac-toe program published a paper
eight years later in 2001 where a different evolutionary program they wrote
learned to play checkers.32 The skill of evolutionary programs they wrote
had, in a sense, evolved to a higher level. Then in 2004 the team announced
they had taught a computer using evolution to play chess.3* Tic-tac-toe
to checkers to chess is the type of information increase proponents of
Darwinian evolution would celebrate. But the programming ability got
better and better not because of evolution but primarily because of the
increasing skill of the programmers.

This evolution in the capability of evolutionary programs would clearly
not have happened without a man-in-the-loop.

3.7.3.2 Replacing the man-in-the-loop with a
computer-in-the-loop

Would it not be nice if we could program a computer to perform a search
for a good search using a computer in the loop rather than a man in the
loop? We show, however, that such a search-for-a-search (S4S) is a much
more difficult problem than the search alone.X

The man-in-the-loop’s contribution to the success of a search is rarely
reported. More commonly, one hears only a report of the success of the
final search algorithm followed by celebration and self-congratulations.

kAnalysis of the search for the search is provided in Chapter 5.8.

56 Introduction to Evolutionary Informatics

3.8 A Smorgasbord of Search Algorithms

We now return to the topic of the use of knowledge to generate active
information in a single criterion search. If we do have knowledge about the
search for a delicious pancake, there may be some clever ways to choose
the next recipe. If, for example, the surface is known to be in some sense
smooth, we can try hill climbing.3>3% The fitness landscape for pancake
cooking in Fig. 3.2 is smooth. Suppose two queries are taken close to each
other in the search space. If the fitness of the second query is smaller,
we are going downhill and in the wrong direction. If the fitness is getting
bigger, we are going up the hill and, hopefully, towards the maximum.
In some search problems, measuring the slope (or gradient) of the fitness
is possible. Knowing the slope means we know the steepest way up hill.
This could be an efficient path to the maximum so the next step is taken in
this direction. The occurrence of numerous hills on the search landscape,
though, can be a problem. The search can be trapped on top of a hill at a
local maximum which doesn’t meet the design criterion and can be much
lower than the global maximum. Such is the case in the two-dimensional
fitness surface on the left in Fig. 3.10. There is a single global maximum.
But on the right side of the landscape is a small hill. If the agent were to
start on the right side of the search space and climb the hill, it very well
could end up on the top of the smaller hill. The top of the smaller hill is an
example of a local maximum.

Fig. 3.10. Illustration of (left) stochastic hill climbing and (right) a multiagent search where
agents can communicate their locations to one other. Evolutionary search is a special case
of multiagent search.

Design Search in Evolution and the Requirement of Intelligence 57

0 TITTTT aaEEEaEsERIEERERY
L T o T = 3 T T o T T T o 1 N 3 T e T B
™ NN NMNM

283325
Fig. 3.11. A jagged landscape formed by the number of ones needed to express an integer
in binary form. For example, 67 = (100011), has three ones.

Stochastic hill climbing and multiagent searches are a bit harder to
visualize in higher dimensions, but the idea is the same. To find a yummy
pancake recipe, we take a fairly successful recipe and change the recipe
only slightly. If the new taste is better, we keep the new recipe and start
changing the new recipe a bit. If the new taste is worse, we return to the
original recipe and make some other slight changes.

All search landscapes are not smooth. Consider, for example, the one
dimensional fitness landscape in Fig. 3.11. Our design criterion is to find
an integer between 1 and 100 with fitness of 5 or above. There are 13
integers satisfying this constraint and they are well separated from each
other in the search space. For this problem, there are initializations where
strict application of stochastic hill climbing does not work. If, as shown
in the figure, we start at 62 which has fitness of 2, we will climb a short
hill and get stuck at the local maximum located at 63 which has a fitness
of 3. This is a false maximum. The search procedure can be modified to get
us out of this local maximum, but the performance of the fix will, in turn,
depend on knowledge about the search space structure which itself must
be accurate.

Hill climbing does not seem to be the appropriate search algorithm to
explore the search space illustrated in Fig. 3.11. Stochastic hill climbing
is only one of a large number of search algorithms. Different search
algorithms work well on certain classes of optimization problems. Choosing

58

Introduction to Evolutionary Informatics

Table 3.2. A list of some search algorithms.

active set method38

adaptive coordinate descent39
alpha—beta pruning*°

ant colony optimization4!

artificial immune system optimization®?
auction algorithm?3
Berndt—Hall-Hall-Hausman
algorithm#4

blind search

branch and bound*>

branch and cut#6
branch and price?
Broyden-Fletcher-Goldfarb—Shanno
(BFGS) method“8

Constrained optimization by linear
approximation (COBYLA)*®

7

e conjugate gradient method®®
e CMA-ES (covariance matrix adaptation

evolution strategy)®!
criss-cross algorithm®2
cross-entropy optimization53
cuckoo search®

Davidon’s variable metric method®®
differential evolution®®
eagle strategy®’
evolutionary programs®®
evolutionary strategies
exhaustive search

Fibonacci search®9:60

firefly algorithm®1
Fletcher—Powell method®?
genetic algorithms®3

glowworm swarm optimization54
golden section search®-66

gradient descent®”

great deluge algorithm®8

harmony search®9

imperialist competitive algorithm70
intelligent water drop optimization’!
Karmarkar’s algorithm2
Levenberg—Marquardt algorithm73
Linear, Quadratic, Integer and Convex
Programming’4

Nelder—Mead method”®
Newton—Raphson method”®
one-at-a-time search’’

particle swarm optimization78
pattern search’®

POCS (alternating projections onto
convex sets)80

razor search®l

o Rosenbrock methods82

sequential unconstrained minimization
technique (SUMT)83

shuffled frog-leaping algorithm84
simplex methods®®

simulated annealing8®

social cognitive optimization8’
stochastic gradient search88
stochastic hill climbing8®

Tabu search

Tree search®!

Zionts-Wallenius method%?

a good search algorithm and its parameters requires knowledgeable domain

expertise of the computer programmer.

When computers became faster and were connected in parallel,
effective multiagent search became possible. As we see on the right of
Fig. 3.10, numerous agents are searching the fitness landscape. These agents
are able to communicate with each other in order to coordinate their next
move. Rules by which agents move, die and repopulate vary from search

Design Search in Evolution and the Requirement of Intelligence 59

algorithm to search algorithm. Evolutionary search is an example of a
multiagent search.

An incomplete list of search algorithms3’ is provided in Table 3.2.
Searchalgorithms can have numerous variations. Each search procedure has
various strengths and weaknesses depending on the character of the problem
being solved. The good programmer will be able to use prior knowledge
about the search to choose among the algorithms. The programmer seeks,
as the saying goes, the right tool for the job.

3.9 Conclusions

Design is an inherently iterative search process requiring domain intelli-
gence and expertise. Domain knowledge and experience can be applied to
the search procedure to decrease the time needed for a successful search.
Because of the exponential explosion of possibilities (i.e. the curse of
dimensionality), the time and resources required by blind search quickly
become too large to apply.

Undirected Darwinian evolution has neither the time nor computational
resources to design anything of even moderate complexity. External
knowledge is needed. Neither quantum computing nor Moore’s law makes
a significant dent in these requirements.

Notes

1. H.Wang, “On ‘computabilism’and physicalism: some problems.” In Nature’s
Imagination, J. Cornwall (ed.) (Oxford University Press, 1995), pp. 161-189.
2. For example:

Thomas P. Schneider, “Evolution of biological information.” Nucleic Acids
Res, 28(14), pp. 2794-2799 (2000).

R.E. Lenski, C. Ofria, R.T. Pennock, and C. Adami, “The evolutionary origin
of complex features.” Nature, 423(6936), pp. 139-144 (2003).

G.J. Chaitin, Proving Darwin: Making Biology Mathematical (Pantheon,
2012).

D. Thomas, “War of the Weasels: An Evolutionary Algorithm Beats Intelli-
gent Design.” Skeptical Inquirer, 43, pp. 42-46 (2010).

D. Thomas, “Target? TARGET? We don’t need no stinkin’ Target!” http://
pandasthumb.org/archives/2006/07/target-target-w-1.html (URL date May 2,
2016).

60

10.

11.

12.

13.

Introduction to Evolutionary Informatics

D. Thomas, “FORTRAN for Genetic Algorithm” (2006). http://www.nmsr.
org/genetic.htm (URL date August 25, 2015).

D. Thomas (2006). “Steiner Genetic Algorithm-C++ Code.” http://
pandasthumb.org/archives/2006/07/steiner-genetic.html (URL date May 2,
2016).

H.S. Wilf and W.J. Ewens, “There’s plenty of time for evolution.” P Natl
Acad Sci 107, pp. 22454-22456 (2010).

R. Dawkins, The Blind Watchmaker: Why the Evidence of Evolution Reveals
a Universe Without Design (Norton, New York, 1996).

Formula 409, http://www.formula409.com/ (URL date May 2, 2016).

D. Martin, “John S. Barry, Main Force Behind WD-40, Dies at 84.”
New York Times, July 22, 2009, http://www.nytimes.com/2009/07/22/ busi-
ness/22barryl.html (URL date May 2, 2016).

M. Josephson, Edison (McGraw Hill, New York, 1959).

N. Baldwin, Edison: Inventing the Century (University of Chicago Press,
2001) ISBN 0-226-03571-9.

S. Shulman, Owning the Future (Houghton Mifflin Company, 1999), pp. 158-
160.

Thomas Edison: Life of an Electrifying Man, Biographiq (Filiquarian
Publishing, 2008).

David B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence, 3rd edition (Wiley-1EEE Press, 2005).

Russell D. Reed and Robert J. Marks I, “An Evolutionary Algorithm
for Function Inversion and Boundary Marking.” Proceedings of the IEEE
International Conference on Evolutionary Computation, pp. 794-797,
November 26-30 (1995).
http://www.nasa.gov/centers/ames/news/releases/2004/antenna/antenna.html
(URL date May 2, 2016).

Public domain, This work is in the public domain in the United States because
it is a work of the United States Federal Government under the terms of
Title 17, Chapter 1, Section 105 of the US Code.

N.V. Venkatarayalu and T. Ray, “Single and multi-objective design of Yagi-
Uda antennas using computational intelligence.” The 2003 Congress on
Evolutionary Computation, CEC ’03, 8-12 Dec., pp. 1237-1242 (2003).
J.D. Lohn, D.S. Linden, G.S. Hornby, A. Rodriguez-Arroyo, S.E. Seufert,
B. Blevins, and T. Greenling, “Evolutionary design of an X-band antenna
for NASA’s Space Technology 5 mission.” IEEE Antennas and Propagation
Society International Symposium, 3, pp. 2313-2316 (2004).

J.D. Lohn, D.S. Linden, G.S. Hornby, and W.F. Kraus, “Evolutionary design
of a single-wire circularly-polarized X-band antenna for NASA’s Space

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.

24,

25.

26.

Design Search in Evolution and the Requirement of Intelligence 61

Technology 5 mission,” 2005 IEEE International Symposium Antennas and
Propagation Society, 2B, pp. 267-270 (2005).

Gerald J. Burke, Numerical Electromagnetics Code NEC-4, Method of
Moments, Part I: User’s Manual, Lawrence Livermore National Laboratory

(1992).
Gerald J. Burke, Numerical Electromagnetics Code NEC-4, Method of
Moments, Part Il: Program Description Theory, Lawrence Livermore

National Laboratory (1992).

I. Hiroshi and H. Masahito, Quantum Computation and Information
(Springer, Berlin, 2006).

Peter W. Shor, “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer.” SIAM J Comput 26(5),
pp. 1484-1509 (1997).

L.K. Grover, “A fast quantum mechanical algorithm for database search.”
Proceedings, 28th Annual ACM Symposium on the Theory of Computing,
p. 212 (1996).

This example was suggested to us by Walter Bradley.

J.B. Foster, B. Clark, and R. York, Critique of Intelligent Design: Materialism
versus Creationism from Antiquity to the Present (Monthly Review Press,
2008).

M. Shermer, Why Darwin Matters: The Case Against Intelligent Design
(Times Books, 2006).

J. McCabe, The Story of Evolution (Hutchinson & Co., London, 1912).
Loren G. Martin, “What is the function of the human appendix? Did it once
have a purpose that has since been lost?” Sci Am (1999). http://www.scientifi
camerican.com/article/what-is-the-function-of-the-human-appendix-did-it-
once-have-a-purpose-that-has-since-been-lost/ (URL date May 2, 2016).
M.L. Everett et al., “Immune exclusion and immune inclusion: a new model
of host-bacterial interactions in the gut.” Clin Appl Immunol Rev, 5, pp. 321-
32 (2004).

A. Zahid, “The vermiform appendix: not a useless organ.” J Coll Physicians
Surg Pak, 14(4), pp. 256258 (2004).

R.R. Bollinger et al., “Biofilms in the large bowel suggest an apparent
function of the human vermiform appendix.” J Theor Biol, 249(4), pp. 826—
831 (2007).

J. Wells, The Myth of Junk DNA (WA Discovery Institute Press, Seattle, 2011).
Also, “Not junk after all: non-protein-coding DNA carries extensive bio-
logical information.” Biological Information — New Perspectives (World
Scientific, Singapore, 2013), pp. 210-231.

62

217.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Introduction to Evolutionary Informatics

Kay Chen Tan et al., Multiobjective Evolutionary Algorithms and Applica-
tions (Springer, 2005).

Altannar Chinchuluun et al., eds, Pareto Optimality, Game Theory and
Equilibria (Springer, 2008).

R.J. Marks Il, G.L. Wise, D.G. Haldeman and J.L. Whited, “Detection in
Laplace noise.” IEEE Transactions on Aerospace and Electronic Systems,
(14), 1978, pp. 866-872.

C.F. Bas and R.J. Marks Il, “The layered perceptron versus the Neyman-
Pearson optimal detection.” Proceedings of the International Joint Con-
ference on Neural Networks (IEEE Press, Singapore, 18-20 Nov 1991),
pp. 1486-1489.

For example, Paolo Di Barba, Multiobjective Shape Design in Electricity and
Magnetism (Springer, 2009).

David B. Fogel, “Using evolutionary programing to create neural networks
that are capable of playing tic-tac-toe.” 1993 IEEE International Conference
on Neural Networks, pp. 875-880.

Kumar Chellapilla and David B. Fogel, “Evolving an expert checkers playing
program without using human expertise.” IEEE Transactions on Evolutionary
Computation, 5(4), pp. 422-428.

See also David B. Fogel, Blondie 24: Playing at the Edge of Al (Morgan
Kaufmann, 2001).

David B. Fogel, Timothy J. Hays, S. H. Hahn, and James Quon, “Self-learning
evolutionary chess program.” Proceedings of the IEEE, 92(12), pp. 1947-
1954 (2004).

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification,
2nd edition (Wiley-Interscience, 2000).

Olle Héggstrom, “Intelligent design and the NFL Theorem.” Biology &
Philosophy (2007).

Donald E. Knuth, Sorting and Searching (The Art of Computer Programming
volume 3) (Addison Wesley, 1973).

J. Nocedal and S. Wright, Numerical Optimization (Springer Science &
Business Media, 2006).

I. Loshchilov, M. Schoenauer, and M. Sebag, “Adaptive Coordinate Descent.”
In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (ACM, 2011), pp. 885-892.

Donald E. Knuth and Ronald W. Moore, “An analysis of alpha-beta pruning.”
Artif Intel, 6(4), pp. 293-326 (1976).

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a
colony of cooperating agents.” IEEE Transactions on Systems, Man, and
Cybernetics — Part B, 26(1), pp. 29-41 (1996).

42,

43.

44,

45,

46.

47.

48.

49,

50.

51.

52.

53.

Design Search in Evolution and the Requirement of Intelligence 63

Leandro N. de Castro and J. Timmis, Artificial Immune Systems:
A New Computational Intelligence Approach (Springer, 2002), pp. 57—
58.

Dimitri P. Bertsekas, “A distributed asynchronous relaxation algorithm for
the assignment problem.” Proceedings of the IEEE International Conference
on Decision and Control, pp. 1703-1704 (1985).

Ernst R. Berndt, Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman,
“Estimation and inference in nonlinear structural models.” Annals of Eco-
nomic and Social Measurement, 3(4), pp. 653-665 (1974).

Patrenahalli M. Narendra and K. Fukunaga, “A branch and bound algorithm
for feature subset selection.” IEEE Transactions on Computers, 100(9),
pp. 917-922 (1977).

M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems.” SIAM Rev, 33(1),
pp. 60-100 (1991).

Cynthia Barnhart, Ellis L. Johnson, George L, Nemhauser, Martin W.P.
Savelsbergh, and Pamela H. Vance, “Branch-and-price: Column generation
for solving huge integer programs.” Operations Research, 46(3), pp. 316—-329
(1998).

J. Nocedal and Stephen J. Wright, Numerical Optimization, 2nd edition
(Springer-Verlag, Berlin, New York, 2006).

Thomas A. Feo and Mauricio G.C. Resende, “A probabilistic heuristic for a
computationally difficult set covering problem.” Op Res Lett, 8(2), pp. 67-71
(1989).

A.V. Knyazev and |. Lashuk, “Steepest descent and conjugate gradient
methods with variable preconditioning.” SIAM J Matrix Anal Appl, 29(4),
pp. 1267-1280 (2007).

Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi. “Bidirectional relation
between CMA evolution strategies and natural evolution strategies.” Parallel
Problem Solving from Nature, PPSN XI, pp. 154-163 (Springer, Berlin
Heidelberg, 2010).

Dick den Hertog, C. Roos, and T. Terlaky, “The linear complimentarity
problem, sufficient matrices, and the criss-cross method.” Linear Algebra
Appl, 187, pp. 1-14 (1993).

R.Y. Rubinstein, “Optimization of computer simulation models with rare
events.” Eur J Ops Res, 99, pp. 89-112 (1997).

R.Y. Rubinstein and D.P. Kroese, The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation, and
Machine Learning (Springer-Verlag, New York, 2004).

64

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Introduction to Evolutionary Informatics

X.S. Yang and S. Deb, “Cuckoo search via Lévy flights.” World Congress
on Nature & Biologically Inspired Computing (NaBIC 2009). IEEE Publica-
tions, pp. 210-214. arXiv:1003.1594v1.

W. C. Davidon, “Variable metric method for minimization.” AEC Research
Development Rept. ANL-5990 (Rev.) (1959).

P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied
to electromagnetics.” Antennas and Propagation Magazine, IEEE, 53(1),
pp. 38-49 (2011).

Xin-She Yang and Suash Deb, “Eagle strategy using Lévy walk and
firefly algorithms for stochastic optimization.” Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010) (Springer Berlin Heidelberg,
2010), pp. 101-111.

Jacek M. Zurada, R.J. Marks Il and C.J. Robinson; Editors, Computational
Intelligence: Imitating Life (IEEE Press, 1994).

M. Palaniswami, Y. Attikiouzel, Robert J. Marks |1, D. Fogel, and T. Fukuda;
Editors, Computational Intelligence: A Dynamic System Perspective (IEEE
Press, 1995).

David E. Ferguson, “Fibonaccian searching.” Communications of the ACM,
3(12), p. 648 (1960).

J. Kiefer, “Sequential minimax search for a maximum.” Proceedings of the
American Mathematical Society, 4(3), pp. 502-506 (1953).

Xin-She Yang, “Firefly algorithms for multimodal optimization.” In Stochas-
tic Algorithms: Foundations and Applications (Springer Berlin Heidelberg,
2009), pp. 169-178.

R. Fletcher and M.J.D. Powell, “A rapidly convergent descent method for
minimization.” Computer J. (6), pp. 163-168 (1963).

David E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning (Addison Wesley, 1989).

R. Reed and R.J. Marks I, “Genetic Algorithms and Neural Networks: An
Introduction.” Northcon/92 Conference Record (Western Periodicals Co.,
Ventura, CA, Seattle WA, October 19-21, 1992), pp. 293-301.

K.N. Krishnanand and D. Ghose. “Detection of multiple source locations
using a glowworm metaphor with applications to collective robotics.”
Proceedings of the 2005 IEEE Swarm Intelligence Symposium (SIS 2005),
pp. 84-91 (2005).

A. Mordecai and Douglass J. Wilde. “Optimality proof for the symmet-
ric Fibonacci search technique.” Fibonacci Quarterly, 4, pp. 265-269
(1966).

Jack Kiefer, op. cit.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Design Search in Evolution and the Requirement of Intelligence 65

Jan A. Snyman, Practical Mathematical Optimization: An Introduction
to Basic Optimization Theory and Classical and New Gradient-Based
Algorithms (Springer Publishing, 2005).

Gunter Dueck, “New optimization heuristics: the great deluge algorithm and
the record-to-record travel.” J Comp Phys, 104(1), pp. 86-92 (1993).

Zong Woo Geem, “Novel derivative of harmony search algorithm for
discrete design variables.” Applied Mathematics and Computation, 199, (1),
pp. 223-230 (2008).

Esmaeil Atashpaz-Gargari and Caro Lucas, “Imperialist competitive algo-
rithm: an algorithm for optimization inspired by imperialistic competition.”
2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 4661—
4667 (2007).

Shah-Hosseini Hamed, “The intelligent water drops algorithm: a nature-
inspired swarm-based optimization algorithm.” Int J Bio-Inspired Comp,
1(1/2), pp. 71-79 (2009).

Karmarkar Narendra, “A new polynomial-time algorithm for linear program-
ming.” Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, pp. 302-311 (1984).

Kenneth Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares.” Quart App Math, 2, pp. 164-168 (1944).
Alexander Schrijver, Theory of Linear and Integer Programming (John
Wiley & Sons, 1998).

Yurii Nesterov, Arkadii Nemirovskii, and Yinyu Ye, “Interior-point polyno-
mial algorithms in convex programming.” Vol. 13. Philadelphia Society for
Industrial and Applied Mathematics (1994).

K.I.M. McKinnon, “Convergence of the Nelder—-Mead simplex method to a
non-stationary point.” SIAM J Optimization, 9, pp. 148-158 (1999).

E. Sili and D. Mayers, An Introduction to Numerical Analysis (Cambridge
University Press, 2003).

A.H. Boas, “Modern mathematical tools for optimization,” Chem Engrg
(1962).

J. Kennedy and R. Eberhart, “Particle Swarm Optimization.” Proceedings
of IEEE International Conference on Neural Networks 1V, pp. 1942-1948
(1995).

J. Kennedy and R. Eberhart, Swarm Intelligence (Morgan Kaufmann, 2001).
A.W. Dickinson, “Nonlinear optimization: Some procedures and examples.”
Proceedings of the 19th ACM National Conference (ACM, 1964), pp. 51-201.
Robert J. Marks 11, Handbook of Fourier Analysis & its Applications (Oxford
University Press, 2009).

66

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.

91.

92.

Introduction to Evolutionary Informatics

J.W. Bandler and P.A. Macdonsdd, “Optimization of microwave networks
by razor search.” IEEE Trans. Microwave Theory Tech., 17(8), pp. 552-562
(1969).

H.H. Rosenbrock, “An automatic method for finding the greatest or least
value of a function.” Comp. J., 3, pp. 175-184 (1960).

John W. Bandler, “Optimization methods for computer-aided design.” IEEE
Transactions on Microwave Theory and Techniques, 17(8), pp. 533-552
(1969).

Muzaffar Eusuff, Kevin Lansey, and Fayzul Pasha, “Shuffled frog-leaping
algorithm: a memetic meta-heuristic for discrete optimization.” Engineering
Optimization, 38(2), pp. 129-154 (2006).

M.J. Box, “A new method of constrained optimization and a comparison with
other methods.” Computer J., (8), pp. 42-52 (1965).

J.A. Nelder and R. Mead, “A simplex method for function minimization.”
Computer J., 7, pp. 308-313 (1965).

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated
annealing.” Science, 220(4598), pp. 671-680 (1983).

X.-F. Xie, W. Zhang, and Z. Yang, “Social cognitive optimization for
nonlinear programming problems.” Proceedings of the First International
Conference on Machine Learning and Cybernetics, 2, pp. 779-783 (Beijing,
2002).

James C. Spall, Introduction to Stochastic Search and Optimization (2003).
Brian P. Gerkey, Sebastian Thrun, and Geoff Gordon, “Parallel stochastic hill-
climbing with small teams.” Multi-Robot Systems. From Swarmsto Intelligent
Automata, Volume 111, pp. 65-77. (Springer Netherlands, 2005).

F. Glover, “Tabu Search — Part I.” ORSA J Comput, 1(3), pp. 190-206 (1989).
“Tabu Search — Part 11”, ORSA J Comput, 2(1), pp. 4-32 (1990).
Athanasios K. Sakalidis, “AVL-Trees for Localized Search.” Inform Control,
67, pp. 173-194 (1985).

R. Seidel and C.R. Aragon, “Randomized search trees.” Algorithmica,
16(4-5), pp. 464-497 (1996).

S. Zionts and J. Wallenius, “An interactive programming method for solving
the multiple criteria problem.” Manage Sci, 22(6), pp. 652-663 (1976).

4

DETERMINISM IN RANDOMNESS

“We could have come from anything — fish, maybe, but not monkeys. | don’t
believe in the evolution of fish to monkeys to men. It’s absolutely irrational
garbage. They set up these idols and they knocked them down. It keeps all the old
professors happy at the University. He gets something to do . . . Everything they
told me as a kid’s already been disproved by the same type of Experts who made
them up in the first place.”

John Lennon?

All evolutionary processes are stochastic. They use randomness and make
some decisions, as it were, by flipping a weighted coin. Depth of mutation
is an example.

Although it sounds paradoxical, randomness as modeled by stan-
dard probability theory has many fixed almost deterministic properties.
Randomness need not imply unguidedness. When this is the case, one is
led to ask who is steering this randomness to its ultimate end?

We will show how random evolutionary processes are constrained to
both limited and bounded results. For this reason, no matter how long you
let an evolutionary process run in a fixed environment, a solution will never
get smarter than is allowed by the process. An evolutionary program written
to design an antenna will never develop the ability to play chess. And a fixed
environment to guide a stochastic process into evolving complexity on the
scale of man is unimaginably improbable.

But couldn’t we write a computer program to dynamically change
the environment and therefore the fitness in such a way as to guide an
evolutionary process to evolve a single cell, then a guppy, a frog, a monkey
and then man? If so, the scheduling of the environmental changes must
themselves be carefully designed. It is more likely that an environmental

67

68 Introduction to Evolutionary Informatics

change will destroy previous gains than that it will advance them to a new
level of sophistication.

The steel ball bouncing about in a pinball machine is an example of
a random process with a single fixed point: The ball always ends up in
the little hole behind the flippers. A variation of this illustration is a hand-
held maze with a rolling BB whose goal is to get the BB to the end of
the maze. For simple mazes, random tilting corresponding to environment
changes may occasionally find the end of the maze target. For a standard
4.75mm BB in a complex maze with walls separated by 5 mm, randomly
solving a maze the size of a football field would be more difficult. As
the complexity of the maze grows, the more difficult success becomes.
Intelligence monitoring the maze from above can tilt the maze purposefully,
i.e. change the environment, to roll the BB to a desired target. Doing
s0, however, requires precise planning of the environmental changes. The
process must be carefully designed (see Fig. 4.1).

Fig. 4.1. Get the BB through the maze from A to Z passing through various stages of
functional viability (©) and avoiding extinction (g*). Extinction is allowed once. “It is
possible to fail in many ways . . . while to succeed is possible only in one way.” Aristotle.

Determinism in Randomness 69

4.1 Bernoulli’s Principle of Insufficient Reason?

To search for a pancake with nine ingredients, domain expertise is needed to
perform the search through 1 billion recipes in reasonable time. For any but
the simplest search problems, domain expertise is mandatory. But what if
we have no expertise? It may sound trite, but if there is no domain expertise,
we know nothing. Probabilistically, this means the solution is equally likely
to exist anywhere in the search domain. In terms of Shannon information,
the initialization is at maximum entropy, e.g. maximum uncertainty.

4.1.1 *“Nothing is that which rocks dream about”?

What does knowing “nothing” mean? It might sound like a paradox, but
“nothing” means something® — it means “absolutely nothing” or, more
literally, “nothing,” The idea of “nothing” can be difficult to grasp.

As an example, consider the theory of the Big Bang creation of the
universe. It is common to picture the universe before the Big Bang as
a large black void empty space. No sound, no matter, no energy. Just a
never-ending expanse of empty space. No. This is a flawed image. Before
the Big Bang there was nothing® and a never ending expanse of empty
space is something.d Claims about matter spontaneously appearing in an
empty space due to quantum effects, therefore, do not explain the Big Bang.
Before the Big Bang, there was nothing. So space must be purged from our
visualization of reality prior to the creation of the universe.

Okay. Visualize no space. It’s hard, but we can do it. Maybe. We think
“There was nothing. No sound, no matter, no energy. No space. Nothing.
Then, all of a sudden...”

aVariously sourced to Plato, Aristotle and Socrates.

bword play around “nothing” can be fun here. The meaningful statement “nothing means
something” appears at first to be an oxymoron. The phrase “nothing means nothing,”
interestingly, means the same thing, or alternatively can be interpreted as a tautology.
®Nothingness prior to creation is also consistent with the biblical account of creation in
Genesis.

dArguments based on the premise that matter spontaneously appearing in empty space due
to quantum effects therefore do not apply to the Big Bang. The argument has a faulty
presupposition. Prior to the creation of the universe, there was no space. Physics says space
did not exist prior to the Big Bang. So do most Christian theologians.

70 Introduction to Evolutionary Informatics

No. This doesn’t work either. All of a sudden presupposes a surprising
event that occurs within the flow of time. Modern cosmology says that time
in our universe was also created® at the Big Bang.3 So besides space, the
idea of time must be purged from our imagination before comprehending
the nothing that existed before the Big Bang. Comprehension of no space
and no time is not a trivial intellectual exercise.f We have always existed in
time and space and have difficulty visualizing their absence. The meaning
of the nothing prior to the Big Bang is seen to be difficult to intuitively

grasp.

4.1.2 Bernoulli’s Principle (PrOIR)

In computer search, Bernoulli’s Principle of Insufficient Reason (PrOIR)
assumes nothing is known about a search problem except for the search
space domain, including its cardinality. When a point in the search space
is queried, the fitness can be ascertained. Otherwise we should have no
method to keep score on the queries. Foundationally, the idea of nothing in
the search space is not as difficult to comprehend as the nothing that existed
before the Big Bang, but the rigor of interpretation of nothing remains strict.
We know nothing about where the target is located. We know nothing about
the structure of the search space. We don’t know if it’s smooth, ragged, or
flat everywhere. It could be that every point in the search space is a viable
solution to the problem. Maybe there is no solution whatsoever. We don’t
know. We know nothing.
Bernoulli’s PrOIR, published in 1713, reads*-°-9

“...in the absence of any prior knowledge, we must assume that the events [in a
search space] have equal probability.”

€Phrases such as “before the beginning of time” are in the Bible. See, for example Titus 1:2
in the NIV translation.

fProponents of M-theory would argue the possibility of parallel universes existing “before”
the Big Bang. The absence of time as we know it, though, begs the question of the meaning
of “before.” The meaning of “before” conceptually lies even beyond the concept of nothing
in our universe.

9Bernoulli’s PrOIR, credited to Jakob Bernoulli (1654-1705) and published after his death,
is not to be confused with the Bernoulli’s principle of fluid dynamics. The fluids principle
is credited to Jakob’s nephew, Daniel Bernoulli (1700-1782).

Determinism in Randomness 71

Pierre-Simon Laplace, noted 18th century mathematician/astronomer and
atheist, agreed.®

“[When] we have no reason to believe any particular case should happen in
preference to any other”

If we know nothing about the search, each of the elements in the search
space should be considered equally probable.

4.1.2.1 Examples

We use Bernoulli’s PrOIR in everyday calculations of chance:

1. The Lottery: If a 1000 lottery tickets are sold, we assume the chance of
any ticket being drawn is the same as any other. If you buy one ticket,
your chance of winning is one in a thousand. Bernoulli’s PrOIR has been
applied. Cheating lottery officials can skew the results, but if you don’t
know about it, i.e. you know nothing about the selection process, the
equally probable outcomes are your best estimate of your chances.

2. Roulette: A similar example is the roulette wheel. Odds of winning are
based on Bernoulli’s PrOIR which says the chance of the roulette ball
falling in any slot is the same as falling in any other. If the casino operator
has an unknown control over the wheel, the assumption may not be true.
If, though, you know nothing about the process of the spinning roulette
wheel, the uniform probability assumption is the right one.

3. Dice: When we roll a fair die, all six sides are assumed to be equally
probable. The chance of three dots showing are thus one in six.

4. Casting lots: The practice of casting lots in the Bible presupposed all
outcomes had equal probability and was fair to all participants. We read:

“Casting lots causes contentions to cease, and keeps the mighty apart.” (Proverbs
18:18)

Better to roll the dice and impose Bernoulli’s PrOIR than fight a war.

4.1.2.2 Criticisms of Bernoulli’s principle

Although Bernoulli’s PrOIR seems obvious, there are those who object.
Let’s address these criticisms.

72 Introduction to Evolutionary Informatics

4,1.2.2.1 Model variations

A valid criticism of Bernoulli’s PrOIR is improper modeling. The distribu-
tion is either interpreted improperly or has been knowingly manipulated to
be non-uniform." Here are some examples.

Star Trek: Fans of Star Trek are familiar with the Kobayashi Maru,' a test
given to Starfleet cadets in the command track at Starfleet Academy. The
test was administered as a virtual reality battle simulation and was designed
to be difficult or even impossible to pass. James T. Kirk, the future Captain
of the Starship Enterprise, took the test and became the first to ever pass. He
did so by changing the model underlying the test and thereby invalidating
assumptions normally associated with the game. To do so, he sneaked away
with and rewrote some of the software controlling the simulation.

Our takeaway is this: The outcome of an event is often modelled by
our presupposition of the event’s representation. If the model is invalid,
then our prediction of an outcome will also be invalid. Probability is a
mathematical model. When a coin is flipped, the detailed physics of the
flip, the coin and the environment totally determine whether the outcome
will be a heads or tails. The physical analysis can be too detailed for analysis
or, more significantly, environmental parameters such as impact elasticity
that controls the coin’s bounce, are unknown.

But what if we constructed a machine in a vacuum that flipped a coin
the exact same way each time? We should get the same result each time.
But coin flipping is ill-conditioned.” Even small variations in the flip or the
environment quickly revert the solution back to a 50-50 probability of a
heads or tails. Thus, the probability model is applied and the outcome of
heads or tails is, according to Bernoulli’s PrOIR, 50-50. In the coin flip,
as in other probability applications, the determination of probability must

PBernoulli’s PrOIR is applied in the examples of active information in Chapter 5.4.2. The
definition of active information, however, need not use a uniform distribution as a baseline,
but can measure added information from any distribution. The idea is the same as measuring
dB (decibels) which, like active information, is proportional to the logarithm of a ratio. The
denominator of the ratio, the reference, can be any value desired.

'The Kobayashi Maru test, well known to Trekkies, was first administered in the opening
scene of the film Star Trek 11: The Wrath of Khan. It also is mentioned in the 2009 film
Star Trek.

Determinism in Randomness 73

be considered a model. Bernoulli’s PrOIR indicates that, in the absence of
any knowledge about the outcome of an experiment, equal probability is
assigned to each possible result.

When considering the previous lottery, roulette and dice examples,
one can point to the failure of the uniform probability assumption after
model-discrediting experimentation. Experimentation, however, creates
knowledge and we know something, i.e. we no longer know nothing.

Roulette: In one of the first attempts to use a computer to skew odds, Claude
Shannon® and Edward O. Thorp) used a wearable computer in 1961 to
experimentally measure the deviations from uniformity of a roulette wheel.®
Shannon and Thorp challenged the model of uniformity. By learning
something about the roulette wheel process, they were able to place bets on
outcomes more favorable than uniform. Today, roulette wheels are balanced
frequently and realigned to keep the result of the spins as random as possible.
Also the table is now closed for betting before the spin begins.

Blackjack: When playing blackjack at a casino, the casino’s chance of
taking your money when dealing from a freshly shuffled deck is about 51%.
Although these are not overly favorable odds, the law of large numbers
dictates that if you play blackjack long enough, the casino will end up
with all your money. But blackjack is typically not dealt from a freshly
shuffled deck. A number of decks are shuffled together and the cards are
flipped over sequentially over a number of games. Information gained from
remembering what cards were played can decrease the casino’s odds below
50%. The tables are turned. If you play long enough, you’ll take all of the
casino’s money.K

Simple methods of accounting for cards played in blackjack are dubbed
card counting as shown in the documentary Holy Rollers.10

tLoaded Die and Proportional Betting: The mathematics of optimal
gambling is well defined using the language of Shannon information theory.

J'Thorp was a developer of card counting and an early hedge-fund pioneer.

KThis assumes that your initial stash of betting money is large. The volatility (variance)
in winning at probabilities close to 50% is big and, although the law of large numbers
is applicable, there might be a significant amount of loss before asymptotic winnings are
achieved.

74 Introduction to Evolutionary Informatics

Shannon and Thorp knew that the roulette wheel did not conform to a
uniform probability of outcome, yet payout is based on the assumption
that it does. Consider the two extremes. If the probabilities of outcomes
are all the same, prospects of winning extra money are bleak. Consider
for example six possible outcomes, as there are on the roll of a fair die.
Then each outcome would have odds of 1 in 6. Assumed when you place
a successful bet, your winnings are six times the amount of the wager. If
you had $12 and put $2 bets on each of the six outcomes, you always end
each game with your $12 back, whether or not the die is fair. This is neither
a very exciting nor a lucrative pastime. But things get more exciting if the
die is not fair and you have knowledge of the probability of the outcome of
each event. Money can be made.

The optimal long term strategy when you know the probability of each
outcome is dubbed proportional betting. Here’s an example. You roll a die
and no matter what number shows after a roll, the payoff is 6:1 for winners.
The house is assuming that the die is fair and the chance of any face is one
out of six.! But you know the die is loaded and has the following outcome
probabilities:

1 1 1 o
PL=3 P2=3 P3=pa=15 Ps=pe=0.

The probability of rolling a 2 is, for example, p» = % Proportional betting
dictates you should spread your bets proportional to the probabilities of
success. If you initially had $12, proportional betting would be

b1 =%6, bry=%4, b3=bs =931, bs=>bg=93%0.
Here are the possible outcomes and your next spread of bets:

o If the die is rolled and shows one, you collect $36. The chance of this
happening is p1 = 3 Your second wager using proportional betting is

It At this payout, the house is also apparently not interested in making any money in the
long run. It would, on the average break even. For the house to win, it would need to pay
something less, say $5.50 for every one dollar bet, when the die outcome is successfully
predicted.

Determinism in Randomness 75

then
b1 =$%$18, by =%$12, b3=bs =933, bs=>bg=2390.

o If the die is rolled and shows 2, you collect $24 which you again spread
proportional to the odds. The second round of betting is then

by =9%$12, by =9%$8, b3 =0bs=9%2, bs=0bg=29%0.

o |If either a three or a four shows on the roll of the die, you get paid $6
and have lost half of your money. That’s okay. You still have money to
bet and your second wager is

b1 =9%3, by =9%2, b3z =0bs=3%0.50, bs=>be=30.

e Since you know the probability of the five or six showing is zero, five
and six are never bet on.

In the long run, proportional betting maximizes your returns faster than
any other method.!-™ But the probabilities must be accurate. If not, you
could lose everything quickly.

Since outcomes are stochastic, different games of proportional betting
will result in different outcomes. Starting with only one dollar, simulations
of repeated wagering using these probabilities and proportional betting

M+ Here’s the math. For N possible outcomes, the doubling rate for proportional betting is

W(p) =logy N —H(p),

where p = [p1, p2. 3. ..., py1T denotes a vector of the probability of outcomes for each
occurrence and
N
H(p)=—_ pnl0g; pn
n=1

is the entropy of the probability spread. The quantity W(p) is dubbed the doubling rate
because, after M > 1 games using proportional betting, your expected winnings are

Sg = So2M W),
where Sg is the money you started with. When all p;,’s are the same, W(p) = 0, and your

money never doubles. When one pj, is one and the rest are zero, W(p) = log, N and
S = SoNM. Each game multiplies your winning by a factor of N.

76 Introduction to Evolutionary Informatics

. 20 40 &0 a0 100 0 20 20 50 50 100
Fig. 4.2. Simulation of proportional betting for 100 games starting with $12. The thick
black line is the average. On the left, the outcomes of six possibilities are p1 = % P2 = %

p3=p4s= 1—12 ps = pg = 0. In 100 games, you can on average pay off the national debt,
pay 50% taxes and still be the richest person in the world. On the right is the more modest
case of p; = le p2 = f’z pP3 = p4s = p5 = pg = %. You can make a few thousand
dollars on average, but note that in the worst case you end up with about $1072=a penny.

are shown on the left in Fig. 4.2. Winnings accumulate rapidly using
proportional betting. Note that 10%° corresponds to 10 billion dollars and
10%® to one quadrillion (1000 trillion) dollars.

The further the probabilities are from uniform, the faster money is
accumulated. This is measured by the doubling rate parameter, W, which
tells how long on the average it takes to double your initial stash." It is
given by

W(p) =log, N — H(p),

where N is the number of possible outcomes of the experiment and H(p) is
the Shannon entropy corresponding to the probability distribution. For an
unloaded die (i.e. a uniform distribution), H(p) = log, N and W = 0. In
other words, neither you nor the house makes money on average in the long
run. The game is breakeven, which is what the game was initially designed
to do.

The same equation describes the active information in the case where
we have N possible outcomes in a search space and compute the active

Nt See the previous footnote for math details.

Determinism in Randomness 77

information corresponding to choosing outcomes proportional to the
probability that the search space element is the target. Then the active
information from knowledge of the probabilistic distribution is I, = W as
given in the equation above. In gambling, active information can be very
profitable.

Simulations for repeated proportional betting with probabilities closer
to uniform are shown on the right hand side of Fig. 4.2. The accumulation of
winnings is still remarkable but occurs at a much more modest rate. When all
the probabilities are equal to each other and the distribution is uniform, the
winning curve is no longer random. For proportional betting, your winnings
each game will exactly replenish your initial stash. The winning curve will
therefore be a constant horizontal line.

The performance of proportional betting is akin to that of a search
algorithm. For proportional betting, you want to extract the maximum
amount of money from the game inasingle bet. Insearch, you wish to extract
the maximum amount of information in a single query. The mathematics is
identical.

The Broken Die: Proportional betting is an example where probability
knowledge about a search space can be used to make money. Here is an
historical example where the fundamental model of a fair die was shown
to be inaccurate.

The illustration is an account documented in Ivar Ekeland’s The Broken
Dice.?? Ekeland describes how the kings of Norway and Sweden back in
the Middle Ages decided to cast a pair of dice to determine ownership
of a settlement on the Island of Hising, a settlement that had alternately
belonged to both countries. The highest totaling sum was to determine the
winner. The king of Sweden went first and rolled double sixes. It would
therefore seem that the king of Norway could at best tie the king of Sweden,
though the more likely outcome was that the Hising settlement would end
up in the hands of Sweden. With six faces on a die and faces numbered
one through six, the sum of any pair of faces from a pair of dice could
total no less than two and no more than 12. The reference class of possible
outcomes for the pair of dice could therefore be represented by the set
{2,3,4,5,6,7,8,9,10, 11, 12}. What’s more, the king of Sweden had just
rolled the best possible result in this set, namely, 12.

78 Introduction to Evolutionary Informatics

What happened next was therefore remarkable:

“Thereupon Olaf, king of Norway, cast the dice, and one six showed on one of
them, but the other split in two, so that six and one turned up; and so he took
possession of the settlement.”13

Since in this game of dice higher sums trump lower sums, 13(= 6 +6+1)
trumps 12(= 6 + 6), so the king of Norway was declared the winner.
Typically, any game with a pair of dice reckons with at most a pair of
faces on any throw. Given this constraint, the reference class of possible
sums for a pair of dice faces will be {2, 3,4,5,6,7,8,9, 10, 11, 12}. Yet
given the possibility of a die splitting in two and showing two faces, the
reference class of possible sums would have to be expanded to include at
least {2, 3,4,5,6,7,8,9,10, 11, 12, 13}.

Could it be that King Olaf orchestrated his win? Possibly he knew
the die was made from some brittle material that would break if thrown
forcefully to the ground. By doing so he altered the space of possible
outcomes in variance with the assumptions of the king of Sweden and
other spectators. Later in this chapter will see that chances of winning
in a sweepstakes drawing are independent of their spatial distribution or
method of selection. But as seen in Fig. 4.3, we can apply Olaf’s principle
to increase our chances of winning in a drawing of paper ballots.

4.1.2.2.2 Vague definitions & ambiguity: Bertrand’s paradox

Critics of Bernoulli’s PrOIR include John Maynard Keynes,® who renamed
Bernoulli’s PrOIR the Principle of Indifference.!* Keynes appeals to
Bertrand’s paradox as a counterexample. Bertrand asks the following
question.

“If a cord in a circle is chosen randomly, what is the probability that its length
exceeds +/3 of the circle’s radius?”

Bertrand shows there are at least 3 solutions depending on the
application of Bernoulli’s PrOIR: p = 1,1 or 1. As shown in Fig. 4.4,
and discussed in its caption, however, this is not the problem. In one case

0John Maynard Keynes (1883-1946) was a British economist who advocated interventionist
government policy. His ideas provide the foundation for Keynesian economics.

Determinism in Randomness 79

Fig. 4.3. How to win at drawings using Olaf’s principle. The only way to increase your
chance of winning a drawing is, like King Olaf, to concoct a clever plan to change the
contest to be outside of the laws and assumptions of a uniform probability model, either
by acquiring knowledge about the process or, like the king of Norway, manipulating the
system so that the assumption of uniformity is no longer applicable. Here’s a way to beat
uniform odds in a drawing. When selecting slips of paper from a hat, Bernoulli’s PrOIR
is assumed. If there are N slips of paper in the hat and you have one entry, then there is
one chance out of N you will win. That is, unless the selection process is manipulated. An
effective way to do this is by folding or crumpling your entry so it takes up more space. Try it
next time the opportunity presents itself. It does not guarantee a win, but certainly increases
the probability of a win. The authors admit to seeing this procedure work successfully on
numerous occasions (but choose not to confess whether or not they have used the method
themselves) We leave the discussion of the ethics of this practice for another venue.

the circle is bisected with a diameter length line in the random cord was
chosen from the set of all possible perpendicular bisectors. In the second
case the cord was specified by randomly choosing two points on the circle
circumference and connecting them to form the cord. In the third case the
cord was defined by its midpoint in that the midpoint is chosen as a random
point within the circle. The failure is not a failure of Bernoulli’s PrOIR1®
but is due to an ambiguity in the meaning of the word “random” in the
statement of Bertrand’s paradox.

Keynes also noted Bernoulli’s PrOIR does not work when a search
space is ill-defined or heuristically uncertain, as is typical in the social
sciences.’8:17 Consider a social scientist who categorizes the primary

80 Introduction to Evolutionary Informatics

D E

tFig. 4.4. Bertrand’s paradox. On the left is a picture a circle of radius r inscribed with
another circle with half the radius. An equilateral triangle with points on the larger circle is
tangent to the smaller circle. Each side of the triangle has length +/3r. We ask the question:
What is the probability, p, of randomly choosing a cord intersecting the circle with a length
exceeding +/3r? There are three answers all using Bernoulli’s PrOIR. (1) When a cord is
chosen, we can always rotate the circle so that the perpendicular bisector arc intersects the
line segment ABCD. The probability that the cord length exceeds +/3r is the probability the
cord intersects the line segment BC. By Bernoulli’s PrOIR, the probability of intersecting
any point on the line segment AD is uniform. Since the line segment BC is half the length
of that of AD, we conclude the answer is p = % (2) When a cord is chosen, it can always
be rotated so that one end intersects with E. The probability the cord length exceeds +/3r
is the probability the other end of the cord intersects the clockwise circle arc FG. Applying
Bernoulli’s PrOIR gives each point on the circumference of the circle equal probability of
being the other end of the cord. Since the arc FG is one third that the circle’s circumference,
we conclude the answer is p = % (3) Lastly, the probability the cord exceeds +/3r in
length is the probability that, in the rightmost figure, the cord’s midpoint lies in the smaller
shaded circle. According to Bernoulli’s PrOIR, the distribution of points within the circle is
uniform. The smaller shaded circle is one fourth the area of the larger circle so we conclude
that p = 7.

There are three different answers using Bernoulli’s PrOIR. Each answer is different.
Keynes suggested that Bertrand’s paradox is an example of Bernoulli’s PrOIR. A more
reasonable explanation is that the term randomly in the original question is not precisely
defined. The three answers in Bertrand’s paradox are due, instead, to different interpretations
of the meaning of the word randomly. Once defined, Bernoulli’s PrOIR applies with no
ambiguity.

causes of juvenile delinquency to (a) poverty, (b) peer pressure, or (c) “other
causes.” Does this warranta 3, %, % split? Suppose a second social scientist
absorbs peer pressure into the “other causes” category. There are now only
two categories: poverty and other causes. The Bernoulli’s PrOIR for poverty
is now one half instead of one third. Frequentists argue that with no prior
knowledge of the search space, assignment of probabilities is inappropriate

and falls outside of the scope of probability theory.1®

Determinism in Randomness 81

4.1.2.2.3 Continuous versus discrete probability

Keynes offers yet another criticism of Bernoulli’s PrOIR.1°-P

“Consider the specific volume of a given substance. Let us suppose that we know
the specific volume to lie between 1 and 3, but that we have no information as
to whereabouts in this interval its exact value is to be found. The Principle of
Indifference [Bernoulli’s PrOIR] would allow us to assume that it is as likely to
lie between 1 and 2 as between 2 and 3; for there is no reason for supposing that it
lies in one interval rather than in the other. The specific density is the reciprocal of
the specific volume, so that if the latter is v the former is 1/v. Our data remaining
as before we know that the specific density must lie between 1 and 1/3, and, by
the use of the Principle ... as before, that it is as likely to lie between 1 and 2/3
as between 2/3 and 1/3.”

Keynes argues that Bernoulli’s PrOIR cannot apply to both the specific
density and the specific volume because the 50-50 division results differ in
each case.

Keynes’s objection at first seems troublesome. If we have a random
variable that has a uniform distribution, then any function on that random
variable except for degenerate cases, will not produce another random vari-
able with a uniform random variable.

Gadenfors and Sahlin?? note that many criticisms of Bernoulli’s PrOIR,
such as Keynes’s, focus on cases where the underlying random variable is
continuous.4

P+ Here is the math behind Keyne’s objection. The original specific volume random variable,
v, is uniform on the interval of one to three. Applying Bernoulli’s PrOIR, there is a 50-50
chance that v lies between 1 and 2 or between 2 and 3. The specific density isd = % and,
using a standard transformation on a random variable, has a probability density function of
fa(x) = %x_z for % < x < 1. This is different, of course, than if we started with d and

assumed it was uniformly distributed on the interval [% 1], in which case there is a 50-50

chance it landed in intervals [% %] and [% 1],ie.Pr [% <d< %] =Pr [% <d=<l1]= %
But using f;(x), we calculate Pr[% <d< %] = % and Pr[% <d=<1]= %. Keynes
objects to the answers being different.

A1 Even the definition of Shannon information varies from the discrete to the continuous

case. For a probability mass function p,, we have seen that entropy is defined as

H= _an log; pn.
n

82 Introduction to Evolutionary Informatics

“[Bertrand?! was] so much impressed by the contradictions of geometrical
probability that he wishes to exclude all examples in which the number of
alternatives is infinite.”22

We can show, however, that this is not the case for discrete random variables
in the sense that the expected value of the transformation is preserved.
Indeed, Bernoulli’s PrOIR is unbreakable in the discrete case when the
search domain is properly defined and we know nothing.

For example, if we have a standard shuffled deck of 52 cards, then
the chance of picking the A# is independent of the methodology used
to sequentially draw cards. Bernoulli’s PrOIR holds. It also holds in all
variations of its execution. Consider, first, the “some to many” mapping
illustrated in Fig. 4.5. Some of the cards from the deck are identified and
duplicated in a new deck. We’ll even assume some of the cards can be
duplicated more than once. From the new deck, what is the probability of
choosing the A& in a single query? The same as in the old deck: 1 out
of 52."

For a continuous random variable described by a probability density function f(x) the
continuous entropy, often called the differential entropy, is

H =~ [s t0gs finyas.
X

Differential entropy is not a limiting case of the discrete case. Indeed, the unit of the two
entropy measures are different. Since probability is unitless, the unit of entropy for discrete
events is bits. Alternately, if x for example has units of meters, then f(x) has units of
reciprocal meters and differential entropy has units related to length. Another difference is
that differential entropy can be negative. Discrete entropy cannot.

"+ Here is a thumbnail version. If the probability of success in the original deck of cards is p,

then drawing k cards gives a binomial probability mass distribution of <Z>pk(1 —pnk.

The median and mean of the corresponding random variable is np. (More rigorously, the
median is the rounding of np to the nearest integer. (See K. Hamza, “The smallest uniform
upper bound on the distance between the mean and the median of the binomial and Poisson
distributions,” Statist. Probab Lett, 23, p. 2125 (1995)). Dividing by n reveals that the
expected value of the probability of success in the new deck is p: the same as in the original
deck. Likewise, the chance of success from the new deck is the same as the old, i.e. the
chance of getting better equals the chance of doing worse equals % The generalization to
cases where a card from the original deck can be duplicated more than once in the new
deck is straightforward. Since the location of the target is unknown, the replication of any
element in the original deck to make the space larger will result in a new deck, where the
expected probability of success, p, remains the same.

Determinism in Randomness 83

Fig. 4.5. A “some to many” mapping using a deck of playing cards. (Not all of the cards in
the deck of 52 are shown.)

A similar example illustrating the robustness of Bernoulli’s PrOIR
for discrete events arises in the analysis of sweepstakes entries. Lenore
is a sweepstakes hobbyist who identifies profitable contests and sends in
multiple entries. Sweepstakes sponsored by commercial products cannot
require the purchase of their product to play their game. Otherwise,
the contest would be a lottery and would be illegal where gambling is
prohibited. Thus, all sweepstakes will specify in small print how to submit
entries without purchasing the product. Lenore is one of many sweepstakes
enthusiasts who spend hours submitting entries. When the entry is mailed,
the only cost to Lenore is her time, stationery, and postage.

To increase the odds of winning a sweepstakes, one self-help book
for sweepstakes gamers notes that entries are typically placed in different
boxes. The boxes, possibly of different sizes, are sequentially filled until
the entry deadline. If, the book argues, Lenore spreads her submissions
over the duration of the contest, then she will not have “all her eggs in

84 Introduction to Evolutionary Informatics

one basket.” She will have, rather, her submissions spread over a large
number of boxes. Thus, when a box is picked at random, there will be a
better chance that a submission from Lenore will be in the box thereby
giving her a chance to win. At the other extreme, if all of Lenore’s entries
are in a single box and that box is not chosen, then her chances of winning
are zero. Thus, spreading her submissions over a number of days increases
her chances of winning.

This is wrong. It doesn’t matter how the entries are mailed. The chance
of winning is the same whether all of Lenore’s entries are in one box or
dispersed among several boxes. In fact, when one knows nothing, there is
no way to manipulate the sweepstakes entries to increase the chance of
winning.

Indeed, as illustrated in Fig. 4.6, Bernoulli’s PrOIR is even more robust
than this. We can photocopy all of the entries in Box #14 and make a
duplicate box of entries. The contents of Box #5 are duplicated twice and
we have three identical copies of Box #5. We then throw boxes #8 and #27
into the fire and destroy their contents. Except for the duplicated boxes,
we can assume all of the boxes have a different number of entries. After

22
== 23 24 25 26
y
vl
15 16 ‘ ‘l? 18 19
Z
n 9 10 11 12 13
Z £ P Vi
L L
1 2 3 4] [s 6 7
&)
5
(&)
5
&)

Fig. 4.6. In sweepstakes, unequally sized boxes are sequentially filled with entries. At the
drawing, a box is chosen and an entry is randomly chosen from the box.

SContrary to Mark Twain’s advice to “Put all your eggs in one basket—and watch that
basket!”

Determinism in Randomness 85

all of the duplicating and burning is finished, we choose a random box
from those available and from the box choose an entry. The probability
of Lenore winning is exactly the same as before the duplicating and the
burning. Indeed, the probability Lenore is the winner is the same as if all
the entries were placed in one big barrel and an entry chosen. There is no
way to beat Bernoulli’s PrOIR by duplicating and destroying boxes. The
chance of winning is the same.!

Here is a thought process to illustrate this. Consider 1000 sweepstakes
entries being placed in one large box and an entry drawn. Let the probability
of winning be p. equal to the number of entries you make divided by
N = 1000. Assume, now, that someone had come in the previous night
and, without looking at the entries, marked 300 entries with a @, 20 with
a @, 280 with a ©, and 400 with a @. After we draw the winning entry,
does the @, ®, ®, or ® marks on the winning entry tell us anything?
Of course not. The chance of the mark being a @ is the greatest, but the
mark of the entry and whether or not it is the winner are independent
events.

Next, consider placing all the entries with the same marking in different
boxes. The 300 entries marked @ go in one box, the 20 marked ® go in a
second box, etc. We still have not looked at whether any entry is a winner.
We only look at the markings. Now choose one of the boxes using any
method you desire. We choose an entry from that box. No matter what box
we choose, the chance of your entry being drawn is the same.

This holds true in the case when there are 1000 entries and 999 of them
are placed in one box with a single entry placed in a second box. Choosing
the second box and drawing the single entry from the box has the same
chance of winning as choosing an entry from the box with 999 entries.

U+ The case for duplication is treated in Fig. 4.6. For varying entries in each box, we consider
the special case where Lenore has a single entry. Assume the mth box contains &, entries
and there are n = ¥,k total entries. If all entries are placed in a single large barrel, the
chance of Lenore winning is 1/n. This is the same as if a box is chosen at random and
an entry drawn. This follows from Pr[Winning|Box m chosen] = Pr[{Winning|Box m
chosen} | Lenore’s entry is in Box m] = (1/ky,) (km/N) = 1/n. If we have two entries, #1
and #2, then Pr[Winning | Box m chosen] = Pr[Winning with #1 OR Winning with #2 | Box
m chosen]. Since the events are mutually exclusive, Pr[lWinning | Box m chosen] = 2/n.
More generally, with r entries, Pr[Winning | Box m chosen] = r/n.

86 Introduction to Evolutionary Informatics

Here’s another way to look at it. Each of the entries prior to the drawing
can be considered being marked with a p for the probability of that entry
being the winner. It matters not whether you choose the entry from one big
box or a 100 little boxes, the entry you draw has a p on it and the chance
of it being a winner is the same no matter how you choose it. Using this
reasoning, it is easy to see why destroying some of the entries and making
copies of others still does not change your chance of winning. In the end,
all of the entries have the same chance, p, of winning. Bernoulli’s PrOIR
cannot be broken.

Having inside (active) information on sweepstakes can help to win with
a chance other than that afforded by a uniform distribution. Here are two
examples.

e If we have inside information about the stuffing of the boxes with
sweepstakes entries, we could alter the odds. If we knew when the smaller
boxes will be filled and are able to time the entries to go into the smaller
boxes, the chances of winning increase. To convince ourselves of this,
consider the extreme case where there is one box so small it can contain
only one entry. If we are able to manipulate our single submission so
that it is placed in the very small box, then our chance of winning is
one in M where M is the number of boxes. This is much better than one
chance out of N where N is the number of entries.

o Ifentries are accepted for a week in bags and the Friday bag close to the
door has a better chance of being chosen than the Monday bag across the
room next to the wall, then the uniformity assumption is no longer valid
and we can increase our odds of winning by submitting all our entries
on Friday.

Without any knowledge of the lottery to create active information,
Bernoulli’s PrOIR can’t be beat. A source of knowledge is always
mandatory for the creation of active information.

4.2 The Need for Noise

Randomness is an important component of evolutionary search.
Consider steepest descent optimization for finding a minimum. A single
agent, exploring the search landscape, computes which way is downhill and

Determinism in Randomness 87

takes a step in that direction. The problem is that the search can get stuck
in a local minimum far inferior to a deeper minimum elsewhere in the
search space. If a random component is added to each step downhill, there
is a possibility the search could skip the local minima and land in a better
minima. In this sense, noise can help the accuracy of a search.

Simulated annealing?® is an example of the use of randomness in
optimization. Annealing in metallurgy cools a molten metal according
to a cooling schedule so that the metal acquires desired properties. The
general principle is the same as we find with water. Rapidly cooled
water, for example, turns into ice with physical flaws. The ice cracks
and is opaque. Slowly cooled water, on the other hand, turns into a clear
block of ice. In metallurgy, heat corresponds to a random fluctuation of
molecules. In simulated annealing, lowering temperature corresponds to
reducing the amount of noise" added to the search process. Mutation in
evolutionary search can be viewed as a kind of simulated annealing. In
standard evolutionary algorithms, mutation is not annealed however. The
mutation rate, i.e. heat, often remains fixed.

Although not a perfect analogy, here is another description. Imagine a
bowl whose shape describes a smooth search landscape but has numerous
indentations corresponding to false minima. If a BB is dropped into the
bowl there is a good chance it will roll into and then stop in a local minima.
Instead, imagine shaking the bowl after the BB is dropped. Initially, there
is a lot of shaking (i.e. a lot of random heat) and then the shaking reduces in
intensity corresponding to an annealing schedule. The shaking of the bowl
should knock the BB out of local minima and, when the shaking is done,
land the BB in a spot more favorable than if the bowl had not been shaken.

4.2.1 Fixed points in random events

Evolutionary processes are dynamic stochastic processes. Although we
are dealing with outcomes of chance, probability often follows almost
deterministic laws. Randomness introduced by quantum mechanics, for
example, is modeled by probability models derived from the solution of
Schrédinger’s equation. The probability density functions are deterministic.

UAs typically measured by the standard deviation of the random variable describing the
noise.

88 Introduction to Evolutionary Informatics

A simpler example is the probability that the flip of a fair coin shows
heads. The probability p= % although describing a random variable, is
itself deterministic.

The most commonly used deterministicV property of probability is the
law of large numbers.2* Political pollsters, insurance companies, casinos
and quality control engineers rely on it. Although there are various forms
of the law of large numbers, it can be stated at a high level as follows:

The Law of Large Numbers: In the limit, the average approaches the
mean.

Until we define the terms, the definition might appear vague because of the
similarity of the terms mean and average. So let’s illustrate the law with
some examples. We flip a fair coin. If a heads occurs, we score one. If atails
shows, zero. Since the coin is fair, the mean value of a flip is u = % The
law of large numbers says that the more times a coin is flipped, the closer
the average approaches the mean. Outcomes of HHTHTHT correspond to
1101010 or an average of a = ‘7‘ = 0.571. A simulation of five coin flippers
is shown in Fig. 4.7. After every flip, the coin flipper evaluates the ratio
of the number of heads to the total number of coin flips. This is what is

-\ / V' '\\/\.L_/ W o i

4 P ot mean
b f\ T _«a/f\/‘ average

i /\/ coin flips |
EJ " n n 1 " i iaal i a1l " al i L4 L

1 10 100 1000 10,000 100.000

| =
T

12

Fig. 4.7. Five coin flippers flip a fair coin 100,000 times. The paths are different, but as the
number of flips increases, the average approaches the mean of one half.

Vit We here use “deterministic” in a loose mathematical sense. Mean square convergence
and convergence with probability one are both deemed deterministic in the context of our
discussion.

Determinism in Randomness 89

Fig. 4.8. Calculating r by throwing darts.

plotted in Fig. 4.7 for 100,000 coin flips. As the number of flips increases,
the average approaches the mean of % The paths are different but the end
result is the same.

Using the law of large numbers, we can estimate =7 = 3.14159... to
an arbitrary accuracy by throwing darts. Consider the circle in a square
pictured on the left Fig. 4.8. If the circle has a radius of r, then the ratio
of the area of the circle to the square is 7 = 0.7853981. .. If we have a
dart board as shown on the right in Fig. 4.8, then, under the assumption we
have no control over where the dart lands, the number of times a dart lands
inside a circle divided by the total number of dart throws will approach 7
according to the law of large numbers.

An even more interesting example of evaluating 7 by random
experiments is Buffon’s Needle,> an 18th century problem illustrated in
Fig. 4.9. Needles are dropped onto a floor where parallel lines are drawn.W

Wt If the needle is of length a and the separation between lines is b > a, then u = % We

have chosen b = 2a so u = %

90 Introduction to Evolutionary Informatics

\I//\ = | <
J/ ~

\,/\c\g/;{/
\)<\ \e/’/

Fig. 4.9. Calculating = by dropping needles. Buffon’s needle problem illustrates the law
of large numbers with a less obvious outcome than coin flipping. Here, the needle size is
half the separation between parallel lines. As the number of dropped needles increases, the
percentage of needles crossing a line approaches u = % Simulations of needle dropping
are shown in Fig. 4.10.

We’ll assume the lines are separated by two needle lengths. We also assume
the needle dropper does not have the ability to control the needle and it
lands randomly.* If a needle intersects a line, we score a one. Otherwise, a
zero. When the distance between lines is twice the Iength of a needle, the
curious result is that the mean of this experiment is © = = = 0.3183. In
Fig. 4.9, a third of the needles intersect the parallel lines and the average is
a= % = 0.3333. As the number of dropped needles increases, the average
will approach 1/x. This is illustrated in Fig. 4.10, where five simulations of
averages of the outcomes of needle dropping are all shown to converge to
the same point. Buffon’s needle shows, fascinatingly, that one can estimate
7 by throwing needles at a target consisting of straight lines. There are no
circles or arcs.

4.2.2 Importance sampling

Writing programs to converge to a desirable fixed point is the goal of
evolutionary programming. The task can be much more complex than

XWe learned from Bertrand’s paradox that care must be taken in using the term “random.”
For Buffon’s needle, Bernoulli’s PrOIR is applied. The location of the middle of the needle
is assumed to be uniform between lines and the angle of the needle is also assumed uniform.

Determinism in Randomness 91

mean =1/ -

needle throws

L
100 10010 10.000 100,000

Fig. 4.10. Five needle throwers throw a needle 100,000 times. The paths are different, but

as the number of throws increases, the average approaches the mean of u = % =0.3183...

those illustrated thus far and convergence may not be possible with
available computing resources. Active information in the program can be
used to accelerate the process. In determining percentages, this can be
accomplished using importance sampling.?®

Rather than random sampling of voters, political pollsters will sample
independent and undecided voters with greater frequency. Knowledge that
Democrats will probably vote for Democrats and Republicans will probably
vote for Republicans is translated into active information by the polisters,
allowing more accurate estimates with fewer queries. And that’s why there
is such interest in the so-called swing voters. They are more important in
determining the outcome and are therefore polled more heavily.

Another example of importance sampling is shownin Fig. 4.11. Awheel
is divided into five sections: A, B, C, D and E. What is the probability that,
when the top wheel is spun, the marker P points to the pie slice marked D?
In order for D to be selected let alone have its probability estimated, it will
take a large number of spins. Suppose, though, we know the probability
of the large segment marked A. This is knowledge that can be used to
decrease the number of queries required to find the probability of D to a
given accuracy. We remove A and, as shown in the bottom of Fig. 4.11,
form a new wheel of the remaining segments. Now the chance of getting
D on a spin is higher so the estimation of its probability will require fewer
spins.

92 Introduction to Evolutionary Informatics

Fig. 4.11. Importance sampling example.

4.2.3 Limit cycles, strange attractors & tetherball

Coin flipping, dart throwing and Buffon’s needle exemplify cases where
randomness converges to a single fixed solution. Other stochastic phenom-
ena can converge to two or more final values, called fixed points. An example
we call tetherball is illustrated in Fig. 4.12 for 10 games. The goal is to get
to the top for player 1 and to the bottom for player 2. A player is chosen to
serve at random and hit the ball a quarter of the way to one of the walls.Y On
the next turn, the player has a 25% chance to hit the ball an eighth of the way
to the walls. There is a 75% change the player will lose the same distance
to their opponent. The closer a player is to a wall, the greater chance the
player has to get the ball even closer. In each case, a success moves the ball
a quarter of the distance between the ball and the wall. When the ball is

YWe use one-fourth. In general any fraction of the distance can be used.

Determinism in Randomness 93

1 20 40 60

turns
1 L 1 I 1 1 1 L

1 20 40 60 80 100

Fig. 4.12. Ten simulations of tetherball. The end result is at either one of two fixed points
at the top or the bottom.

90% to the wall, the rule is that there is a 90% chance that, in the next step,
a quarter of the 10% will be covered, leaving the ball at 92.5%. There is a
100% — 90% = 10% chance the ball will move in the opposite direction
and end up at 87.5%. When the ball is almost at the wall, say 99% of the
distance, the chance it will move closer to the wall in the next iteration is
0.99. Eventually, every game will commit to one of the two walls.

Ten tetherball games are shown in Fig. 4.12 for 100 turns. In all cases
but one, the ball ends up either at the top or the bottom. The top and bottom
are the two fixed points of the process. For the single unresolved process
leftin Fig. 4.12, additional turns are required to determine which of the two
walls will be the final destination.

Iterations can also approach solutions of repeated periodic patterns
called greedy limit cycles.?” A similar phenomena is found in deterministic
chaos where iterations can approach strange attractors.?® Markov processes
can have numerous absorbing states?® to which the process converges.
The performance of these operations is akin to that seen in evolutionary
computing. Different runs of the program can result in convergence to
different fixed points.

4.3 Basener’s ceiling

A colleague walked into the office of Robert Marks, one of your humble
authors. Marks finished typing on his computer and turned to greet his
guest.

94 Introduction to Evolutionary Informatics

“What are you doing?” asked the guest.

Marks sat back in his overstuffed desk chair.

“I’m simulating evolution on a computer.”

The colleague’s eyes got wide.

“That is so exciting!” he blurted in a mocking tone. “When will | be
able to talk to it?”

Those familiar with computer simulations of evolution find this
question silly. But is it? With no goal in mind, evolution is popularly viewed
as a dynamic greedy improvement process, the only goal of which is to
increase fitness. If this is the case, what prohibits the process from ultimately
developing higher and higher information-rich complexity? Why wouldn’t
we expect Marks’s program to become self-aware and ultimately talk? Why
will an evolutionary program written to design an antenna never design a
delicious pancake or play chess? From a computer programmer’s point
of view, the answer is obvious. The computer programmer who wrote the
antenna design program designed the program to evolve antennas. It was
not designed to evolve skill at playing chess.

Mathematician William F. Basener shows that models of Darwinian
evolution have limited capability.3° Applying basic topology and dynamical
systems results, Basener proves “that every such evolutionary dynamical
system with a finite spatial domain is asymptotic to a recurrent orbit; to an
observer the system will appear to repeat a known state infinitely often. In
an evolutionary system driven by increasing fitness, the system will reach a
point after which there is not observable increase in fitness.” In other words,
a ceiling of improvement is hit and the evolutionary process or any other
search can proceed no higher. The “point after which there is not observable
increase in fitness” is the implicit target in such searches.

After exploring evolution as a dynamic process, Basener makes the
following observation.

“Our first conclusion is that chaos and nonlinear dynamical systems contribute
nothing to the ongoing increase in complexity or evolutionary fitness of biological
systems. Statements. . . suggesting that complexity of life results from nonlinear
chaotic systems, are contrary to mathematics.”

“Second, the evolutionary process driven by mutation-selection, in both
mathematical models and directly observed behavior, is that of a system going to
an equilibrium and staying there. It seems the discussion of evolution in biology

Determinism in Randomness 95

is that of an ongoing process but the study of mathematical models of evolution
is that of equilibrium dynamics. There is nothing inherent in the fitness-driven
mathematical system that leads to ongoing progress; to the contrary, mathematical
systems, both those which are specific models such as the quasispecies equation
and very general classes of models, have limits on the amount of increase in fitness
that occurs.”

In Chapter 6, we will talk about computer programs that purport
to demonstrate Darwinian evolution. The Avida and EV programs have
clearly defined Basener ceilings. So does Dawkins’s Weasel Ware. Once the
desired target is achieved, neo-Darwinists raise their voices in celebration
and shout “Eureka! Evolution has succeeded!” None of these computer
programs, however, are capable of evolving further. The very idea is
ludicrous.

Basener’s Ceiling is manifest in evolutionary simulations. Its applica-
bility to Avida and EV in Chapter 6 is obvious. Let’s spend some time here
with some other illustrative examples.

4.3.1 Tierra3!

Thomas Ray’s celebrated evolutionary algorithm Tierra32 was created in
1989 to test the claims of Darwinian evolution by computer simulation.
Historically, it was the first celebrated computer program to make such an
attempt. Ray was specifically interested in the information creation in the
Cambrian explosion where a diversity of complex organisms appeared in
a short period of time? although no such complexity had existed before.
The Cambrian explosion is an event recorded in the fossil record during
which there was a breathtaking shift in the appearance of life on earth.
Prior to this point, biological life consisted almost entirely of single-celled
organisms. However, in a brief period of geological time, there was an
“explosion” of biological forms in which most of the phyla now in existence
appeared suddenly in the fossil record. The causes behind this geological
event are debated within biological circles. Darwin viewed the Cambrian
explosion as a possibly viable objection to his theory of evolution.3? Stephen
Meyer has given a detailed analysis of why the Cambrian explosion is

ZA short time in relation to evolution. The Cambrian explosion occurred over about
75 million years.

96 Introduction to Evolutionary Informatics

more troublesome than ever for the theory of Darwinian evolution in light
of the recent understanding of the complexity of the rapidly developed
life forms.3* A quarter century before Meyer’s book though, Ray was
enthusiastic about his project. He wrote3®

“While the origin of life is generally recognized as an event of the first order, there
is another event in the history of life that is less well known but of comparable
significance: the origin of biological diversity and macroscopic multicellular life
during the Cambrian explosion 600 million years ago.”

Ray’s goal was to simulate this historical evolutionary event on a computer.

If artificial evolution could reproduce the exciting complexity observed
in the Cambrian explosion, researchers might also be able to produce
a plethora of fascinating forms analogous to those found in biology.
Essentially, once evolution (whether biological or artificial) has produced
a Cambrian explosion, the rest of evolution should proceed easily.

Ray’s hope was that the complexity of his system would reach a critical
mass. Once past this point, evolution’s creativity would be unleashed. Tierra
was Ray’s attempt to give evolution the critical mass it needed. Ray was
not initially deterred by failure. He reformulated Tierra three times each
starting with more complexity in an attempt to kick start the evolutionary
process.

Tierraproduced a variety of interesting phenomena, including parasites,
hyper-parasites, social behavior, cheating, and loop unrolling. However,
25 years after the introduction of Tierra, there has been no Cambrian
explosion or open-ended evolution. Tierra kept bumping into Basener’s
ceiling.

Though Ray described Tierra’s evolution as generating “rapidly diver-
sifying communities of self-replicating organisms exhibiting open-ended
evolution by natural selection30 others disagreed.3’

“Artificial life systems such as Tierra and Avida produced a rich diversity of
organisms initially, yet ultimately peter out. By contrast, the Earth’s biosphere
appears to have continuously generated new and varied forms throughout the
4 x 109 years of the history of life.”

Determinism in Randomness 97

These strong increasing trends imply a directionality in biological evolution
that is missing in the artificial evolutionary systems.38

The absence of a Cambrian explosion in artificial life at the hands
of a skilled programmer demands an explanation. If biological evolution
produced a Cambrian explosion, why does artificial evolution not do the
same? Our inability to mimic evolution in this regard suggests a deficiency
in our understanding of it. In the words of Feynman: “What | cannot create,
I do not understand.”3°

Evolution in Tierra can be characterized as an initial period of high
activity producing a number of novel adaptations followed by barren stasis.
It would appear that Tierra easily produced the novel information required
for a variety of adaptations. Why did it cease? If Tierra could produce novel
information, it should continue to do so as long as it was run.

A closer look at Tierra’s evolution reveals an important characteristic
of the adaptations. Tierra started with a designed ancestor to seed the
population. In other words, it presupposed something like an origin of life
and was concerned with the development of complexity after that point.
The ancestor provides initial information to Tierra. Adaptations primarily
consist of rearranging or removing that information, i.e. a loss of function.
Open-ended evolution requires adaptations which increase information.
However, such adaptations are rare in Tierra. Tierra’s informational
trajectory is the opposite of what evolution requires. It is dominated by loss
and re-arrangement with only minimal new information, instead of being
dominated by the production of new information, with minimal cases of
removal or rearrangement of information. Long-term evolutionary progress
is dependent on the generation of new information.

If Tierra is capable of generating new information even in small
amounts, does this not provide evidence that Darwinism can account for
new information? Many small gains will eventually accumulate into a large
amount of information. However, if that were true, we would see evidence
of it within Tierra. There ought to be a steady stream of information gaining
adaptations rather than the stasis actually observed.

Subsequent high-level analysis of Tierra confirms it hits the Basener’s
ceiling.?® Ewert et al.*! documents the history and performance of Tierra

98 Introduction to Evolutionary Informatics

and indicates that Ray now recognizes that Tierra’s performance is bounded.
Ewert et al. cites a recent podcast with Ray*? and writes

“Ray has recently stated that he regards Tierra as having failed to reach its goal.
He describes the evolution seen within Tierra as transitory. He no longer considers
himself part of the artificial life community, and is now studying biological
questions rather than those of artificial evolution.”

Ray’s Tierra hit Basener’s ceiling.

4.3.2 The edge of evolution

Biochemist Michael Behe notes that observed biological adaptation limits
the ability of evolution to generate diversity. A compelling case is made
in his book “The Edge of Evolution: The Search for the Limits of
Darwinism.”*3

The ability of a system to adapt is a sign of good engineering. Like
a banker shedding their suit coat when walking outside into 100° heat,
creatures can lose function to better interface with their environment. Cave-
dwelling salamanders lose operational eyes which are useless in their ponds
with no light. Loss of function is certainly adaptation, but not the kind of
adaptation that causes increased complexity.

Humans have had ample opportunity to adapt to the parasite that causes
malaria. Through billions of trials and potential for mutation, humans have
developed immunity to malaria. But, like some strong drugs, the immunity
has side effects that can kill you. One immunity humans have evolved is
sickle-cell anemia, a hereditary blood disorder where red blood cells are
abnormally shaped like sickles. The bad news is that sickle cell anemia
is a debilitating disease which, without careful management, will severely
shorten a human lifespan. The good news is that sickle-cell anemia provides
immunity to malaria. In quinine-free, malaria-infested areas, those with
sickle-cell anemia will be fit and begin to dominate the population. But,
like the salamander without eyes, the sickle-cell anemia occurred because of
loss of function. Malaria’s cure occurred at the cost of broken performance.
Any estimate of the required number of mutations required for primates to
evolve into man is dwarfed by several orders of magnitude by the chances
for evolution to create a constructive immunity to malaria.

Determinism in Randomness 99

In 1988, Richard Lenski at Michigan State, started an attempt to
evolve E. coli bacteria. Behe documents in detail the failure of the
experiment from the viewpoint of the creation of new information struc-
tures within the organism.** The journal Science celebrated the 25th
anniversary of Lenski’s experiment.*® Lenski’s experiment has tracked
58,000 generations (corresponding to over a million years for humans)
using trillions of cells and is the “most detailed source of information
on evolutionary processes available anywhere, dwarfing rival lab projects
and swamping field studies.” Like a cave salamander losing the use of its
unneeded eyes*®

“... the bottom line is that the great majority of even beneficial mutations have
turned out to be due to the breaking, degrading, or minor tweaking of pre-existing
genes or regulatory regions. There have been no mutations or series of mutations
identified that appear to be on their way to constructing elegant new molecular
machinery of the kind that fills every cell. For example, the genes making the
bacterial flagellum are consistently turned off by a beneficial mutation (apparently
it saves cells energy used in constructing flagella). The suite of genes used to make
the sugar ribose is the uniform target of a destructive mutation, which somehow
helps the bacterium grow more quickly in the laboratory. Degrading a host of
other genes leads to beneficial effects, t0o.”

This is evidence that Lenski’s experiment has hit Basener’s ceiling.

4.4 Final Comments

Computer-modeled evolution and computer search almost always uses
randomness. An iterative random process is modeled by determinism in
the form of laws such as the Law of Large Numbers and Basener’s ceiling.

Can a computer program be constructed such that Basener’s ceiling
is not applicable? We can certainly evolve an organism to the ceiling and
use the evolved entity as an initialization to a different more advanced
evolutionary pressure. Doing so could, in principle, generate unbounded
specified complexity. Note, though, that each stage of the evolution must
itself be carefully designed. For example, if the earth is hit with a meteor that
wipes out the dinosaurs and alters the evolutionary environmental pressure
to guide a subsequent stage in evolution, the change in direction must be just
right. If the meteor is too big, all life will be wiped out and the evolutionary
process stopped. If too small, dinosaurs will survive and the next stage in

100 Introduction to Evolutionary Informatics

evolution will not be sparked. G.K. Chesterton notes, “It is always simple to
fall; there are an infinity of angles at which one falls, only one at which one
stands.” Although there are potentially many ways to steer an evolutionary
process to higher complexity, there will be many more ways the process
can be derailed.

Evolvability with shifting fitness landscapes requires viable design at
each stage. In the next chapter, we dub this piecewise contribution that
guides the evolutionary process to high levels of specified complexity as
stair step active information. The Avida computer program uses stair step
active information on a small scale. The concept of gradually applying new
environmental pressure, dubbed evolution of evolvability,*” makes the stair-
case into a ramp. Either way, the path to significant specified complexity
must be carefully designed in order to succeed and does not easily punch a
hole into Basener’s ceiling.

Notes

1. D. Sheff, All We are Saying: The Last Major Interview with John Lennon and
Yoko Ono (Macmillan, 2010).

2. Portions of this section previously appeared in William A. Dembski, and R.J.
Marks 11, “Bernoulli’s Principle of Insufficient Reason and Conservation of
Information in Computer Search.” Proceedings of the 2009 IEEE International
Conference on Systems, Man, and Cybernetics, October 11-14, San Antonio,
Texas, USA (2009).

3. For a more thorough high-level explanation, see: S. Hawking, A Brief History
of Time (Bantam Books, 1996).

4. J. Bernoulli, Ars Conjectandi (The Art of Conjecturing) (1713).

5. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd
edition (McGraw-Hill, New York, 1991), pp. 537-542.

6. A. Fisher, C. Dickson, and W. Bonynge, Mathematical Theory of Probabili-
ties & Its Applications to Frequency Curves & Statistical Methods (Macmillan,
1922).

7. R.J. Marks 1l, Handbook of Fourier Analysis and Its Applications (Oxford
University Press, 2009).

For some specific examples of ill-posedness, see K.F. Cheung and R.J. Marks
I1, 11I-posed sampling theorems. IEEE Transactions on Circuits and Systems,
CAS-32, pp. 829-835 (1985).

10.

11.
12.
13.
14.
15.
16.

17.

18.
19.
20.

21.
22.

23.

24.
25.
26.
217.
28.

29.

Determinism in Randomness 101

R.J. Marks 1l, Posedness of a bandlimited image extension problem in
tomography. Opt Lett, 7, pp. 376-377 (1982).

. With his classic 1948 paper, Claude Shannon single-handedly founded the

field of information theory. This is the topic of Chapter 2.2.2.

. K.L. Jackson and L.E. Polisky, “Wearable computers: Information tool for the

twenty first century.” Virtual Real, 3(3), pp. 147-156 (1998).

Holy Rollers: The True Story of Card Counting Christians (2011 Documen-
tary). Director: B. Storkel.

Cover and Thomas, op. cit.

I. Ekeland, The Broken Dice (University of Chicago Press, Chicago, 1993).
Ibid.

J.M. Keynes, A Treatise On Probability (Macmillan Co., 1921).

Papoulis, op. cit.

E. Kasner and J.R. Newman, Mathematics and the Imagination (Dover
Publications, 2001).

D. Howie, Interpreting Probability: Controversies and Developments in the
Early Twentieth Century (Cambridge University Press, 2002).

Ibid.

Keynes, op. cit.

P. Gadenfors and N.E. Sahlin, Decision, Probability, and Utility (Cambridge
University Press, 1988).

J. Bertrand, Calcul Des Probabilités (1896).

W. Ewert, W.A. Dembski and R.J. Marks Il, “Evolutionary synthesis of
Nand logic: Dissecting a digital organism.” Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics. San Antonio,
TX, USA, pp. 3047-3053 (2009).

Simulated annealing was first proposed in: N. Metropolis, A.W. Rosenbluth,
M.N. Rosenbluth, A.H. Teller, and E. Teller, “Equation of state calculations
by fast computing machines.” J Chem Phys, 21(6), p. 1087 (1953).

See also R.D. Reed and R.J. Marks 1, Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks (MIT Press, 1999).

R.J. Marks 11, op. cit.

Papoulis, op. cit.

See, for example, R. Srinivasan, Importance Sampling (Springer, 2002).

R.J. Marks 11, op. cit.

D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University
Press, 1989).

J.G. Kemeny and J. Laurie Snell, Finite Markov Chains (Springer, 1976).

102

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.
41.
42,

43.

Introduction to Evolutionary Informatics

W.F. Basener, “Limits of chaos and progress in evolutionary dynamics.”
In Biological Information: New Perspectives, R.J. Marks IlI, M.J. Behe,
W.A. Dembski, B.L. Gordon and J.C. Sanford (eds.) (World Scientific,
Singapore, 2013).

Portions of this section were first presented in: W. Ewert, W.A. Dembski,
and R.J. Marks Il, “Tierra: The character of adaptation.” In Biological
Information — New Perspectives, R.J. Marks Il, M.J. Behe, W.A. Dembski,
B.L. Gordon and J.C. Sanford (eds.) (World Scientific, Singapore, 2013).

T. Ray, “Overview of Tierra at ATR Technical Information.” Technologies for
Software Evolutionary Systems, No. 15 (2001).

T.S. Ray, “An approach to the synthesis of life.” In Artificial Life 1l, C.G.
Langton, C. Taylor, J.D. Farmer, and S. Rasmussen (eds.), pp. 371-408
(Addison Wesley Publishing Company, 1992).

T. Ray, “Evolution of parallel processes in organic and digital media.” In
Natural & Artificial Parallel Computation: Proceedings of the Fifth NEC
Research Symposium, p. 69. Soc for Industrial & Applied Math (1996).

C. Darwin, On the Origin of Species by Natural Selection (Murray, London,
United Kingdom, 1859), pp. 315-316.

S.C. Meyer, Darwin’s Doubt: The Explosive Origin of Animal Life and the
Case for Intelligent Design (Harper Collins Publishers, 2013).

T.S Ray, “An approach to the synthesis of life.” In Artificial Life, C.G. Langton,
C. Taylor, J.D. Farmer, and S. Rasmussen (eds.), 2, pp. 371-408 (Addison
Wesley Publishing Company, 1992).

Ibid.

R.K. Standish, “Open-ended artificial evolution.” Int J Comp Intel Appl, 3(2),
pp. 167-175 (2003).

M.A. Bedau, E. Snyder, C.T. Brown, and N.H. Packard, “A comparison of
evolutionary activity in artificial evolving systems and in the biosphere.” Pro-
ceedings of The Fourth European Conference on Artificial Life, pp. 125-134
(MIT Press, Cambridge, 1997).

Ibid.

Ibid., R.K. Standish, op. cit.

Ewert et al., op. cit.

T. Ray and T. Barbalet, Biota live #56, “Tom Ray on twenty years of Tierra.”
(2009) podcast http://poddirectory.com/episode/2485604/biota-live-lite-56-
tom-ray-on-twenty-years-of-tierra-present-and-future-october-16-2009 (URL
date May 2, 2016).

M. Behe, The Edge of Evolution (Free Press, New York, 2008).

44,
45,

46.

47.

Determinism in Randomness 103

M. Behe, “Experimental evolution, loss-of-function mutations, and the first
rule of adaptive evolution.” Quart Rev Biol, 85(4), pp. 419-445 (2010).

Ibid.

E. Pennisi, “The man who bottled evolution.” Science, 342, pp. 790-793
(2013).

M. Behe, “Lenski’s long-term evolution experiment: 25 years and count-
ing.” November 21, 2013 2:50 PM, Evolution News & Views. http://www.
evolutionnews.org/2013/11/richard_lenskis079401.html (URL date May 2,
2016).

N. Colegrave and S. Collins, “Experimental evolution: Experimental evolution
and evolvability.” Heredity, 100(5), pp. 464-470 (2008).

M. Kirschner and J. Gerhart, “Evolvability.” Proceedings of the National
Academy of Sciences of the United States of America 95(15), pp. 8420-8427
(1998).

5

CONSERVATION OF INFORMATION
IN COMPUTER SEARCH

“I have deeply regretted that I did not proceed far enough to understand something
of the great leading principles of mathematics, for men thus endowed seem to have
an extra sense.”

Charles Darwin?

5.1 The Genesis

When a new paradigm is introduced, there is often skepticism and criticism.
At times critics sharpen a theory. At other times the paradigm is distracting
and wrong and critics rightfully bury it. As time passes and a valid new idea
is vetted, a once controversial idea often becomes surprisingly obvious.
Such is the case with the law of conservation of information (COI) in
computer learning and search as popularized by the No Free Lunch Theorem
(NFLT).2

Great ideas often have a distributed genesis. Calculus was indepen-
dently discovered by Newton and Leibniz. The Kolmogorov—Chaitin—
Solomonov model of algorithmic information theory was independently
proposed by three men.2 Other examples are numerous. The Karhunen—
Loéve expansion,? the Papoulis-Gerchberg algorithm# and the Whittaker—
Kotelnikov—Shannon sampling theorem® are examples of hyphenated
tributes to 20th century mathematical landmarks discovered independently
by more than one person.

Likewise, COIl looks to have been independently identified by a number
of researchers. Perhaps the earliest statement concerning COI in computers
comes from Lady Lovelace (Augusta Ada King), recognized as the first

8As we noted in Chapter 2.2.1.

105

106 Introduction to Evolutionary Informatics

computer programmer and namesake of the computer language Ada.
Bringsjord et al.® paraphrase Lovelaces’s view from the 19th century.

“Computers can’t create anything. For creation requires, minimally, originating
something. But computers originate nothing; they merely do that which we order
them, via programs, to do.”

Likewise, in 1956, without mathematical elaboration, information theory
pioneer Leon Brillouin wrote’

“The [computing] machine does not create any new information, but it performs
a very valuable transformation of known information.”

Mitchell seems to have originated a mathematical basis for COI
in 1980.% He noted that, in order for computer programs to learn, the
programmer must insert their own bias.

“If consistency with the training instances is taken as the sole determiner of
appropriate generalizations, then a program can never make the inductive leap
necessary to classify instances beyond those it has observed. Only if the program
has other sources of information, or biases for choosing one generalization over
the other, can it non-arbitrarily classify instances beyond those in the training set.”

“[We] use the term bias to refer to any basis for choosing one generalization over
another, other than strict consistency with the observed training instances.”®

Without bias in the design of the program, learning cannot occur beyond
data already observed.

More recently, COI has been popularized by Schaffer® and Wolpert &
Macready.1% Schaffer showed that a computer program that learns well in
some instances will work poorly in another:

“[PJositive performance in some learning situations must be offset by an equal
degree of negative performance in others.”

After proving his proposition, Schaffer compares the ability of a program
that learns well in all instances to a perpetual motion machine. Specifically:

“...a learner [without prior knowledge] . . . that achieves at least mildly better-
than-chance performance . . . is like a perpetual motion machine.”

Bltalics are in the original quotation.

Conservation of Information in Computer Search 107

And Wolpert and Macready,*! who coined the term No Free Lunch in regard
to computer search originality, write that search can be improved only

“...[by] incorporating problem-specific knowledge into the behavior of the
[optimization or search] algorithm.”

Indeed,

“...unless you can make prior assumptions about the ... [problems] you are
working on, then no search strategy, no matter how sophisticated, can be expected
to perform better than any other.”12

Conservation of information was initially controversial. After an
oral presentation of his paper, A Conservation Law for Generalization
Performance, Cullen Schaffer noted!3

“About half of the people in the audience to which my work was directed told me
that my result was completely obvious and common knowledge—which is perfectly
fair. Of course, the other half argued just as strongly that the result wasn’t true.”

We now show that, in agreement with the first half of Schaffer’s audience,
conservation of information is “completely obvious”.

5.2 What is Conservation of Information?

To introduce the obviousness of COl, consider the following illustration.14
If we enter a room where cards from a well shuffled standard 52-card poker
deck are laid randomly face down on a table, our chances of turning over
the ace of spades (A#) in less than five card flips is not dependent on
how the cards are chosen. Using the result of the first flipped card, say
the K&, is there any way to determine the location of the next move that
improves the probability of success? Obviously not. After five card flips,
no matter how clever the method used and no matter what set of rules used
by a search algorithm, the probability, p, of choosing the A# is the same,
namely

5
— > —0.0962.
P =5

COl states that, without knowledge of a target or search space structure, one
search procedure will work, on average, as well as any other search. The

108 Introduction to Evolutionary Informatics

Fig. 5.1. Ilustration of conservation of information on a waterbed.

choice of the search algorithm is immaterial. There is no reason to suspect
that one algorithm will perform better than another.

Here is an illustration of COI using a waterbed metaphor. Because
water is incompressible, if you push down on a framed waterbed at one
point, it will bulge somewhere else. Consider Fig. 5.1 which is similar to a
figure in Schaffer’s seminal paper.>-16 Each of the six images in the figure
corresponds to a specific search algorithm across a space of problems.
The square marked 1 is flat, illustrating an algorithm that performs exactly
the same on all problems. In 2, every place the waterbed is pushed in is
labeled with a “0” and every place it bulges with a “+”. A bulge means
that the algorithm performs better than average on a set of problems. An
indentation indicates the algorithm does worse. For every place there is a
bulge in 2, COI dictates there must be a corresponding indentation so that,
on average, the algorithm here illustrated performs, on average, like the
algorithm illustrated in 1. The amount of water in the waterbed remains
the same, so the average water depth is the same in both cases. As seen in
square 3, the shapes of the indentations and bulges need not be the same.
They need to, rather, average to the same level as in 1. Design expertise

Conservation of Information in Computer Search 109

or other sources of knowledge are needed to choose a better than average
search on a bulge and away from indentations.

Squares 4, 5 and 6 illustrate violations of the law of information
conservation. In 4, the algorithm performs better than that in 1 for a number
of problems without doing worse anywhere else. A waterbed cannot bulge
at a number of points without being indented somewhere else. Likewise,
square 5 illustrates many indentations without any bulges. Conservation
of information requires a balance between better and worse performing
algorithms. Square 6 violates this requirement because the waterbed bulges
more than indents.

This property was intuitively obvious to artificial intelligence pioneer
Marvin Minsky who, in a transcribed exchange with proponents of
evolutionary programming published in 1970, comments on evolutionary
learning algorithms®’:

“When one talks about a learning machine of this type [evolutionary search], one
really ought to characterize the class of problems for which it is good, ... What
class of problems is your technique [evolutionary search] good at solving? It is
not enough to say it is good at [solving] all.”

Minsky went on to emphasize

“l am asking you what class of problems you think this technique [evolutionary
search] is good at solving, and | am saying, in effect, that | will not accept all as
an answer.”®

Subsequent development of the law of COIl confirmed Minsky’s
concerns.

5.2.1 Deceptive counterexamples

There are search scenarios that look like they violate COl, but they don’t.
Indeed, COI, as demonstrated by its codiscovers, is a mathematical law that
cannot be violated. One example that appears to defy COI but doesn’t is
coevolution,!8 a search algorithm we will deal with in detail later in this
chapter. Here is another simpler deceptive example.

Cltalics added.

110 Introduction to Evolutionary Informatics

Fig. 5.2. Can searching for the treasure get you a free lunch?

Illustrated in Fig. 5.2 is an example that, on first impression, seems
to violate conservation of information.1® One search seems to always give
better results than any other. Consider a treasure buried in one of three
possible locations on a desert island. Two rival pirates, X and Y, arrive at
the island with the intent of digging up the treasure. Each pirate has to pick
a strategy consisting of choosing the order of locations to be visited. If one
of the pirates searches a location after his rival has already looked, he will
not find the treasure. We will assume that the treasure is equally likely to be
found in any of the locations. As illustrated in the figure, assume Pirate X
searches for the location in a specific order such as (1,2,3). Assuming the
location of the treasure at each point is equally probable. Pirate Y uses a
related but different search order: (2,1,3). Again, the probability of finding
the treasure at any of the locations is one out of three. Each strategy alone
will thus have the same performance, as dictated by COI.

However, this changes if both pirates are hunting for treasure at the
same time. Pirate Y has chosen locations such that in two of the three cases,
he will have searched a location and taken the treasure because Pirate Y is
always one step ahead of Pirate X. If the treasure is at location 1, Pirate X
will get the treasure. However, if the treasure is located in either location
2 or 3, Pirate Y will have checked the locations first, and thus Pirate Y
will win. Pirate X’s strategy gets the treasure one in three times, whereas
Pirate Y will claim the treasure two out of three times. In this sense, the

Conservation of Information in Computer Search 111

strategy of Pirate Y is better than the strategy of Pirate X. This is true despite
the two strategies performing the same when considered separately.

Due to the generality of the conservation of information results,
any exception to the general COIl principle, such as these unbalanced
performance results, gives pause. Does such a basic and simple variation
cause conservation of information to cease to be universally valid? And if
conservation of information is violated here, should there not be ways to
exploit the failure to construct superior search algorithms?

The answer to these questions is no. The apparent advantage of Pirate Y
over Pirate X is not a failure of COI. One strategy may beat another head-
to-head, but when compared to a group of related strategies, losses and
wins will balance out. Victories against one strategy are paid for by losses
against another. Consequently, there exists no generally superior search
algorithm.

The transitive property necessary to establish an overall superior search
algorithm is inapplicable to search.?’ Pirate Y has the advantage over
Pirate X. A third treasure hunter, Pirate Z, chooses the sequence (3,1,2)
which beats Pirate Y. Thus Pirate Z beats Pirate Y who beats Pirate X. If
transitivity applies, Pirate Z beats Pirate X. But the opposite is true, Pirate X
beats Pirate Z. Details are in Table 5.1.

Every strategy has an advantage against some other strategy, but also
has another strategy with an advantage over it. Thus, no way exists to gain

Table 5.1. Inapplicability of transitivity example. As shown in
Fig. 5.1, Pirate X’s search order is (1,2,3) and Pirate Y’s order
is (2,3,1). Not shown is Pirate Z with order (3,2,1). All possible
orders are now represented. This table shows who wins (always
with a probability of %) when the Pirates are paired. Z beats Y and
Y beats X. Transitivity would dictate then that Z beats X. but the
opposite is true. Transitivity does not hold in search.

Teams — zY YX XZ
Treasure Location |, JWinner|
1 z X X
2 Y Y X
3 z Y z

Overall Winner — Z beats Y Y beats X X beats Z

112 Introduction to Evolutionary Informatics

an absolute advantage over all other strategies. The lack of an absolute
advantage limits the sense in which one strategy can be better than another.
One can beat a specific algorithm, but not in a way that actually performs
better against all other algorithms. Pirate Y is only able to outperform his
rival X if he somehow knows the strategy his rival will employ. Thus,
as would be expected from the idea of the COI, knowledge of the rival’s
strategy is necessary in order to beat it. This is externally applied knowledge
about the search that can be used to Pirate Y’s advantage.

Consider a randomly chosen search algorithm. This is equivalent to
randomly choosing which strategy to employ. Playing against this strategy
will produce the average performance of all other strategies. This average is
the same regardless of the opposing strategy, So no way exists to consistently
best a random search algorithm.

To make a point with an extreme example, consider an alternate game
scenario where Pirate X and'Y decide who keeps the treasure by the majority
of wins in three quick games of rock-paper-scissors. If Pirate Y knows the
strategy of Pirate X, e.g. X always shows “rock”, Pirate Y can win all
three games. One search’s knowledge of the details of another can assist in
winning the contest but does not violate COI. Knowledge of an opponent’s
strategy can be translated into a comparatively better search.

5.2.2 What does learning have to do with design?

Mitchell and Schaffer both refer to COIl in regard to learning. But our topic
deals with search algorithms with attention to evolutionary processes. What
does learning have to do with search? The answer is that most machine
learning is done by a search. In this section, we’ll give a short example. The
topic is a digression from our central theme, so impatient readers might
want to skip this section.

5.2.2.1 Sumo wrestlers can’t play basketball

Here’s an example of learning. Sumo wrestlers are very different in
appearance from professional basketball players. Sumo wrestlers are
heavier than average and basketball players are taller than average. We want
to design a black box classifier to differentiate between the two. When a
person’s physical data is input into the classifier box, the box will tell us

Conservation of Information in Computer Search 113

whether that person is a sumo wrestler or basketball player. In the case
of supervised learning,?!-22 the box has tunable knobs whose values are
set in accordance to examples of sumo wrestlers and basketball players.
We are given a group of example sumo wrestlers and basketball players
specifying their identity as such. We use these examples to turn the knobs
so the classifier operates accurately. Here is where the computer search
comes in. The values to which the knobs are eventually set are determined
by a search procedure, possibly evolutionary, to tune the box’s performance
in accordance to some design criterion.

The firststep isto define features. What features separate sumo wrestlers
from basketball players? Height and weight immediately come to mind. So
we collect some data and form the plot shown in Fig. 5.3. Next we choose
a method of classification. Suppose we decide we would like to separate
the two classes with a line. The fitness is determined by the number of
misclassifications. But which line? With attention again to Fig. 5.3, we can
choose a point A on the left side and B on the right, connect them with a
line and count the number of misclassifications. Since there are 30 each of

800 —

%

'g o}
700¢ ,E;

5 B

v
600 2 o
500+ ;

A Sumos

(®) - o]
400} a
m B . =
2]
B .
0 ® m @ m Eﬂuu
=g] a . e ®°
2°3 .
] & o0 @
200 - : e 8 ® e
Basketball Players Height (feet)

100t L -

56 58 6 62 64 66 68 7 72
Fig.5.3. Examples of the height and weight of 30 sumo wrestlers (squares) and 30 basketball
players (circles).

114 Introduction to Evolutionary Informatics

200

400

800

200 400 600 800

Fig. 5.4. The number of accurate classifications for different choices of A and B in Fig. 5.3.

sumos and basketball players, the line drawn in Fig. 5.3 has one correct
classification and 39 misclassifications.

Finding the settings of A and B to minimize misclassifications is where
the search comes in.2% Normally, the number of parameters (knobs to turn)
in a search can be in the hundreds or even the thousands.2* In our example,
there are only two parameters. Each pair of values of A and B defines a line
which has a fitness value determined by the number of misclassifications.
For simple problems, application of a search is not necessary.® A plot
of the fitness surface can be made and is shown in Fig. 5.4 for both A
and B ranging from 100-800 pounds. All 60 sumo/basketball player data
points are correctly classified for the small shaded triangle at the top of
the landscape. Included in this area is the point of A = 175 pounds and
B = 330 pounds. A line for these values is plotted on the left hand side of

dVerifying this is tedious and requires counting the misclassified little squares and circles
in the figure.

€When the number of knobs is small, the optimal solution can often be found by examining
all possible settings. This is what is done in computing the fitness function in Fig. 5.4. Doing
so is called exhaustive search.

Conservation of Information in Computer Search 115
—® ————————

600 1B]

400+ - m B 4 B =
Sumos

Basketball Players

6 7

Fig.5.5. (LEFT) A plot of sumo and basketball player data repeated from Fig. 5.3. The line
of A = 175 pounds and B = 330 pounds, corresponding to a maximum of the fitness curve
in Fig 5.4, cleanly separate the two classes. (RIGHT) The data is discarded and the line now
becomes the foundation of our classifier. Give me an athlete’s height and weight and | will
announce Sumo or Basketball player depending on whether the point is above or below the
line in the right hand figure.

Fig. 5.5. The line is seen to cleanly differentiate the sumo wrestlers from
the basketball players.

The line dividing the sumo wrestlers from the basketball players has
been learned from the data. In fact, the data can be discarded and the
classifier shown on the right hand side of Fig. 5.5 results. When a new
person enters, we take their height and weight. If the point lies above the
line, they are a basketball player. If below the line, it’s a sumo wrestler.

After we looked at the data plot, we restricted ourselves to a line
separating the two data sets. From our examination of the problem it seemed
like a good idea. This is a very restrictive classification approach® but
happens to work in this case. Note that because we placed the sumos above
the line and basketball players below the line, we have introduced a bias.
What if we had done the opposite? Let’s place the sumo wrestlers below the
line and the basketball players above. Knowing what we know, this is not
a wise thing to do, but certainly is a classifier option. Repeating the same
process as before, the fitness function for the reversal is shown on the top of
Fig. 5.6. The optimum now is only 35, a bit over half of the available data
points. Here, A = 510 and B = 100. Previously, we were able to separate
all 60 data points. The new “best” line is shown at the bottom of Fig. 5.6.

116 Introduction to Evolutionary Informatics

it
'!ih‘n.‘
Iy

‘ Basketball Players

100

56 58 6 62 64 66 68 7 ,'3

Fig. 5.6. A poor classifier optimized for discriminating sumo wrestlers from basketball
players.

There are certainly performance biases imposed by the classifier choice.
We see the need for knowledge about our simple choice of whether the sumo
wrestlers or basketball players are above the discrimination line. If, on the
left figure in Fig. 5.5, we always choose a line connecting the points D on
the bottom horizontal line and C on the top, we will never end up with a
very good classifier.

Conservation of Information in Computer Search 117

Fig. 5.7. An “exclusive or” (XOR). The circles correspond to a logic value of 0 and the
squares to a logic value of 1.

An often cited and simple example where the choice of a line classifier
will never give 100% accuracy was suggested by Minsky and Pappert.26-f
Consider the four points shown in Fig. 5.7. Two squares and two circles
are in diagonally opposite corners. This represents an exclusive or (XOR)
logic operation.9 The circles represent zeros and the squares represent ones.
There exists no line which can successfully separate the squares from the
circles. For this and many other cases, a linear classifier will not work. So
the classifier chosen must be matched to the problem to be solved. The
linear classifier doesn’t work here. But for discrimination between sumo
wrestlers and basketball players, a line works fine.

5.2.3 A man-in-the-loop sneaks in active information

Those who write software can spend hours debugging their programs.
Authors of evolutionary programs can spend significant time tuning
the parameters of their search algorithms. When proponents of search

fBoth Minsky and Pappert are pioneers in the field of artificial intelligence.

9t The XOR operator is commonly denoted by the symbol @. It is defined by four
relationships: 00 = 0,001 =1,100 =1and 1@ 1 = 0. These are the four
points shown in Fig. 5.7.

118 Introduction to Evolutionary Informatics

algorithms publish their results they almost never publish documentation
concerning this man-in-the-loop.

The classification example we used distinguished between basketball
players and sumo wrestlers. The features used for the classification were
the athletes’ height and weight. We didn’t tell the whole story though. We
would like the classifier to learn rather than memorize the examples we
supply. If we wanted to memorize, we could just make a database of all of
the weights and heights of the athletes and the corresponding classification
as a basketball player or sumo wrestler. Then, when presented with an
unknown athlete, we could look through the table and find which athlete’s
height and weight is closest. If the closest data points belong to a sumo
wrestler, we announce that our unknown athlete is a sumo wrestler.

Learning, on the other hand, attempts to recognize examples outside of
the provided training set. The true measure of the performance of the sumo
wrestler/basketball player classifier is how the classifier works on athletes
the classifier has not seen before. For this reason, a common practice is
to set aside some of the examples for the purpose of testing. The data is
therefore separated into two parts: the testing set and the training set. After
training the classifier as best we can, the test data is applied to see how well
the classifier performs on athletes it has never seen before. Doing so is a
test of how the classifier performs outside of the training data and therefore
how well it learns rather than memorizes.

One of your humble authors (Marks) co-founded and co-chaired the first
IEEE conference on application of computational intelligence, including
classifiers, to financial data.?’ Initially, some novice participants were
excited that they had trained an artificial neural network?® to forecast
the market. Neural networks are trained using a search algorithm. The
trainers of the neural network followed the prescribed method of randomly
separating the data into the training and testing sets." In some instances,
the results were remarkable. We were all going to be rich! As is often
the case with things that are too good to be true, these results were too
good to be true. The problem was this. Neural networks have a number
of parameters, including the number of hidden layers and the number of

hA third corruptible data set, dubbed the validation data, is commonly used to test the
classifier after training.

Conservation of Information in Computer Search 119

neurons in each hidden layer. Each parameter can be viewed as a knob
to tune. Each neural network responds differently to the financial data.
So the computer programmer who was training the neural networks would
choose its architecture, train, and then test the result. The performance of the
trained neural network on the testing data then informed the programmer
how well the neural network did. But maybe the programmer could do
better. In hopes of finding a better neural network, another neural network
architecture was chosen and the process was repeated. The programmers
were performing a search for a search with a man-in-the-loop. After
repeating this process several times, the programmers happened upon
a neural network architecture that worked quite well on their financial
data. The problem, however, was that repeated use of test data from the
same financial data set had corrupted the impartiality of the test data.
The test data had become training data for the man-in-the-loop. When the
programmers placed their neural networks online and tried to trade with
real-time data, they were discouraged. Their program didn’t work and they
lost money. In terms of learning versus memorization, this is not surprising.
The programmers use of a man-in-the-loop essentially resulted in a neural
network that memorized both the training and test data.

Will a neural network or any other learning machine ever be able to
make significant profit in stock trading? Retired St. John’s University Pro-
fessor John F. Marshall,2° the first ever Professor of Financial Engineering
and founder and first President of the International Association of Financial
Engineering, was asked how to judge a programmer who claimed they
trained a computer to beat the market. Marshall’s wise response was not to
look at the theory and methodology by which their machine was trained,
but rather to simply assess the programmer’s income by asking what kind
of car they drove.2 Ultimately, the proof of a design is in its performance.

5.2.3.1 Back room tuning

Search algorithms have numerous parameters that require tuning. After
one search algorithm has been applied unsuccessfully, the programmer can
tweak the parameters of the search algorithm or even try a different search
algorithm.

Here’s a specific example. David Thomas, an intelligent design critic,
offered a software implementation of an evolutionary algorithm he claimed

120 Introduction to Evolutionary Informatics

toppled intelligent design.3! Thomas wrote32:

‘If you contend that this algorithm works only by sneaking in the answer into
the fitness test, please identify the precise code shippet where this frontloading is
being performed.”

So we did.33 Many sources of active information were identified. One was
code showing that Thomas was using a man-in-the-loop. We identified a
smoking gun snippet of code. Here’s an excerpt from our critique:

“Thomas published a C* version of his algorithm34 after posting his original
description. Our focus has been on the Fortran version of the algorithm because
that is where the most detailed results were presented. For the most part, the
Cct+ algorithm works the same as the Fortran algorithm but some differences
should be noted. The minimum interchange count system has been modified. The
initialization restricts the interchange used count to always be at the maximum.3®

X = (double) rand() 7/ (double)RAND MAX; num =
(int) ((double) (m_varbnodes*x); num = m_varbnodes; //
over-ride!!!

“The claim that no design was involved in the production of this algorithm is
very hard to maintain given this section of code. The code picks a random count
for the number of interchanges; however, immediately afterwards it throws away
the randomly calculated value and replaces it with the maximum possible, in this
case, 4. The code is marked with the comment “over- ride!!!,” indicating that this
was the intent of Thomas. It is the equivalent of saying “go east” and a moment
later changing your mind and saying “go west.” The most likely occurrence is
that Thomas was unhappy with the initial performance of his algorithm and thus
had to tweak it.”

We will revisit Thomas’s work in Chapter 6.4.1

5.3 The Astonishing Cost of Blind Search in Bits

COl states that any search algorithm performs, on average, as well as any
other search algorithm if there is no knowledge about the location of the
target or the search space structure. Thus, random sampling of the search
space (blind search) can be as good as any other in such a case. If one is
performing a search with only a small number of outcomes, such as looking
for A4, this is not a problem. We are assured of success in no more than
52 trials.

Conservation of Information in Computer Search 121

For even intermediately sized problems, though, random sampling of
the search space cannot be performed without knowledge about the search.
The universe is neither big enough nor old enough to allow such searches.
Neither is a googol of parallel universes. In regard to evolutionary search,
artificial intelligence pioneer Seymour Papert said as much in the following
comment from a dialog transcribed in 1970%:

“If you are looking for a function about which you know nothing except that it
is in some very, very large space of functions, | contend it will take a very, very
long time to find it. The only way out of the exponential blowup is by avoiding the
model of a blind hunt in an arbitrary space of functions, for example, by building
very specific structured knowledge into the system, but what you have described
[evolutionary search] is a blind hunt.”!

Papert was wrong in equating evolutionary computing to a blind hunt in the
sense each is a different search algorithm. COI dictates that evolutionary
programming will work better than average on some problems and worse
than average on others. But he is right in stating that blind search will take
a “very, very long time.”

We will now measure the difficulty of a blind search in bits rather than
seconds. The result is astonishing.

15.3.1 Analysis

Let’s analyze the proverbial “monkeys at a typewriter” problem of
producing prose by chance by using a blind search. Consider the phrase
METHINKS*IT*IS*LIKE*A*WEASEL from Shakespeare’s Hamlet. The
phrase contains L = 28 letters chosen from an alphabet of N =
27 characters (26 letters and a space.) If we repeatedly choose 28 letters
randomly, how many trials will we need to reach the target WEASEL
phrase? There are

NL = 2728 — 1,20 x 10

possible outcomes from the characters available. If we take queries without
duplication (i.e. once a random phrase is generated, it is never tested again)
we expect to, on the average, find the phrase after half of the possible

It Italics added.

122 Introduction to Evolutionary Informatics

solutions have been queried.
1o 40

Recall that Shannon information can be thought of as measuring probability
in terms of coin flip predictions. Six bits of information is equivalent
to the probability of successfully forecasting six flips of a fair coinJ To
differentiate N = 27 different characters, a total of b = log, N =
log, 27 = 4.75 bits per character is needed. For a string of L = 28
letters, then a total of Llog, N = 28log, 27 = 133 bits is needed. If
Q = 0.60 x 10*° queries are made, each requiring log, N = 133 bits, the
total number of bits assigned to the search is

B = Wb = 8.0 x 10 bits. (5.1)

That’s a lot of bits! A Blu-ray disc stores 50GB and is 1.2 mm thick.
Incredibly, in order to store 8.0 x 10*! bits, one would need about 24,000
stacks of discs each as tall as the Milky Way galaxy is wide.X All of this for
a search for the simple phrase

METHINKS*IT*IS*LIKE*A*WEASEL.

In general, if we have an alphabet of N characters and a message of
length L characters, the number of bits required for a successful search
without replacement from Equation (5.1) is on average

1 .
B= ENL log, N bits. (5.2)

For a given number of bits, B, and an alphabet with N characters, this
transcendental equation can be solved to find the length L of a specific
phrase that can be found using a blind search.

It From the equation for information, p = 2=/, Six bits of information thus corresponds to
odds of 26 = 64 to one.

K+ There are 8 bits per byte so the Blu-ray stores 400 giga bits. For 8.0 x 1041 bits, that’s
2.0 x 1029 Blu-ray discs. At a thickness of 1.2 mm per disc, this translates to a stack of discs
2.4 x 1023 km. Using a Milky Way diameter of 1041 km gives a stack of Blu-rays equal to
24,000 Milky Way diameters.

Conservation of Information in Computer Search 123

5.3.2 The cost

We will now show that, with no prior knowledge, there are not enough
computational resources in the universe to produce a meaningful target
phrase.

Given B bits, the length of a specific message for which we can search
is given in Table 5.2. For perspective, we can relate the number of bits to
the number of cubic millimeters' in various volumes. The volume of an
Olympic-sized swimming pool is about 102 cubic millimeters. This is the
number of bits, on average, required to search for aphrase only L = 7 letters
long. The entries in Table 5.2 increase stepwise in volume starting from the
swimming pool and ending with the observable universe. The volume of
the observable universe, in cubic millimeters, is about 10%°. For B = 108°
bits and N = 27, Equation (5.2) dictates a message of only length L = 61
letters can be found. Ronald Reagan’s quote

“FREEDOM IS NEVER MORE THAN ONE GENERATION AWAY
FROM EXTINCTION”

is 62 characters long including spaces. We’re one character short.

Table 5.2. The number of bits, B, to search for a
message of length L, when the alphabet is of size
N = 27. For perspective, corresponding sizes are
given for various volumes in cubic millimeters.

Size (cubic mm) B L
Olympic Swimming Pool 1012 7
Volume of Lake Superior 1021 11
Volume of the earth 10%0 20
Volume of Jupiter 1033 22
Volume of the Sun 1036 24
Volume of the Milky Way 10%9 47
Observable universe 1089 61

IA cubic millimeter is equal to a microliter.

124 Introduction to Evolutionary Informatics

Maybe we are thinking too small. Assume the age of the universe is
14 billion years. We divide that time up into picoseconds™ and assume,
for each picosecond, there are 108 cubic millimeters. In space-time, that’s
over 10° cubic millimeter — picoseconds. How far does B = 101° hits
get us? Only to L = 79 characters — one short of the C.S. Lewis quote:

“AYOUNG MAN WHO WISHES TO REMAIN AN ATHEIST
CANNOT BE TOO CAREFUL OF HIS READING”

We are not even close to the letters on a single page of a book. And we
are not even using numbers or punctuation. Perhaps the millimeter is too
large a measurement. Let’s measure the volume of the universe, instead, in
cubic Planck units. One Planck volume = 17.692557 x 10~1%4 m3 and the
age of the universe in Planck time (=5.39 x 10~#* seconds). We obtain the
space-time volume measure of 1024 Planck volume x Planck time units.
And B = 10%* bits allows us to search for a phrase of only a length of
about L = 1609.

When stripped of punctuation, Lincoln’s short Gettysburg Address®’
contains L = 1422 characters, including spaces. We are not even close
using Planck time and volume. The computational resources for a blind
search are astonishingly large. Our universe is too small and too young.

So let’s assume an even bigger number. Suppose there are of 101000
parallel universes in the so-called multiverse and these universes are the
same size and age as ours. Will this at least give us the Gettysburg
Address? No. B = 10124 hits gives us only L = 869 characters." We
need 1422.

To get the Gettysburg Address, we require 10792 multiverses.

This simple exercise illustrates conclusively that, in the absence of
information, a blind random search is not sufficient to perform successfully

MA millionth of one millionth of a second.
Nt As L becomes large, we conclude from Equation (5.2) that, asymptotically, log B becomes
proportional to the message length. Specifically, log B — L log N. Thus

L(log[B/ log[N = 1244/ log1o[27 = 869.11])

Conservation of Information in Computer Search 125

on even intermediately sized problems. Knowledge about the search space
and/or the target location is essential for success.

5.4 Measuring Search Difficulty in Bits

The measure of a search problem’s difficulty in the absence of any
information is called endogenous information.® The degree to which the
information is reduced is dubbed the active information and quantitatively
measures the degree to which the additional knowledge has assisted in the
performance of the search.®

Here is a more detailed discussion of this idea.

5.4.1 Endogenous information

We denote the endogenous information using the notation I,.

The 10-bit lock in Fig. 5.8 shows another view of search difficulty
measured in bits. There are 10 up-down switches, all of which need to
be situated in the correct position to open a lock. An up position is one
and a down position is zero. If there is only one working combination,
the difficulty of the search is ten bits. The chance of choosing the correct
combination is p = (%)10 and I = — log, p = 10 bits.

Inthe search for the perfect pancake, assume there are 10 billion recipes.
If only one of these recipes is acceptable, then the endogenous information
of the search is

I = log, 10,000,000,000 = 33.2 bits.

Fig. 5.8. A 10-bit lock.

OFor given knowledge about a search, the search difficulty in bits can be reduced by varying
amounts depending on the cleverness of the search programmer.

126 Introduction to Evolutionary Informatics

The difficulty of the search is therefore about the same as successfully
predicting the outcome of 33 sequential flips of a fair coin. There are
about 2 x 10184 Planck volumesP in the visible universe. Identifying a
single Planck volume target in the visible universe then corresponds to an
endogenous information of 7 = log, 2 x 108 = 612 bits.

The endogenous information is a measure of the difficulty of a search
problem. The larger the endogenous information, the more difficult the
problem.

Using interval halving and an assumption of Bernoulli’s PrOIR, we
are able to specify the target of a problem with B bits of endogenous
information using B questions that can be answered with a “yes” or a “no”.
But this fails for almost all searches. Someone needs to know the target
location and answer questions like “It is this half or the other half?” For
the pancake problem, for example, there is no way to divide the 10 billion
recipes into two halves and determine in which half the good recipe lies.
Interval halving requires an enormous amount of knowledge about the target
sought.

A search can be visualized as illustrated in Fig. 5.9. We have a search
space, €2, that consists of all of the possible outcomes. For the pancake
search, © contains each of the 10 billion recipes. The notation || is
commonly used to denote the number of elements in the set.

i)
Q

- 4

Fig. 5.9. Atarget, T, is imbedded in a search space, €.

PPlanck volume = 17.692 55 69946 x 10~105m3,
9The number of elements in a set is referred to as the cardinality of the set.

Conservation of Information in Computer Search 127

There is a subset T (for target) in the search space which consists of all
acceptable solutions in the search. For the pancake recipe, T consists of the
set of all of the recipes that Bob the Taster deems acceptable. The number
of elements in the target is |T|. If all of the elements in the search space
are equally likely, then the probability of choosing an element in the target
subset is simply

_m

p= Ql (5.3)

If, for example, we have seven white marbles and three black, then for
choosing a black marble, |©2] = 10, |T| = 3 and p = 0.3. This probability
measured in coin flips is the endogenous information of the search problem.
The endogenous information of the search is

t5.4.1.1 Two special cases

Here are two special cases of endogenous information.
1. A Target of One. A special case of the endogenous information occurs
when there is a single target within the search space, i.e. |T| = 1. Then
p = and

I = —log, |£2]. (5.5

2. A Target Phrase. What about choosing a specific phrase from an
alphabet of characters? In English, for example, we might choose the
phrase

METHINKS*IT*IS*LIKE*A*WEASEL. (5.6)

There are two important parameters: (a) The length of the phrase, L,
in characters and (b) the number of characters, N, in the alphabet. For
English phrases, we can choose N = 27 for the 26 letters of the alphabet
plus a space. For binary strings, N = 2 and, for a DNA sequence,
N = 4 corresponding to the four nucleotides A, C, G and T. If we
restrict ourselves to phrases of length L, then the total possible number

128 Introduction to Evolutionary Informatics

of phrases in the search space is
Q| = Nt (5.7)
corresponding, from Equation (5.5), to an endogenous information of
Ig = Llog, N. (5.8)

For the WEASEL phrase in Equation (5.6) we have an alphabet of size
N = 27 (26 letters and a space) and a target phrase of length L = 28
corresponding to an endogenous information of I = 28log, 27 =
133 bits. This is a measure of the difficulty of finding the phrase in the
absence of any external knowledge.

5.4.1.2 Endogenous information of the Cracker Barrel puzzle

If you have visited one of the chain of Cracker Barrell restaurants, you
have seen the Cracker Barrell puzzle shown in Fig. 5.10%° that sits with
the salt and pepper shakers at every dining table. The goal of the puzzle is
to skip adjacent pieces, like checkers, and remove the skipped peg. One
wins when there is only a single peg left at the end of the game. As

S

Fig. 5.10. The Cracker Barrel puzzle.

Conservation of Information in Computer Search 129

Fig. 5.11. The puzzle.

measured by endogenous information, how difficult is the Cracker Barrel
puzzle?

The holes in the puzzle can be numbered from 1 to 15, as shown at the
top of Fig. 5.11. After some play, the board might be as shown in the middle
of Fig. 5.11. The black holes denote the absence of a peg. As is shown in
the middle, there are no more moves. No peg can jump another peg and five
pegs are left. Since there are no more possible jumps, the game is over and
the player did not win.

In the process of playing the Cracker Barrel game, each turn presents
a small number of different possible plays. The number of the plays can

130 Introduction to Evolutionary Informatics

vary. Sometimes there will be two possible moves, sometimes six moves
and, sometimes as shown at the bottom of Fig. 5.11, there are three possible
moves. They are

1. Peg 1 jumps peg 2, or
2. Peg 10 jumps peg 9, or
3. Peg 14 jumps peg 9.

Assume, under Bernoulli’s PrOIR, that we know nothing about the game
and the best we can do is select randomly among the allowable moves. If
there are three moves, each has a probability of % of being selected. If every
move is taken in accordance with this rule, what is the probability there will
be asingle peg left at the end of the game? This is the probability of winning
the game with absolutely no knowledge about the game. The logarithm of
this probability is the endogenous information associated with the Cracker
Barrel puzzle.

A search typically requires initialization. For the Cracker Barrel puzzle,
all of the 15 holes are filled with pegs and, at random, a single peg is
removed. This starts the game. Using random initialization and random
moves, simulation of four million games using a computer program
resulted in an estimated win probability p = 0.0070 and an endogenous
information of

Ig = —log, p = 7.15 bits.

Winning the puzzle using random moves with a randomly chosen initial-
ization (the choice of the empty hole at the start of the game) is thus a bit
more difficult than flipping a coin seven times and getting seven heads in
a row. An example of a sequence of moves that solves the Cracker Barrel
puzzle is shown in Fig. 5.12.

The Cracker Barrel game will be revisited later when we talk about
exogenous and active information.

5.4.2 Active information

Conservation of information dictates the need for domain expertise in
search. Active information measures the amount of information added by
external sources.

Conservation of Information in Computer Search 131

Fig. 5.12. A winning sequence of moves.

The endogenous information measures the difficulty of a search when
nothing is known about the location of the target or the structure of the
search space. It is based on a single query to the space. If the query is a
success, we can then say that the occurrence of the success has given us I
bits of information in a single query.

In Figure 5.8, we pictured a 10-bit lock of up-down flip flops. To open
the lock, each switch must be in the correct position. Searching for the
correct combination therefore has a difficulty, as measured by endogenous
information, of 10 bits. Suppose Larry the Lockmaker approaches you and
says “These locks are a lot more simple than they look. The first four
bits are always down-up-down-up (0101).” If he’s telling you the truth,
Larry the Lockmaker has just given you four bits of active information
which we denote by I, = 4 bits. The active information makes the
search easier. We now have a search problem with a difficulty of only
10 — 4 = 6 bits.

Active information is the degree to which a search is simplified, in bits,
when applying knowledge about the search. This knowledge can be about
the target being sought or the structure of the search space.

132 Introduction to Evolutionary Informatics

EERN
(32 10
EERN
32 10
32 10
32 10
32 10
32 10
EERN
=

Fig. 5.13. A thumbwheel combination lock.

A more realistic lock is the thumbwheel combination lock shown in
Fig. 5.13. There are 10 wheels, each of which go from 0 to 9. Thus there
are |©2] = 10 = 10 billion possible combinations. If there is only
one combination that works, the endogenous information corresponding to
searching for the correct answer is, from Equation (5.4), I = log, 101° =
33.2 bits. If Larry the Lockmaker tells us that the combination uses only
1’s, 2’s and 3’s, there are no longer 1010 possible combinations. There are
now only 319 = 59,049 possibilities, corresponding to a probability of
success of ¢ = 3710 = 1.7 x 10~°. Since the search has been assisted
by external knowledge about the target, we dub the new search an assisted
search. The information associated with the assisted search is the exogenous
information,

Is = —1log, q. (5.9

For our problem, Is = log, 3'° = 15.8 bits. The active information is the
reduction of difficulty in solving the search when external knowledge is

Conservation of Information in Computer Search 133

applied.

Iy = Iq — Ig =logy p — (—log; ¢) = —log, (§>- (5.10)

For the thumbwheel lock example in Fig. 5.13, the active information
is I, = 33.2—15.8 = 16.4 bits. The active information dictates the degree
to which the search’s difficulty has been reduced. The difference of the
unassisted search, I = 33.2 coin flips, has been reduced to Is = 15.8
coin flips. We therefore save a total of 7, = 16.4 coin flips.

Active information is defined with respect to the reference p equal to the
probability of success of a single query under the assumption of Bernoulli’s
PrOIR. Like any log ratio measure, such as dB, the reference probability
can be placed at another level to compare relative performance.

When a mathematical model is proposed, we like to see if the model
applies to cases we know are transparently obvious. Let’s do this for the
active information model in three cases.

1. No knowledge: 7. = O: If the active information is zero (p = ¢), the
search performs the same as a single blind query. No information has
been added to the search and, as we would expect, I, = log (%) =0.

2. A perfect search: I, = Iq: For a perfect search, ¢ = 1. Then the
active information is equal to the endogenous information (I = Ig)
and we have extracted all of the available endogenous information from
the search.

3. Poor information: 7, < 0: We might apply incorrect knowledge. For
the thumb wheel combination lock, for example, we can be told that the
combination consists of only 3’s, 4’s and 5°s when, in fact, it uses only
1’s,2’sand 3’s. Insuch a case, no attention will be given during the search
to a query that can be correct. The (incorrectly) assisted search will do
worse that a random query (¢ < p) in which case the active information
will be negative. Indeed, if ¢ = 0, then the active information is negative
infinity."

We now have a better understanding of the waterbed analogy in Fig. 5.1.
If we have no knowledge about a search and choose a search at random,

"In general, —oo < Iy < Ig.

134 Introduction to Evolutionary Informatics

Table 5.3. A summary of search information measures.

Probability Information
Unassisted Search p= % Endogenous: I = —logs p
Assisted Search q Exogenous: Iy = —logy g
Active: I+ = —log (g) =1Iq—Ig
Poor Search small Active . T .
Algorithm & Information Good ‘\e.“"‘h Blg Active
Algorithm

Information

Source of
Knowledge

Source of
Knowledge

Fig. 5.14. Poor and good search algorithms for mining active information from an
information source. For a given information source, the amount of active information can
be viewed as a mining exercise. A good search algorithm, shown on the right, will mine
more active information than the poor algorithm on the left. An evolutionary algorithm is
one of a number of possible search algorithms.

there is a possibility that either negative or positive active information can
result. A summary of the information measures of assisted and unassisted
search is summarized in Table 5.3.

5.4.2.1 Examples of sources of knowledge

As illustrated in Fig. 5.14, active information is mined from a source of
knowledge. Having knowledge is not the same as using it. There are good
ways to mine active information from sources of knowledge and better
ways. Consider, for example, the thumb wheel lock problem illustrated in
Fig. 5.13. Our source of information was Larry the Lockmaker, who told

Conservation of Information in Computer Search 135

us the combination, uses only 1’s, 2’s and 3’s. A reasonable and probably
optimal way to mine this information source is to proceed with a blind
search of combinations, using only 1’s, 2’s and 3’s. But this is not the
only way to mine this knowledge source for active information. We could,
alternately, only try 1’s, 2°s and 3’s on the first five thumb wheels and any
number on the thumb wheels remaining. This (unreasonable) algorithm
also uses the source of information, but mines active information much less
efficiently.

In some examples, extraction of active information from an information
source is intuitive and obvious. Such is the case for the example of the
thumb wheel, given that only 1’s, 2’s and 3’s appear in the combination.
In other search designs, like the evolutionary search design of antennas,®
the best use of the information source is not obvious. NASA’s evolutionary
design software of an X-band antenna,*® for example, used evaluation of
fitness during its search process using The Numerical Electromagnetics
Code*! (NEC-4) software that simulates the physics encountered in antenna
performance. NASA engineers used an evolutionary program to mine active
information from NEC-4. In the sense of computer design time, is an
evolutionary search the best way to extract active information from this
software? Could another search have done better? Searching for a good
search is addressed later in this chapter.

5.4.2.2 Active information per query

The best use of an information source depends on how one defines efficiency.
If a programmer’s time is the most important quantity, then an inefficient
search algorithm hastily written that takes days to run on a computer might
be better than a carefully crafted one-minute program whose design requires
three days. Another metric is query count. Given unlimited time, even
uninformed searches such as blind search will eventually find the target. If
we write a program that will ultimately find the correct solution, then the
performance of the program can be measured in terms of active information
per query.

SOf the type in Chapter 3.4.1.

136 Introduction to Evolutionary Informatics

If all of the endogenous information, I, is extracted in Q queries, then
the active information per query, /g, ist

Igp = —=. (5.11)

The measure of algorithm efficiency can be altered relative to other
measures such as active information per CPU second or per programmer
hourly salary.

15.4.2.2.1 A subtle distinction"

When there is any stochastic component of a search, the active information,
I, and therefore the active information per query in Equation (5.11),
is a random variable. If the same search is repeated, the number of
queries required for success can change. Random variables are often
characterized by their means which, in turn, are estimated by averages
of numerous trials. If there is a random component to the search, the mean
active information can be estimated by averaging the results of numerous
trials. The average number of queries from N runs of the same search
algorithm is

1 N
(Q)=N’;Qn,

where Q,, is the number of queries used on the nth trial to achieve success.
This average approximates the mean Q

0~ (Q)

and, according to the law of large numbers,,*?> becomes more accurate as
the number of trials, N, increases. We are tempted to estimate the mean of
the random variable, I, denoted with an over bar by I, as % but, as is

YIf the search is not perfect (i.e. does not always succeed), the active information per query
. Iy

Ut Those not interested in math details may skip this section and henceforth assume Tg ~
Ig = (I—Q) There is no ambiguity in doing so as long as, in comparisons, the same metric
is used consistently.

Conservation of Information in Computer Search 137

tTable 5.4. When there is a stochastic component to measure, repeated trials are
performed and the mean value of the measure is estimated by the average of the
outcomes. This is how active information per query is measured. But, as illustrated in
the table below, there are different ways to do this resulting in different answers. Two
searches are performed on a problem with endogenous information of Iy = 24 bits.
As shown in the table, the first search is successful after two queries and in the second
search after six queries.

Two observers, Melodie and Merrick, like to keep score in different ways. Melodie
likes to count queries for each search and Merrick likes to keep a tally of the active
information for each search. Their short tally sheets are shown in the table. Both
Melodie and Merrick average their numbers. Melodie has an average of four queries
and Merrick has an average of eight bits per query. Melodie therefore gives her
estimation of active information per query by dividing four queries into the endogenous
information of 24 bits, giving a result of six bits per query. Merrick’s estimate is
eight bits per query. Both have used valid techniques but they come up with different
answers. For this reason we have to be careful in our definitions. Merrick has computed
the average active information per query which, due to the Law of Large Numbers, will
approach the mean active information per query if a larger number of experiments
are performed. Melodie, on the other hand, has estimated the active information per
average query.

QUERIES ACTIVE INFO
Trial (Melodie) (Merrick)
#1 2 12
#2 6 4
Average 4 8
Estimate 6 8

illustrated in the Table 5.4, they are not the same. Indeed, due to Jensen’s
inequality,*

For purpose of preciseness, we dub

o g

+ = = "~ T
0 (Q)
the active information per mean query. It is always less than I,.
In the next section, we explore some subtle sources of information
and show cases where an evolutionary approach mines active information

138 Introduction to Evolutionary Informatics

poorly in comparison with some other popular algorithms. Chapter 6
is dedicated to identifying sources of active information in published
software models purporting to simulate Darwinian evolution and to showing
that other search algorithms mine this source much more efficiently than
evolutionary search.

5.4.2.3 Examples of active information

Inthe thumbwheel lock example, the active information came in the form of
a reduction in the search space size. Instead of looking for the combination
in the big search space, we need to only look in a corner of the search space.
Here are some other less obvious examples of sources of active information.

5.4.2.3.1 The Cracker Barrel puzzle

We return now to the Cracker Barrel puzzle. We showed that the endogenous
information for solution of the Cracker Barrel puzzle by purely random
choices is I = 7.4 bits. Suppose an expert in the game, Puzzle Pete,
tells you
“When you have a choice, don’t jump into a corner.”
In the puzzle shown in Fig. 5.15, the corners are numbered 1, 11 and 15.
How much active information has Puzzle Pete given you? Based on
4 million simulations with random initialization of the location of the empty
hole, it turns out Pete has given you 74 = 2.1 bits of active information.
The problem has thus been roughly reduced in difficulty from forecasting
the outcomes of 7 fair coins to that of 5 fair coins.

Fig. 5.15. For the Cracker Barrel puzzle, some empty peg starts will give the same results
as others.

Conservation of Information in Computer Search 139

Next, Puzzle Pete whispers

“Also, always start with hole number #1 empty.”V
This is an example of active information gained from initialization of the
search process.

“But Pete,” you respond after examining the board in Fig. 5.15, “If |
start with hole #1 empty, my first move makes me jump into a corner. You
said not to jump into a corner.”

Pete smiles knowingly.

“Trust me.”

And you are right to trust Pete. If you always start with hole #1 empty
and, when there is a choice, avoid jumping into corners, then the active
information is raised from 2.1 to 7, = 2.6 bits.

But all advice is not good advice. Suppose contrarian Tony Two Toes
tells you, “Ignore all of Puzzle Pete’s advice. Puzzle Pete first told you to
not jump into a corner. Then he told you to start with hole #1 empty. This
forces you to jump into a corner on your first move. The man can’t make
up his mind! So don’t listen to him. Listen to me. Doesn’t it make better
sense to start with hole #5 empty?”

Applying Tony Two Toes’s advice with otherwise random moves
worsens your chance of winning and results in an active information of
I, = —1.7 bits. The difficulty of the problem has thus increased almost
two coin flips.

Suppose Tony Two Toes then tells you, “Start with hole #5 empty and,
when you can, always jump into a corner. Trust me.”

In a million random simulations, not a single game was won using
Tony Two Toes’s advice. From these simulations, the active information is
then estimated to be 7. = —oo. Although not yet proven to a mathematical
certainty, it looks like Tony Two Toes’s two rules make winning impossible.

Table 5.5 contains the active information for numerous scenarios
including those discussed. Active information resulted from the domain
expertise of Puzzle Pete. The advice must be accurate in order to work.

VWith reference to Fig. 5.15, the symmetry of the puzzle board says starting with hole #1
empty is the same as hole #11 or hole #15 empty. Likewise, holes #2, 3, 7, 10, 12 and 14
will yield identical results. Holes #4, 6 and 13 form still another group and holes #5, 8 and
9 another.

140 Introduction to Evolutionary Informatics

Table 5.5. Active information for different “HINTS” for winning the Cracker
Barrell puzzle. All values are in bits. The @, for example, indicates that hole
number one is initially empty.

Endogenous Information = I = 7.4 bits

Initialization —

Rule | Random @ @) @ ®
Random 0.0 0.2 0.3 0.5 -1.7
Away from corners 2.1 2.6 2.3 2.4 —0.6
Into corners —-119 -11.0 —116 —12.6 —00

Tony Two Toes’s advice resulted in negative active information, i.e. the
search performs worse than blind random search.

This example demonstrates again the validity of conservation of
information illustrated by the waterbed analogy in Fig. 5.1. Guidelines
for search cannot be assigned arbitrarily. Doing so can give either worse or
better results. Knowledge about a search must be accurate in order to create
positive active information.

5.4.2.3.2 The Monte Hall problem

Here’s another more subtle example of active information. Let’s Make a
Deal was a television game show first hosted by Monty Hall. There are
three curtains and the contestant’s job is to barter with Monty to get the
most valuable prize. The Monty Hall problem, loosely based on the show,
was popularized by Marilyn vos Savant in her Parade Magazine column,
Ask Marilyn, in 1990.

“Suppose you’re on a game show, and you’re given the choice of three doors":
Behind one door is a car; behind the others, goats. You pick a door, say No. 1,
and the host, who knows what’s behind the doors, opens another door, say No. 3,
which has a goat. He then says to you, ‘Do you want to pick door No. 2?’ Is it to
your advantage to switch your choice?”

Untutored intuition often says it doesn’t matter — you have a 50-50 chance
no matter what. This is wrong. When a goat curtain is identified, we

WMonty used curtains. Marilyn used doors.

Conservation of Information in Computer Search 141

are given additional knowledge that can be mined for active information.
Indeed, switching your choice from your initial pick gives you a two-thirds
probability of winning. If you keep your original choice, your chance of
winning is only 1/3. To see this, suppose that the car is behind door No. 1.
Your first pick can be door #1, #2 or #3. Here are the possibilities.

a. If you choose door #1 and switch, you lose.
b. If you choose door #2 and switch, you win the car.
c. If you choose door #3 and switch, you win the car.

Thus, if you switch, your chances of winning are two out of three. If we
repeat this exercise with the car behind door No. 2 and then No. 3, we get
the same % answer. Overall, using Bernoulli’s PrOIR, the probability of
winning is two thirds if you switch your choice and % if you don’t.

Let’s then interpret the Monty Hall problem in the parlance of
endogenous and active information. The search space consists of |2] = 3
doorswith |T| = 1 successful targets. Bernoulli’s PrOIR says you therefore

have a probability of p = % = % of choosing the car. The endogenous
information of the search for the car is thus I = —log, p = 1.585

bits. When you choose a door and Monty Hall shows you another door
behind which is a goat, he is giving you information that can be used to
improve the odds of the search. By switching your choice, we have shown
that the assisted search now has a probability of ¢ = % of succeeding.
The active information we mined from Monty Hall’s actions is thus
Iy = —log, £ = —log, (5/%) = 1 bit thereby reducing the difficulty of
the search to one with exogenous information /s = — log, ¢ = 0.585 bits.

5.4.2.3.3 Asibling problem*

Here is another interesting example whose results are often initially
counterintuitive. Tammy is hosting the annual “Men With Exactly Two Kids
Club” convention next week where fathers come with their two children to
spend a week together doing activities and bonding with their kids. Tammy
needs to choose a father to hand out towels in the men’s shower and wants to
engage a man who has two sons for the task. What is the chance a randomly
chosen man at the convention has two male children? Assuming a 50-50
chance of having a girl or a boy, the four equally probable possibilities

142 Introduction to Evolutionary Informatics

of the children are 99) 39 , Q@ , and &? . If arandom father is chosen
from the list of fathers, the probability they are both boys (@3) is thus
p= }1 corresponding to an endogenous information of I, = 2 bits.

Question 1: To narrow down the pool of choices for a father to hand out
towels, Tammy accesses the data base of registrants. Each father answered
a list of questions. For example, the “Men With Exactly Two Kids Club”
is hosting a gala father—son retreat next year. To make a mailing list from
the participants in the current convention, the following question is asked
on the registration form:

Question 1: “Is at least one of your children a male?”

Tammy discards from the pool every father who answered “no” to the
question since they must have two girls. How much active information
results from knowing the answer to this question?

Of the four possible pairings of boy and girl, the answer to the question
has narrowed possibilities to three: @9 , Q@ ,and @3 . Only one has both
males. Applying Bernoulli’s PrOIR, the added information that one is a boy
results in g = % That is, if Tammy chooses a father at random from the
reduced pool, her chance of choosing a father with two boys increases from
p = :tog = % and Tammy has obtained 7. = — log, (3/3) = 0.415 bits
of active information.*

Tammy reads another question to glean even more active information
in her search for a father with two sons. There is a follow-up question to
the first from which even more active information can be mined.

Question 2: “If you answered “yes’ to Question 1, Was your son
born in an even year? (Or if both your children are male, was at
least one of them born in an even year?)”

X|nitial intuition often suggests that, if a man has two children and at least one is male, then
the chance that the other child is male is 50-50. But the analysis here shows that the correct
answer is one third. There is a subtle distinction between this knowledge and knowing the
oldest child is a male. In this case, the chance the other child is male is 50-50. When oldest is
included in the knowledge, the active information is 7+ = — log, (%/%) = 1 bit compared

to I+ = 0.415 bits of when the phrase at least one is used. The word oldest therefore
introduces over a half bit more of active information to the search.

Conservation of Information in Computer Search 143

If Tammy now chooses only from those who responded “yes” to Question 2,
will it further improve her chances of choosing a father with two male
children? In other words, does the knowledge about the evenness of the
birth year provide additional active information? Remarkably, yes. Here is
the reasoning using Bernoulli’s PrOIR. Before we know anything, there are
16 equally probable possibilities. Even and odd are denoted by E and O.
Thus (? E is a male born in an even yeatr.

JEdE) Jdedoy JSEQE) JEF0)
Jdodey Jdodoy FoPe) Fo.Q0)
(PESE) (PES0) (PEJE) (PEJ0)
(P0.0E) Fodo) (RodE) (P0.d0)

Question 1 (“Is at least one of your children a male?”’) removes four entries
from the table and leaves a dozen possibilities.

JESE) Jedo) (JEQE) (JEF0)
(J0.3E) J0.80) (30.9E) (J0.90)
@edey @edoy dode) do.do)
(R0.dE) (fo.do) 3o,38) o, Jo)
Of those remaining, there are seven cases where at least one of the sons was

born in an even year. This leaves only seven possibilities when Question
2 is answered yes.

Jede) Fedo) JESFE) JEF0)
Jo.dE) &o, o) 3o, PE) Jo. 20)
Qede)y Qedo) (dodE) do do)
Qode) Ro.do (do.dE) do do)

Of the seven, there are three cases where there are two sons. Let’s draw
boxes around them.

144 Introduction to Evolutionary Informatics

(JE 3E) Je Jo)| CEKLE) JEQ0)
Jo.de)| do.doy Jo. ey Fo. Ro)
(PEJE) Qe doy do.de) Bo,do)
QodE) Q0. doy do,de) do.do)

If Tammy chooses randomly from those who answer “yes” to Question 2,

the chances of her choosing man with two sons is¥ ¢ = % instead of

p = }1. The knowledge from Question 2 has thus purchased us 1. =
—log, (%/%) = 0.778 bits of active information. The additional knowledge
of the evenness of the birth year has increased the active information by
0.363 bits over that from Question 1 alone.” Knowledge, that a son is born
in an even year does not intuitively seem to be a potential source of active
information for our problem. But it is. This illustrates that sources of active

information can be subtle.

5.4.2.3.4 Multiple queries

Multiple queries clearly give a greater chance of success than a single query.
Multiple queries can be done with replacement or without replacement.
If the size of the search space is big and, in relation, the number of
gueries is small, then the two procedures are about the same. For Q

YStudies have purported to show that “the gender distribution in human families with
two children . .. do not conform to any binomial distribution” and therefore do not follow
Bernoulli’s PrlOR. (Matthew A. Carlton and William D. Stansfield “Making Babies by the
Flip of a Coin?” The American Statistician. (2005)). Bernoulli’s PrlOR in our example,
however, gives the best available estimate of active information. Had Tammy had access to
the data used by Carlton and Stansfield, she could further increase the accuracy of the active
information in her search even more.

ZSuppose, instead of the evenness of the year, one asked, in lieu of Question 2, the following
question: “If you answered “yes” to Question 1, was your son named John? (If both your
children are male, was at least one of them named John?)” Detractors of Bernoulli’s PrOIR
might claim the active information computed using the original Question 2 would be the
same. It would not for an obvious reason: the chance a male has the name of John is not
50-50. This knowledge would translate into active information in excess of that obtained
from the evenness or oddness of the birth year. To make the calculation, however, one must
include the chance that a male is named John.

Conservation of Information in Computer Search 145

queries, the remarkable result for sampling with replacement is that active
information is?

I+ =~ log, Q. (5.12)

This relationship dictates a diminished return for active information as
a function of query count. For two queries, we obtain one bit of active
information. Four queries give two bits of active information, a query gives
three bits and 16 queries gives four bits. 1,024 queries gives I = 10 bits
and 2% ~ 1 billion queries gives only about 30 bits of active information.
No matter how many queries you’ve made, you have to double the query
count to get a single bit more of active information. In general, 9 = 2"
queries gives about n bits of active information.

5.4.3 Mining active information from oracles

A needle-in-a-haystack oracle announces the success or failure of a sample
used in finding, for example, the ace of spades in a deck of 52 cards a special
case of a fitness oracle. The fitness is either one (“we found the target!”) or
zero (“we didn’t”).

More typical of fitness oracles is the computer model used to design
the antenna for NASA’s evolutionary design of an X-band antenna. As
discussed in Chapter 3.4.1,%° designs are submitted to antenna simulation
software oracle*® that crunches the design numbers presented and, as was
the case for Bob the Taster, presents the score or fitness assigned to the
design.

5.4.3.1 The Hamming oracle

A simple easily understood oracle is the Hamming oracle. Assume we have
atarget phrase of L letters from an alphabet of N characters like the L = 28,
N = 27 phrase in Equation (5.13). We offer the following phrase to the
Hamming oracle:

@+t For Q queries with replacement, the probability of success is ¢ = Q p. Thus,

Is = —logy Qp = —logy O + log; p.

Since I = —log, p and I+ = Iq — Ig, we get Equation (5.12). See Fig. 5.16 for details.

146 Introduction to Evolutionary Informatics

20

I- -7

15 -

10

T - T T . - TP R VO - . e - Sty PR - P - S, - S PR R -
A R A RGP AU

tFig. 5.16. Active information for multiple blind queries. The dashed line is sampling with
replacement and the solid line without replacement.

MXTHINRSLIT*IZ*RIKL*A*REASEL Hamming

Oracle H=7
Fig. 5.17. The Hamming oracle.
MXTHINRSLIT*IZ*RIKL*A*REASEL.
Comparing this to the target phrase®®
METHINKS*IT*IS*LIKE*A*WEASEL, (5.13)

we see that the two phrases differ in H = 7 places. This is the Hamming
distance between the target phrase and the guess. When the Hamming
distance is zero, there are no differences and we have found the target
phrase.

The Hamming oracle does not tell us the locations where the letters
differ, only the number of letters that differ. This can be visualized as
pictured in Fig. 5.17. A phrase is entered, the oracle is paid ($) and the oracle
announces the Hamming distance. How can we best spend our money? If

bbRepeated here from Equation (5.6).

Conservation of Information in Computer Search 147

we assume a message of length L with N members in the alphabet, the
endogenous information of the search for the phrase is

Ig =Llog, N

In terms of query count, here are four of many possible ways to use a
Hamming oracle in a search in order of effectiveness.*” We’ll start with a
poor algorithm to extract active information from the Hamming oracle.

1. Poor: Needle-in-a-haystack oracle. The Hamming oracle has the ability
to specify whether or not arandomly chosen phrase is the correct phrase,
i.e. it can be used inefficiently as a needle-in-a-haystack oracle. We
choose a random phrase and see if the Hamming distance is zero. If it
is, we have found the phrase. If it isn’t, another phrase is chosen. The
process is repeated until there is a success.

There are two possibilities here: sampling with replacement and
without. When sampling with replacement, p = ﬁ The sampling
process is a geometric random variable*®® with an expected number of
queries equal to 0 = 2| = NEL.

2. Good: Ratchet search (stochastic hill climbing). The needle-in-a-
haystack makes no use of Hamming distance changes. The ratchet
search does and performs better on the average. The basic ratchet search
begins with an initialization. The Hamming distance is determined.
A single character of the phrase is changed and the Hamming distance
is recomputed.

a. If the Hamming distance is larger, then a correct letter has been
replaced by an incorrect letter. The position of the change is tagged
and the original letter in the position must be the correct letter. The
letter is tagged and remains unchanged for the rest of the search.

b. If the Hamming distance is smaller, then a correct letter has been
found. The changed letter is tagged and ratcheted into place for the
remainder of the search.

c. Ifthe Hamming distance is the same, choose another untagged letter
to change.

The process is repeated until the Hamming distance goes to zero. The
search is dubbed ratchet because once a Hamming distance is achieved
in the search, it never gets worse.

148 Introduction to Evolutionary Informatics

Table5.6. lllustration of the ratchet search for a three letter search usinga Hamming
Oracle and the Good search method (#2). The initial guess, randomly chosen, is
ADF. Since the Hamming Oracle outputs a Hamming distance of three, all three
letters are wrong. So we change F to a G and still get a Hamming distance of three.
We keep changing to different letters until we chance on the correct letter 1. We
know it is correct because the Hamming distance is reduced to two. The letter |
is ratcheted into the third position for the remainder of the search. The process
is then repeated on the second letter, D, until the correct letter O is identified.
The Hamming distance is now one. The remaining letter is then determined in a
like manner. In this example, 30 queries are used to obtain the right answer. If
we query with replacement (the same letter can be guessed more than once for
a position), the expected number of queries is @ = NL = 27 x 3 = 81. Using
the blind needle-in-a-haystack approach, i.e. the Poor search method, the expected
number of queries with replacement is N1 = 273 = 19,683. Ratchet search adds

It =log, (227—7)(33> ~ 8 bits of active information, reducing the search difficulty from

an endogenous information of Ig = log, 273 ~ 14 bits to an exogenous information
of Ig = log, 27 x 3 ~ 6 bits.

Input Hamming Distance
1 A D F -3
2 A D G -3
3 A D A -3
4 A D | -2
5 A X | — 2
6 A Z | — 2
7 A A | — 2
8 A D | — 2
9 A T | -2

10 A P | — 2

11 A L | — 2

12 A W | — 2

13 A R | — 2

14 A o | -1

15 R (0] | -1

16 T o | -1

17 Q o | -1

18 w o | -1

19 u O | -1

20 u o | -1

21 P o | -1

22 | O | -1

23 K o | -1

24 M o | -1

(Continued)

Conservation of Information in Computer Search 149

Table 5.6. (Continued)

Input Hamming Distance
25 T @) | —1
26 P 0] 1 -1
27 Y 0] 1 -1
28 | 0] | —1
29 G 0] 1 -1
30 C 0] I -0

An example of a simple ratchet search is illustrated in Table 5.6.

3. Better: Ewert’s®® FOOHOA. The ratchet search uses only the current

state to determine the next step in the search. No attempt is made to
use the history of the search. The FOO Hamming oracle algorithm
(FOOHOA) does use the history. The more knowledge a search
procedure can effectively use, the greater the resulting active information
per query.
If a string containing all A’s is submitted to a Hamming oracle, the
oracle’s response will tell us how many A’s are in the hidden string.
By repeating this process with all of the letters in the chosen alphabet,
the FOO is found for all of the letters. If there are N characters in the
alphabet, establishment of the FOO requires, at most, N — 1 queries.
The remainder of the FOOHOA is best explained by example. Consider
a Hamming oracle using the English letters as its alphabet and having
a message length of 5. Under this algorithm, we will already know the
oracle’s response to AAAAA, because we have already established the
FOO for all letters. Consider the query ABAAA.

o Ifthe second letter in the hidden string is A, the distance will increase.
e Ifthe second letter in the hidden string is B, the distance will decrease.
e Otherwise, the distance will remain the same.

The query in question will actually test the second position for the
presence of both A and B. The algorithm starts on the left side of the string
and works through the string, querying each letter in order from the FOO
list until it discovers the correct letter. Letters are tested starting with the

CCWinston Ewert is one of your humble authors.

150 Introduction to Evolutionary Informatics

most frequent because they have the largest probability of being in any
unfilled position. When the correct value of a letter has been established,
the FOO table is updated.

The results using Ewert’s FOOHOA are significantly better than the
ratchet search in the extraction of information from the Hamming oracle,
as measured by query count.

4. Best: Searching for the Best Search. For a given oracle, there exists
an algorithm that, on average, extracts the maximum active information
per query. For the Hamming oracle, we are able to search for the optimal
algorithm for easy searches. In general, a search for a search (S4S) is
exponentially more computationally demanding than a search itself.4d
Ewert composed an S4S in the case of the Hamming oracle. Using an
exhaustive inspection of all possible search trees, Ewert’s algorithm
generates an optimal tree search in the sense of maximum extraction of
per query active information from the oracle. The results are summarized

Table 5.7. The best possible use of a Hamming oracle in extracting active
information using a minimum query count. N is the number of characters in the
alphabet and L is the number of letters in the message. On top is the minimum
average number of queries, (Q) to achieve success. The bottom table is the
corresponding numerical value of Ir.

LN — 1 2 3 4 5 6
1 0 1.000 1.667 2.250 2.800 3.333
2 0 1.500 2.337 3.125 3.281 4611
3 0 2.250 2.889 3.822 — —
4 0 2.750 3.469 — — —
5 0 3.375 — — — —
6 0 3.875 — — — —

| LN — 2 3 4 5 6

1 1.000 0.951 0.889 0.829 0.775

2 1.333 1.359 1.280 1.415 1.121

3 1.333 1.646 1.570 — —

4 1.454 1.827 — — —

5 1.481 — — — —

6 1.548 — — — —

ddThe 545 is examined in depth later in Chapter 5.8.

Conservation of Information in Computer Search 151

in Table 5.7.%° At each iteration of a search algorithm, there is some set of
possible hidden strings that have not been ruled out by previous queries.
The algorithm selects a query as some function of this set. The resulting
query and the response will produce a new subset containing only the
strings that are compatible with the new query result. Ewert’s algorithm
finds the function mapping these sets to queries that will result in the
lowest average number of queries to determine the target. It does so by
searching every possible function to find the optimal one. This is an
exhaustive S4S performed on the original search space. It should not be
surprising, therefore, that the search is very expensive and can only be
run for very small problems.

5. Evolutionary Search. These Hamming oracle examples illustrate that,
given a source of information, different search algorithms mine the
information source with different efficiencies. What happens when an
evolutionary strategy is applied to extraction of information from a
Hamming oracle? This is discussed next.

5.4.3.2 Weasel ware and variations of information mining

How does evolutionary search using a Hamming oracle compare with
other search algorithms? A user-friendly graphical user interface (GUI)
dubbed Weasel Ware 2.0, available at the Evolutionary Informatics Lab
web (http://evoinfo.org/), allows us to explore this question.®®

In the example in Fig. 5.18, Weasel Ware searches for a target
phrase using three different search algorithms: unassisted random search,
proximity reward (evolutionary) search and Ewert’s FOOHOA. We again
use the target phrase METHINKS*IT*IS*LIKE*A*WEASEL in (3.12).
Unassisted Random Search is equivalent to blind search. The blind search
chooses 28 letters randomly from a library of 27 characters and asks a
needle-in-a-haystack (NIAH) Oracle “Is this it?” If not, 28 new letters are
chosen. The count in Fig. 5.18, 5,03,274, is nowhere near the expected 1040
guery count expected before success. The second search, an evolutionary
strategy, is labeled Proximity Reward Search. The evolutionary algorithm,
as isshown in the search block in Fig. 5.18, has a population of 15 offspring.
Each letter in each offspring has a 4% chance of being mutated to arandomly

€€Go to http://evoinfo.org/ Click on “Research Tools” and then “Weasel Ware.” Other
searches, described in detail, are considered on the web page, but are not considered here.

152 Introduction to Evolutionary Informatics

Weasel Ware 2.0

Search Type: @ English Phrase ' Nuclentides (ACGT)
|METH\NKS ITIS LIKE AWEASEL

Number of Characters: 28

‘ Start Search (Auto) Speed:r—l]

C Binary

Search Phrase:

1 Stop

Step Forward: Reset

Results
Ao~

Unassisted Random Search

Query Count: 503274

Current: ‘ ZERY MODCGRYOEPEACACPEYASH

Median # of Queries: 8.30e+39

History: View History

Disabled: [

Proximity Reward Search

Query Count: 4020

Current: |MFTHINKJ IT IS LIKE A WEASEL

Options:

Offspring: [15

History: View History

Mutation Rate: [4.0 %

Fixed Single Mutation: [

Disabled: [~

FOOHOA Search

Query Count: 77

Current: METHINKS IT IS LIKE A WEASEL

History:

View History

Disabled: [

Fig. 5.18. Three searches using a Hamming oracle using Weasel Ware 2.0 available online
at http://evoinfo.org/.

chosen letter in the 27-character alphabet. As identified by a Hamming
Oracle, the fittest of the offspring survives and gives birth to 15 more off-
spring. We see the phrase isalmost complete, lacking one letter, so the search
isstill in progress. Results are shown after 68 generations. Since there are 15
gueriesto the Hamming oracle for each generation, that’s atotal of 15x68 =
4020 queries, as is reported in Fig. 5.18. The bottom search in Fig. 5.18 is
Ewert’s FOOHOA search which has converged using only 77 queries.

For the Proximity Reward Search (evolutionary) algorithm, there are
two parameters to tune: population size and degree of mutation.f It is not
readily obvious which choice of parameters will give, on average, the best
result. The results of some different parameters are shown in Fig. 5.19.

f Crossover is not used.

Conservation of Information in Computer Search 153

Proximity Reward Search Query Count: 8000

Current: METHINKS IT 15 LIKE A WEASCL

Options: aftspring: |50 autation [ate: i4 0 % Foed Single mutavon; T

Histery: View History Disabled [T

Proximity Reward Search Query Count: 4025

Current: METHINKE 1T 18 LIKE A WEASEL

Options: Oftspring: [2% Mutation Haﬁe‘i--- % Fbed Singie Mutation: [

History: Vierw Hisilory Digabled, [«

Proximity Reward Search \ Query Count: 4500

Current: MCTHINKS IT IS LIKE A WEASCL

Options: Crtspring |50 Mutatian Hate ! 0 % Foed Singe Mutation: 7

Histery: View History Disabled &

Proximity Reward Search Query Count: 3525

Current: METHINKS IT I8 LIKE A WEASFL

Options: Oftspring: | 7% Mutation Rate] U % Fied Singke Mutation, 7

History: WVinrw Hislory Desabiled, [«

Proximily Reward Search ‘\ Query Count: 5600

Gurrent: [METHINKS IT 15 LIKE A WEASEL

Options: Ciftspring: |25 Mutation Rate [4 0 % Frded Single Mutation T

History: Wiew Histony Misanled [

Proximity Reward Search Query Count: 6675

Current: METHINKS IT I8 LIKE A WEASFL

Options: Oiffspring: {75 Mutation Rate: [4.0 % Ficed Single Mutation: [

Histary: Vinrw Hustory Disaled. [

Proximity Reward Search “-\ Query Count: 4700

Current: METHINKS IT IS LIKE A WEASEL

Options: ciftspring: |100 Mutation Rate: [0 % Fred Single Mutation: 7

History: Wiew History Disabled: [

Fig. 5.19. Results from various choices of parameters in the evolutionary search for the
WEASEL phrase using Weasel Ware.

The best in terms of query count is 3,523 queries for 75 offspring and one
letter mutation per child. Repeating a search algorithm can give widely
varying query counts. Rigorous comparison among parameters requires
averaging numerous results from runs with the same parameters. The results

154 Introduction to Evolutionary Informatics

Weasel Ware 2.0

Search Type: ® Englisn Prrase

© Bnary © Nucleotides (ACGT)

Search Phrase:

[car

Number of Characters: 3

‘ Start Search (Auto) Epeed:.—‘]

Step Forward: | [100C Stop Reset

Results
e~

Ur isted Random Search

Query Count: 13659

current: [cor

Median # of Queries: 1.36e+

History: View History

Disabled: [~

Proximity Reward Search

Query Count: 335

current: [cor

Options:

Offspring: |5

History: View History

Mutation Rate: |4.0 %

Fixed Single Mutation: [¥

Disahled: [

FOOHOA Search

Query Count: 28

Current: [cor |

History: View History Disabled: [

Fig. 5.20. Search for the three letters COI using Weasel Wear.

in Fig. 5.19 can be considered simply anecdotal. Nevertheless, no choice of
evolutionary parameters will do as well on average as Ewert’s FOOHOA.

To assure success in all three searches, let’s shorten the target phrase to
the three letters: COI.99 The Weasel Ware result for this acronym is shown
in Fig. 5.20. Unassisted blind search using an NIAH Oracle required about
14,000 queries. This is below the 20,000 queries we expect on average.
Using five offspring, the Proximity Random (evolutionary) Search took 67
generations or 5 x 67 = 335 queries. Ewert’s FOOHOA search required
only 28 queries.

99This is the same target phrase used for ratchet search in Table 5.6.

Conservation of Information in Computer Search 155

5.5 Sources of Information in Evolutionary Search

Sources of information embedded in any evolutionary search are mined for
active information. The Hamming oracle, a source of information, can be
mined with different degrees of efficiency by different search algorithms.""
Evolutionary search mines information rather poorly.

The sources of information in the fundamental Darwinian evolutionary
model include (1) a large population of agents, (2) beneficial mutation,
(3) survival of the fittest and (4) initialization.

5.5.1 Population

Evolutionary processes invariably start with a population of candidates —
the larger, the better. The point is clarified by considering an extreme case.
If we have a population consisting of all |©2| candidates in the search space
Q then the problem is solved. The candidate with the largest fitness is the
best answer. No additional steps in evolution are even necessary.

We have seen that Q blind queries produce an active information of
about 71 =~ log, Q bits. An evolutionary search starting with a population
of O candidates is performing Q queries all at once — in parallel if you
will. Active information of log, Q bits is therefore generated by the first
generation of the evolutionary search.

Large populations also increase the chance that mutations will produce
anincrementally better result. With the guiding hand of fitness, we get better
results more quickly.

Large populations in evolutionary search accelerate convergence in
time. Computational requirements, however, are concentrated in space
rather than time. If the count in queries is the measure of the cost in search,
then a more sequential search might be advised. In Chapter 6, we see this
is the case with both the EV and Avida models of Darwinian evolution.
Large populations in conventional evolutionary computing quickly tally an
expensive query cost.

hhAs discussed in Chapter 5.4.3.1.

156 Introduction to Evolutionary Informatics

5.5.2 Mutation rate

Mutation is, on average, not beneficial. If it were, expectant mothers might
gamble and take medication to mutate their babies. This, of course, is a
repugnant idea. Nevertheless, we see fictional accounts in the movie series
X-Men and the television series Heroes where humans have undergone
beneficial mutation to obtain super powers. 1

Cornell University geneticist John C. Sanford documents the chance of
a beneficial mutation in a complicated organism is essentially zero and that
mutation has a greater chance of extinguishing a species than of advancing
it.50 If mutation is generally beneficial in an evolutionary program, there
must be a resident source of information that guides mutation away from
being a detriment.

In a single generation, the probability of improvement by mutation
increases as the number of children increase. The number of children, K,
has a role similar to that in blind query count in sequential blind search.
We have seen that diminishing returns in active information resulted from
multiple queries. Instead of the queries being performed sequentially in
a generation of children, they are made in parallel with the simultaneous
births of the children. Since there is no learning from mutation to mutation
in a single generation, the cases are statistically identical. Let = be the
probability that a single child is more fit than its parent. When K is big and
7t is small, the probability that at least one child is better than its parent is
1—(1—m)X ~ K. The chance therefore grows only linearly with respect to
the brood count. Each child makes the same contribution to overall success
independent of its sibling count.

5.5.3 Fitness landscapes

To apply the idea of “survival of the fittest,” there must be a concept of
“fitness.” We visited the idea of fitness landscape in Chapter 3.3.1 where a
landscape is given for how well a pancake tastes. A commonly used source
of information in evolutionary search is the fitness landscape. But a fitness
landscape is not necessarily a source of readily accessible information. This
would be contrary to the law of conservation of information and the No

i“Darwinists should quit believing what they read in comic books.”

Conservation of Information in Computer Search 157

|
LI
i ..,‘".]u|w\ﬂﬂﬂ“|w

Fig. 5.21. A fitness landscape that is not smooth.

Free Lunch Theorem. To be a source of information, the fitness landscape
must have a useful and exploitable structure. But arbitrarily chosen fitness
landscapes of the sort illustrated in Fig. 5.21 can be difficult information
sources from which to extract active information. Steepest ascent (hill
climbing) search algorithms become ineffective. This is also true in the
version of evolution where numerous small perturbations are required to
find a suitable solution. There are many instances where a search space is
not smooth. In examining the functional sensitivity to amino acid changes
on enzyme exteriors, biochemist Douglas D. Axe found that unfriendly
looking fitness landscapes of the type in Fig. 5.21 are encountered.>!

How is fitness decided and who gets to say what is more fit than
something else? In computer programs, an oracle is often used. We’ve
already seen that the existence of an oracle is not sufficient to assure success
in a search. Active information must be cleverly mined by the computer
programmer.

As is illustrated in Fig. 5.22, the existence of high fitness at a pointin a
search space does not necessarily require that a small perturbation around
that point will produce fitness of incremental value. Fitness functions
can have unanticipated undesirable properties. Consider, for example, the

158 Introduction to Evolutionary Informatics

| l JChick-fil-A"~ I

Drive Thru =&

FURLLLELE PursannadP

le—n, —>

"l---lanuuu(------‘
X

Fig. 5.22. As with the Rubik’s cube, the closest distance between two points need not
be a line. Therefore the distance between two points is not necessarily determined by the
Euclidean distance. In this figure a car wants to go to the drive-through at Chik-fil-A®. The
shortest Euclidean distance is d. But as shown by the dashed line, the best way to get to the
drive-through requires traveling a distance much greater than this.

common Rubik’s cube puzzle.52 The goal (target) is to get each of the 9
squares on each of the six sides to be the same color. An obvious choice of
fitness is the sum of the percents of same color on each of the 6 sides. When
there is a single misplaced color on only two sides, the fitness will be as
good as possible without being the solution. But to get to the solution, the
fitness must be made worse. Use of a Euclidean fitness function is a poor
choice in the case of the Rubik’s cube. A more useful fitness is the number
of steps required from a current state to solution.

A similar illustration of functional versus Euclidean fitness is a trip to
Chik-fil-A® drive-through to get a Deluxe Chicken Sandwich. Curbs and
buildings may block your access to the drive-through window even though
you are close in a Euclidean sense. To get to the window, you might have
to take a significant detour that takes you farther away from the window
but eventually presents the best available path to allow you access to your
Deluxe Chicken Sandwich.>® This is shown in Fig. 5.22.

Therefore, fitness functions exist that are not conducive to slow incre-
mental changes. There are evolutionary algorithms, specifically genetic
algorithms, that do not make incremental steps in the fitness landscape. A co-
ordinate in binary (000100), = 8 can change with a single bit mutation to
(100100), = 72. Depending on the manner the binary string is encoded, the

Conservation of Information in Computer Search 159

q
(@) B (b) 59
r 3 >
A C A
o © O

O
(©) 1 ()

A 4

\ 4

o— o

tFig. 5.23. Here is an interesting paradox concerning Euclidean and city block distances.
Shown are four squares, each one mile on each side. In (a) we see the distance between A and
B shown by the dashed line is +/2 = 1.414 miles. Suppose we are constrained however to
only move horizontally and vertically. No diagonals are allowed. Equivalently, we can only
make 90° right and left hand turns. If we go from A to C in (a), make a left-hand turn and go
to B we have traveled 2 miles. If as shown in (b) we make two left turns and one right, to get
from A to B, we are still traveling a total of 2 miles. In the route in (c) where more turns are
taken, we still are traveling a total of 2 miles. If we make numerous turns we began to hug the
45° dashed line connecting A to B as shown in (d), we still are traveling 2 miles. In the limit,
we approach the dashed line but curiously are still traveling 2 miles. But the dashed line
is /2 miles! It looks as though we’ve shown 2 = /2. This is obviously incorrect. What’s
the resolution and what does this reveal about the assumption of Euclidean distance? (The
solution can be found in Marks, Handbook of Fourier Analysis, Oxford University Press,
2009.)

location in the search space can jump drastically. Mutations have enormous
effects on Euclidean distance and might, for example, be more useful in
solving the Chik-fil-A® problem than a gradient descent method. We see
again the importance of choosing the search algorithm that best matches the
problem being solved. Another interesting non-Euclidean distance problem
is shown in Fig. 5.23.

160 Introduction to Evolutionary Informatics

5.5.3.1 Initialization

Evolutionary search, as is the case in all searches, is enhanced by an
informed initialization. If we have any idea where the solution exists in
the search space, then it often makes sense to start the search at some place
closell in some sense to the solution.

The Avida programK uses a specific type of initialization. In Avida’s
case, however, the initialization is not chosen near the solution but is
required for the evolutionary program to function.

5.6 Stairstep Information & Transitional Functional Viability

In the movie comedy What About Bob?, psychiatrist Dr. Leo Marvin
(Richard Dreyfuss) promotes his self-help book titled Baby Steps. He
explains the premise to his paranoid patient Bob Wiley (Bill Murray):

“It means setting small reasonable goals for yourself one day at a time. One tiny
step at a time. Baby steps.”

Bob accepts the premise as the solution to overcoming all of his problems.

“ Oh boy! Baby steps, baby steps, baby steps through the office, baby steps out
the door, it works it works! All | have to do .. just take one little step at a time,
and | can do anything!”

Dawkins’ mountain in Climbing Mount Improbable uses Bob’s logic.
Incredibly complex design sits perched on the top of a steep cliff of
endogenous information. How could this have occurred? According to
Dawkins, the answer is akin to baby steps. On the other side of the mountain,
is a long staircase with closely spaced steps that allows us to climb, one
baby step at a time, to the mountain top. Or so Dawkins claims.

“It is the slow, cumulative, one-step-at-a-time, non-random survival of
random variants that Darwin called natural selection.” And, like Bob, the
explanation is deemed to provide an explanation for all of the functionally
complex organisms we see. And as Bob said, relying on this explanation,
some claim Darwinism “can do anything!”

What, however, does evolutionary informatics tell us about stair steps?

li“Close” in whatever makes sense from knowledge of the fitness landscape.
kk|n Chapter 6.2.

Conservation of Information in Computer Search 161

5.6.1 Baby steps

Baby steps can work. Suppose we have 30 coins and we want them all,
by chance, to show heads. The endogenous information difficulty of this
problem is I = 30 bits. We throw all 30 coins up in the air. They come
down, bounce noisily on the title floor and eventually all show either heads
or tails. We announced a success if they all show up heads. On average
we would need to repeat this experiment about 1 billion times before we
achieved a success.!! This translates to about 30 billion total coin flips.

Now let’s take baby steps.

We flip the first coin until we get a heads. Then, the second. The process
is repeated until all 30 coins show heads. Each coin takes, on average, two
flips to get a heads.™™ Thus, on average, it takes 60 flips to get 30 heads.
That’s a lot less than 60 billion flips!

In this example, climbing Mount Improbable works quite well. But this
is a toy problem that ignores the crucial issues of functional viability and
irreducible complexity.

5.6.2 Developmental functionality and irreducible complexity

In the emergence of complex organisms, Darwinian evolution purports to
climb “Mount Improbable.”® Small perturbations accumulate to create
higher life forms. In evolutionary programs on computers, there is no
need to assign agent function at intermediate steps in the process. For
any physical evolution that involves climbing the stair steps of Mount
Improbable, however, every step must be a viable entity. If a worm evolves
into a whale, every intermediate organism along the way must be a viable
creature. There can be no intermediate step along the way that is a glob of
lifeless tissue. The paths for evolution of any physical entity are therefore
more highly restricted than for the general evolutionary computer program.
In an evolutionary process, we can think of numerous paths for getting
from an initialization point to a target. In computer simulations, the path is

It 1 = 30 bits corresponds to p ~ 10~9. The experiment is a geometric random variable
with expected value of about L~ 1 villion trials.

MM+ For a single coin, the number of coin flips prior to obtaining a heads is a geometric
random variable with a probability of p = % and an expected value of % = 2 coin flips.

162 Introduction to Evolutionary Informatics

generally not important. For physical evolution, only those paths allowing
functional viability at each step can be used.

In the evolution of natural language phrases where many champions of
Darwinian evolution choose to illustrate baby steps,® functional viability
rarely considered. Suppose we wish to evolve the phrase

ALL_THE_WORLD_IS_A_STAGE___

into
METHINKS_IT_IS_LIKE_A_WEASEL.

What phrase do we get if we simply alternate letters from the two phrases?
MLT_IHK__OTLI__SIAESAAW_A_E_

From the viewpoint of the English language, this phrase and most all phrases
between the two reference phrases are nonsense and not functionally viable.

There are other examples using English where baby steps evolves a
single letter into greater complexity. Consider the stair step construction of
the word STRINGIER, one letter at a time. One possibility would be the
stair steps

R>SR=>STR->STRN=>STRNR=>STRNIR=>STRNGIR->STRNGIER=>STRINGIER.

None of the intermediate steps is a word. There is no transitional viability.
A sequence with transitional viability is

[IN->SIN->SINE=>SINGE->SINGER->STINGER->STINGIER>STRINGIER.

Each entry in the sequence is a viable word that will pass a spellchecker.
The viability criterion makes the search much more difficult. Another nine
letter word that can be “evolved” from the letter | using viable words is
STARTLING. The longest ten letter word of which we are aware that can
be viably evolved is SPLITTINGS."™ We are aware of no other words of
similar length to which this baby step process can be applied while, at
each step, maintaining functional viability. Evolving words in this way is
certainly limiting.

"MDoing so is left as an exercise for the reader.

Conservation of Information in Computer Search 163

Fig. 5.24. For stair step information sources, the intermediate forms at each step must be
viable.

Evolutionary computing can be guided to complex results if interme-
diate steps are viable. To go from a Bernoulli’s PrOIR initialization to
the first target requires a sufficiently small endogenous information if the
search is not assisted. Likewise, the distance from the first to the second
step must be sufficiently easy to allow success. Numerous stages can be
used. But a search mechanism that allows small functional steps must itself
be constructed from active information. Establishing these states requires
stair step active information. This is illustrated in Fig. 5.24. The overall
endogenous information of the search is Iq. It is broken into a number of
small steps the n h of which has endogenous information of I, .°° Requiring
each stair step to display functional viability necessitates a very carefully
designed staircase.

Generalization to expatiation allows construction of more complicated
words. For example,

2 IP > RIP > RIPE > TRIPE > STRIPE w
| PINSTRIPE
N D IN > PIN > 2

Such synthesis must also be carefully designed.

991n his book Proving Darwin, Gregory Chaitin refers to the height of a stairstep, Ig, , asa
“mutation distance.” We will be spending more time with Chaitin’s model in Chapter 6.3.

164 Introduction to Evolutionary Informatics

5.6.2.1 Example: Using an EAR_TATTER_

Here is a pedagogical example of finding a long phrase by first finding the
letters in the phrase and then finding the frequency of occurrence of the
letters in the phrase.>® The search therefore has three stair steps.

1. Search for the reduced alphabet of the phrase.

2. Search for the frequency of occurrence of each letter of the smaller
alphabet.

3. Search for the longer phrase using the reduced alphabet and knowledge
of each character’s frequency of occurrence.

Step 3isassisted by Step 2 because the frequency of occurrence lets us guess
commonly used letters more often than letters used infrequently. Likewise,
Step 2 is achieved more easily with the active information available from
Step 1. The size of the alphabet has been reduced. The size of the search
space is thereby reduced.

Here’s an example.

1. MY_TEARS
2. EAR_TATTER_
3. ERATTA_RETREAT TREAT_ (5.14)

Step 1isasearch forareduced alphabet of L1 = 8 characters, MY_TEARS,
from the larger alphabet of N = 27. We’ll assume the oracle for Step 1 tells
us “yes!” if we guess the eight letters in any order. To go to Step 2 from
Step 1, a blind unassisted search is assumed with a needle-in-a-haystack
oracle telling us “yes!” only when all of the letters are announced in order.
Knowing the frequency of occurrence for each letter in Step 2 and the length
of the message in Step 3 lets us know how many and which letters are used
in Step 3. We simply have to shuffle the cards until the oracle at the third
level gives us the answer.
Here is the result. Using the three stair steps, we will use about

Bss = 3.58 x 10 bits. (5.15)
Using an unassisted search without the stair step requires about

Bg = 3.23 x 10°3 bits. (5.16)

Conservation of Information in Computer Search 165

The difference of about nineteen orders of magnitude is astonishing!
A millimeter, or 10~3 meters, when increased 19 orders of magnitude,
is about a light year, or ~ 106 meters.

15.6.2.2 Analysis

We now present the analysis that gives rise to the answers given in the
previous section. Those uninterested in the details may want to skip this.

Step 1 requires finding the phrase MY_TEARS from an alphabet of
27 characters (26 letters and a space). The phrase contains L1 = 8 letters.
We assume the letters can be found in any order. The chance of attaining
the first step is thus

8 7 6 1 7
Prill0]= = X = X —= X -+ x — =4, 1077,
r{1]0] 27X26X25X x20 50 x 10
The expected number of queries for the underlying random variable is

1
~ Pr[1|0]

01 = 2.22 x 108 queries.

Each query expends L1 log, N = 38 bits. The total number of bits expended
in getting to step one is thus

By = Q1L1log, N = 8.44 x 107 bits.

To go from Step 1 to Step 2, the phrase EAR_TATTER_ must be found
using the L1 = 8 member alphabet found in Step 1. Note that all of the
letters in Step 1 are not used in Step 2. Since there are L, = 11 characters
in the phrase in Step 2, the probability of going from Step 1 to Step 2 is

Pri2|1] = L;7"* = 1.16 x 10710,

Using the same reasoning as before, the total number of bits expended in
this step is then

_ Lylog, L1
2= TPz

We now know that the letters in EAR_TATTER_ are used twice in the
final phrase in Step 3. We simply need to arrange the code until we get the

= 8.54 x 1010 bits.

166 Introduction to Evolutionary Informatics

correct answer. The number of codes is a multinomial random variable. If
there are k1 green balls, k2 blue balls, k3 yellow balls, etc., so that

M
L= Z km
m=1

where M is the number of colors, then the number of ways these balls can
be arranged is

L!
kilko'ks! ... kg!

The chance of randomly arranging the balls to a single target value is the
reciprocal of this value. For our problem, L = L3 = 22 and the frequency
of occurrence ofthe M =5 lettersiskg = kg = ks =k =4,andkr = 6.
Thus

kg'kplkalk k7!
L!

Pr[3|2] = =213 x 10713

and

. Ls3 |ng Ly

— 3.581 x 10 bits.
Pr312] x '

The total number of bits expended in the stair step search is then
Bss = B + By + B3 = 3.582 x 10 hits,

which is the value reported in Equation (5.15).
For the unassisted search, the probability of success is

p=N1=324x10"%
requiring a bit expenditure of

L .
Bq = — log, N = 3.23 x 10% hits,
p

which is the value reported in Equation (5.16).
The stair steps in this example add a lot of active information.

Conservation of Information in Computer Search 167

5.6.3 Irreducible complexity

The concept of irreducible complexity is introduced in Michael Behe’s
classic Darwin’s Black Box. Many biological systems do not appear to have
a functionally viable predecessor from which they could have evolved. This
means that there are no stairs on Mount Improbable. The only way to the
top is one big information step whose occurrence by chance is impossibly
small.

5.7 Coevolution®’

Techniques inspired by biological coevolution have been widely used in
search algorithms. Examples include sorting networks,?® the morphology
and performance of competing agents,®® backgammon,° checkers®! and
chess.52 While traditional searches require the expertise of penalty function
artists to craft a fitness function that guides the algorithm, coevolution is
viewed as not requiring this prior expertise. Rather®3

“Coevolutionary algorithms require little a priori knowledge about the domain.”

Coevolutionary searches have been claimed to be able to violate the
law of Conservation of Information®* [15]-[18]. When the law is properly
interpreted, we’ll see this is not the case.

For conservation of information to apply in the case of classical search
but not in the case of coevolution is odd. What is different about these
co-evolutionary searches that allows them to not require prior information?

Before the analysis that shows coevolutionary search is still constrained
by conservation of information, let’s consider the simple example shown in
Fig. 5.25. Our job is to test insecticides. We have eight candidate bug-killing
formulas labeled A through H. In order to be acceptable, the insecticide must
kill roaches, ants, spiders, termites, wasps, hornets, flies, mosquitoes and
centipedes. We will assume that the cost of testing any one formula on any
bug is the same. As you can see from the table, some tests have already
been performed. Formula A, for example, Kills roaches but fails to kill ants.
The letter P entered in the table stands for pass. And we use the letter F for
fail. With an eye to minimizing overall test cost, what should be our next
experiment? In order to be acceptable, a formula must kill all of the bugs
on the list. Since formula A has already failed on ants, there is no reason to

168 Introduction to Evolutionary Informatics

Termites

Mosquitoes
| Centipedes

= |'” & Grade

-u-u"ﬂi'&s'

Fig. 5.25. An example of coevolution.

try it on spiders. The same is true for formula B which failed to Kill hornets.
Formula C failed to kill termites and D made roaches sick but didn’t kill
them. All it takes is one failure in order to disqualify a formula. In the Grade
column on the right in Fig. 5.25, we enter F if a formula has failed on one
or more bugs and a P for “pass” otherwise. Further testing of formulas that
have experienced a failure is a waste of time and money. Formulas E, G and
H have so far passed all of the tests. It is on these formulas that we wish to
spend our money.

Here is the point. Not all of the remaining possible queries in
Fig. 5.25 are useful. Some queries are more valuable than others. Thus,
Bernoulli’s PrOIR does not apply and, apparently neither does conservation
of information.

But wait a minute. Isn’t the true answer we seek in the Grade column?
Each element in the matrix simply provides information for the entry in the
Grade column. Indeed, conservation of information becomes applicable
when we consider the Grade column as a query result rather than the
individual entries in the matrix. The entries in the matrix are like inferior
gueries — or subjacent queries. Subjacent queries, combined, form a total
query. Total queries are still constrained by conservation of information.
Subjacent queries are not.

Generalization of the coevolutionary search is illustrated in Fig. 5.26.%°
A list of candidate solutions is shown on the left side. Each row of the

Conservation of Information in Computer Search 169

o

Projection
= ,4‘

Candidate
Solutions

Full Fitness Status

Fig. 5.26. The coevolution process.

subjacent query matrix corresponds to a candidate. As subjacent queries
are made, the results are projected into a solution concept. This is a fancy
way of saying the queries are summarized by a single number. This number
is written in the right hand column labeled “Solution Concept.” We next
need to look at the entries in the Solution Concept column to determine
the full fitness status. This tells us the best solution that we have thus
far. Here’s where the coevolutionary search comes into play. From the best
solution we decide the next subjacent query location in order to advance our
search in some appropriate manner. In the insecticide example in Fig. 5.25,
for example, only insecticides with grade P are considered for further
queries.

Coevolution queries inferior subjacent fitnesses that are combined into
estimates of full fitness queries. The analysis of coevolution by others
demonstrates that there is the appearance of a free lunch when the space of
subjacent fitness values is analyzed in the same way conventional NFLT’s
are derived. This subjacent space, however, contains inferior information.
In this sense, the NFLT is applicable to coevolution.

In engineering design coevolution has been shown effective in numer-
ous cases and our analysis should no way be construed to discredit
coevolution as a viable approach to optimization. Multiple subjacent
queries, for example, can come at a cheaper cost when compared to full
queries. Full queries in some cases appear only to be accessible via subjacent

170 Introduction to Evolutionary Informatics

59
46
33

Median
o

59

Fig. 5.27. In coevolution, certain subjacent queries are more informative than others.

gueries. We show, though, that coevolution, when analyzed at the full fitness
level, remains bounded by COI and the NFLT.

A somewhat more involved example is shown in Fig. 5.27.56 There are
three classrooms, A, B and C, and each has five students. Which classroom
has the oldest students? For the row projection, we choose the median
operation. Every time we perform a query, we pay a fixed fee to the student
for their age information. Assume our study is that shown in Fig. 5.27. All
five students have been queried in Classroom A and the median age is 59.
Classrooms B and C each have three queries to the subjacent fitness matrix
resulting in the full query estimates of 46 and 33 respectively. Since our
goal is to find the largest median, the full fitness status estimate is equal to
the maximum of the current median estimates, which gives the best solution
of 59.

There are four students remaining to be queried. How do we best spend
our money? A simple calculation shows that the largest median possible for
Classroom B is 55. This would happen even if the remaining two students
were each 100 years old. Thus, any additional query in Classroom B is a
waste of money because there exists no outcome that will exceed the median
age in Classroom A. Classroom C, on the other hand, could be the winner
or tied if both of the remaining students are 59 or older. The path to finding
the best solution is now clear. We first query a student in Classroom C. If
the age is less than 59, we are done, Classroom A wins, no matter how
old the fifth student in Classroom C is. However, if the queried student is
59 or older, the winner (Classroom A or Classroom C) will be decided by
the fifth and final query in Classroom C.

In terms of conventional queries, there are the three median ages — one
for each classroom. Using subjacent queries, we only have an estimate of

Conservation of Information in Computer Search 171

these values. Conservation of information applies to the conventional full
query.

In summary, the two unanswered queries in the boxes marked X in
Fig. 5.27 are useless. The queries A and possibly B, on the other hand, will
determine the winner. Not all subjacent queries are created equal.

5.8 The Search for the Search

Those who are proponents of undirected Darwinian evolution often invoke
the biological equivalent of the Anthropic Principle. Specifically, they assert
that we are very fortunate to have the environment and the biology necessary
for us to be here. And if we didn’t have the environment and the biology,
we wouldn’t be here to notice it.

But to what degree are we fortunate? What is the chance of choosing
the environment and biology that purportedly allows Darwinian evolution?
If we view evolution as a search, then we are asking how difficult it is
to identify a successful search. To do so, we are undertaking a search
for identifying a successful search. The difficulty of the search for a
search (S4S) as measured in endogenous information, always exceeds the
acceptable active information of the original search that serves as a fitness
threshold for the S4S. More significantly, under reasonable assumptions, a
successful search for a search turns out to be exponentially more difficult
than the search itself.

5.8.1 Anexample

A simple example for a search for a search is shown in Fig. 5.28. There
are 16 squares. On the left, the target is shown in the bottom right corner.
We will consider three searches. Search (a) uses the all 16 squares. They

(a) (b) (©)

Fig. 5.28. An example of a search for a search.

172 Introduction to Evolutionary Informatics

Table 5.8. Outcomes of an example search for a search.

Probability of success, ¢ Endogenous information, Ig Active information, 7

(@) 1/16 4 0
(b) 1/8 3 1
(© 0 —00 —00
S48 1/12 3.585 0.415

are all shaded. Search (b) only uses the eight rightmost squares. These are
also shaded. Search (c) constrains the search to be only in the top eight
shaded squares. Search (c), as you can see, is a poor choice for a search
because there is a zero probability we will find the target in the lower right
corner.

If blind search is chosen, the probability of randomly choosing the
target is equal to 1—16 The endogenous information for the search is four
bits. The active information for search (a) is therefore zero. The probability
of successfully identifying the target in one query for search (b) is %
This corresponds to active information of one bit. Using search (c), the
probability of finding the target is zero. The target for search (c) is not in
the shaded area. The active information for search (c) is therefore negative
infinity. These results are summarized in Table 5.8.

A search for the search requires choosing from a number of available
searches. Let’s assume that searches (a), (b) and (c) are the available
searches. If we have no idea which of these three searches is best, the
best we can do is choose one at random with equal probability. As is
seen Table 5.8, the total probability of choosing the target becomes %
Since the chance of choosing any of the searches is equally probable, this
value is equal to the average of the probability of success for searches (a),
(b) and (c). This, in turn, translates to an active information of 0.4154
bits for the S4S. This is better than the worst search and is worse than
the best search. If all possible searches are allowed, the No Free Lunch
theorem says that, on average, no search algorithm will work better than any
other.

This simple example illustrates the S4S problem. The best available
search strategy is search (b). In the meta-sense, search (b) is the target for
the S4S. Once search (b) is identified, the search can proceed.

Conservation of Information in Computer Search 173

5.8.2 The problem

In the S4S, our job is to choose a search from a space of all possible
searches. But what is our search target? We want to choose a successful
search, but how do we set a fitness criterion for a successful search? The
answer is a target value for the active information of the search being
sought. We would like to choose a search that equals or exceeds some active
information threshold. Let’s denote that threshold by ;. Any search with
active information equal to or greater than /7 is deemed to be a successful
search. We can write

I3 = log, (%), (5.17)

where ¢* is the probability of success corresponding to the active informa-
tion threshold 77 . Since the unassisted probability of success, p, is the same
for all searches, requiring the active information to exceed 77 is equivalent
to finding a search where the assisted probability exceeds the threshold g*.

We have our search criterion defined, but must now define our search
space. We consider two cases: the weak case and the strict case.

We have earlier looked at the curious case dubbed Bertrand’s paradox.PP
Bernoulli’s principle of insufficient reason (PrOIR) applying a uniform
distribution gave three different results. Bertrand’s paradox is resolved,
however, when the exact meaning of “random” is defined. When the specific
nature of randomness is defined, Bertrand’s paradox disappears. In the
analysis of the strict version of the S4S, we must be vigilant in specifying
our definition of “random” selection of a search.

One’s first inclination is to use an S4S search space populated by
different search algorithms such as particle swarm, conjugate gradient
descent or Levenberg—Marquardt search. Every search algorithm, in turn,
has parameters. Search would not only need to be performed among the
algorithms, but within the algorithms over a range of different parameters
and initializations. Performing an S4S using this approach looks to be
intractable. We note, however, the choice of an algorithm along with its
parameters and initialization imposes a probability distribution over the
search space. Searching among these probability distributions is tractable

PPIn Chapter 4.1.2.2.2.

174 Introduction to Evolutionary Informatics

and is the model we will use. Our S4S search space is therefore populated
by a large number of probability distributions imposed on the search space.

5.8.2.1 The weak case

We will now show that the better the search we want to search for, the
harder the S48S. In other words, the endogenous information for the S4S will
increase as a function of the target active information. Let the endogenous
information for the S4S be Iq. (For all variables associated with the S4S
space, we will use a ~.) For the weak case, we will show

79 > I_T_. (518)

In other words, the endogenous information for the S4S always equals or
exceeds the active information of the search itself. The S4S is thus at least
as difficult as the active information we wish to add to the search.

5.8.2.2 The strict case

When the negative log base two of the probability is taken, the unit of
information is bits. When the natural log is used, the unit of information
is nats.99 One nat is log, e ~ 1.443 bits. For the strict case of the S4S, we
find it convenient to use information measured in nats. Under the condition
that (1) the number of probability bins is large, i.e. N > 1, and (2) the
threshold for the probability of success is very very small (¢ <« 1), then
the endogenous information for the S4S is approximately, in nats,

To ~ €' (5.19)

The S4S is thus exponentially more difficult than the active information it
seeks!

Inboth cases we see that conservation of information cannot be violated
by passing the difficulty to a higher level search. The higher level search
becomes more and more difficult as the required search’s active information
is increased. And the endogenous information of the S4S always equals or
exceeds the active information threshold set for the S4S.

99This was addressed in Chapter 2.2.2.

Conservation of Information in Computer Search 175

15.8.3 Proofs

We will keep the derivation of these two results at as high a level as possible.
The use of some math probability theory, however, is unavoidable. For an
even more rigorous derivation, see our paper.6” Those who are squeamish
about math may want to take us at our word and skip the rest of this section.

15.8.3.1 Preliminaries

We will make use of a probability mass function as illustrated in Fig. 5.29.
The height of each of the bars, w1273 . . . Ty corresponds to the probability
of an event in the search space happening. The target is chosen to be a
single event and in Fig. 5.29 this event is the one with the highest bar. The
probability of finding the target is 7T = g. Since, these are all probabilities,
all of the bars stacked on top of each other must add up to one.

N
S m =1 (5:20)

n=1

We note in particular that, for a uniform distribution, each then has a
probability of

1
P=

Probability

tFig. 5.29. Event probabilities.

176 Introduction to Evolutionary Informatics

The endogenous information of the original search is therefore
Io = log N. (5.21)

Requiring the active information to exceed the threshold I7 is
equivalent to requiring the probability of the assisted search exceed the
threshold ¢*.

q>q".

This is our search success criterion. When we choose a probability
distribution from those available, we declare success when the probability
of success exceeds g*.

An example of a portion of the space from which we choose probability
distributions is illustrated in Fig. 5.30. Continuing with the notation used in

tFig. 5.30. S48S targets.

Conservation of Information in Computer Search 177

Chapter 5, the search space is labeled €2. There are |2| = 6 probability
distributions in the S4S search space. The target, 7, contains all the
distributions where the probability of success exceeds the threshold. These
solutions are encircled by a dashed line in Fig. 5.30. There are |T| = 3
distributions in the target.

15.8.3.2 The weak case

For the distributions in the target in the S4S search space, let’s take the
average of all of the probabilities of success. Since each of the probabilities
of success equals or exceeds the threshold, we know that this average must
be larger than the threshold.

A weaker inequality results if we sum up over the entire S4S space of

distributions:
Y an =Y an=Tlg".

neQ neT

We now divide both sides by the cardinality of the S4S search space

But the probability of choosing a successful distribution is p = % and
the probability of the success of the search is the average of all of the

probabilities of success. That is,

1
p:@ZQn-

nef
There is an assumption here: The average probability of success in the S4S
space, €, is equal to the uniform probability of success resulting from the

application of Bernoulli’s PrOIR in the original search space.” It follows
that

p=rqg,

M+ This assumption, for example, is not met in the sparse S4S sample space in Fig. 5.29.
The entire search of spaces is required.

178 Introduction to Evolutionary Informatics

or

=

SRS
< e

Taking the base two logarithms of both sides gives us our desired result as
promised in Equation (5.18).

iQ > Ij_.

This is the promised weak form of the difficulty of the S4S. The difficulty
of the search for a search surpasses the search being sought.

15.8.3.3 The strict case

For the strict S4S case, we make use of a simplex. The simplex is the locus
of all positive numbers that add to one. In other words it’s the plane that
obeys Equation (5.20). When there are two probability masses, 71 and
w2, the simplex is simply a line in the first quadrant that intersects the
1 and mp axes at ;1 = 1 and o = 1. In three dimensions the simplex
is a triangle in the first octant that intersects all the axes at one. This is
illustrated in Fig. 5.31. From this surface we will choose a probability
distribution function at random. On the triangular simplex, we assume that
distributions are uniformly distributed. The surface of the simplex triangle
is our Q = the search space for the S4S.

With reference to Fig. 5.31, we will assume that the target is associated
with probability ¢ = m3. Recall that a successful search consists of all
values of ¢ > ¢* where g* defines the smallest active information deemed
acceptable. This threshold is shown in Fig. 5.31. The threshold defines
the region on the simplex on the triangle abc. The area of this triangle
then corresponds to the S4S target, 7. A little bit of geometry shows that
the probability of success for this three-dimensional example, equal to the
ratio of the area of the small equilateral triangle to the large simplex, is

Area scales exponentially with dimension. For example, if we were to work
this problem with two probabilities instead of three, we would find that

Conservation of Information in Computer Search 179

1 ' \\'\.
N\ —0—~

tFig. 5.31. The strict case S4S search geometry.

p = (1 —g*). If we have N dimensions, the ratio is
ﬁ = (1 - q*)N_lv

where N is the number of probability bins in the distribution. Taking the
natural logarithm of both sides gives

Inp=(N—-21In1-g".
Since Ig = — In p nats, this can be written as
Ia =—(N—1)In(1 — ¢*). (5.22)

Now we will make two (very realistic) assumptions. The first assumption
is that our probability of success threshold is a very small number:

g < 1.

180 Introduction to Evolutionary Informatics

When this is true
In1 - ¢*) ~ —¢*. (5.23)

The second assumption is that the number of probability bins is very large.
In other words, if N > 1, then

1
N—-1~N="=, (5.24)
p
If we substitute Equations (5.23) and (5.24) into (5.22), we get
%
p

The log base two of the right side of this equation is equal to the active
information threshold, 77 . Therefore

InTg ~ I*
or, as promised in Equation (5.19),

79 ~ elj'.
Thus ends our derivation of the strict form of the S4S search. A second
derivations of the identical result, generated from a completely different
point of view, has also been published.%®

5.9 Conclusion

In evolutionary computation, the Darwinian “survival of the fittest/muta-
tion” mechanism creates no information. There is an information source
already resident in the search algorithm. Evolutionary search merely mines
the information from that source. Indeed, other search techniques can often
be applied to mine the information source more efficiently as measured
with the currency of queries. With no information source, conservation of
information, as manifest in Mitchell’s observation that bias is required for
learning,®® Schaffer’s conservation law for generalization performance,©
and Wolpert and Macready’s No Free Lunch Theorem,’? dictates that, on
average, one search algorithm will perform as well as any other.

The evolutionary approach may be biologically well-suited to extract
information from the environment. A query is, in a sense, a life form asking
whether or not it is worthy of survival. And the more offspring, the more

Conservation of Information in Computer Search 181

gueries. Evolution itself, however, can produce no information. It is rather a
finely tuned process that extracts information from a source of knowledge.
And it generally does so poorly.

If evolution cannot produce information, but rather only extracts
information from sources of knowledge in the environment, from where
do those sources of knowledge come? In the case of a computer model, the
answer is clear: the source of knowledge was placed there by the intelligent
design of a programmer. Non-teleological evolutionary processes must
have another explanation for their sources of knowledge. Any appeal to an
Anthropic Principle explanation of “that’s just the way it is — exactly right
for us” is problematic. The search-for-the-search analysis establishes that
the “just right” Goldilocks condition is, itself, exponentially more difficult
to establish than the actual evolutionary process itself. The efficacy of
evolutionary theory depends on the ability to offer an account of the source
of knowledge that Darwinian evolution depends on.

In the next chapter, a number of simulations of evolution from the
literature are presented. Each purports to demonstrate Darwinian evolution.
We will show, however, that they suffer from the same problems and that the
evolutionary process creates no information. Success is always traceable to
active information mined from a source of knowledge.

Notes

1. C. Darwin, The Autobiography of Charles Darwin, available at the Gutenberg
Project Online (1887).

2. David H. Wolpert and William G. Macready, “No free lunch theorems
for optimization.” IEEE Trans. Evolutionary Computation, 1(1), pp. 67-82
(1997).

3. Jie Li and Jianbing Chen, Stochastic Dynamics of Structures (Wiley, 2009).

4. R.J. Marks Il, Handbook of Fourier Analysis and Its Applications (Oxford
University Press, 2009).

5. A. Jerri, “The Shannon Sampling Theorem — Its Various Extensions and
Applications: A Tutorial Review.” Proceedings of the IEEE, 65, 1565-1595
(2977).

6. S. Bringsjord, P. Bello, and D. Ferrucci, “Creativity, the Turing test. and the
(better) Lovelace test,” Minds and Machines, 11(1), pp. 3-27 (2001).

7. L. Brillouin, Science and Information Theory (Academic Press, New York,
1956).

182

8.

10.

11.
12.

13.
14.
15.
16.

17.

18.

Introduction to Evolutionary Informatics

T.M. Mitchell, “The need for biases in learning generalizations.” Tech-
nical Report CBM-TR-117, Department of Computer Science, Rutgers
University, p. 59 (1980). Reprinted in Readings in Machine Learning
edited by J.W. Shavlik and T.G. Dietterich (Morgan Kauffmann, 1990),
pp. 184-190.

. C. Schaffer, “A conservation law for generalization performance.” In Proc.

Eleventh International Conference on Machine Learning, H. Willian and
W. Cohen (Morgan Kaufmann, San Francisco, 1994), pp. 295-265.
References are given in: William A. Dembski and R.J. Marks I, “Bernoulli’s
Principle of Insufficient Reason and Conservation of Information in Computer
Search.” Proceedings of the 2009 IEEE International Conference on Systems,
Man, and Cybernetics. San Antonio, TX, USA — October 2009, pp. 647-2652.
David H. Wolpert and William G. Macready, op. cit.

Yu-Chi Ho and D.L. Pepyne, “Simple explanation of the no free lunch theorem
of optimization.” Proceedings of the 40th IEEE Conference on Decision and
Control, pp. 4409-4414 (2001).

Yu-Chi Ho, Qian-Chuan Zhao, D.L., Pepyne, “The no free lunch theorems:
complexity and security.” IEEE Transactions on Automatic Control, 48(5),
pp. 783-793 (2003).

Ibid.

O. Haggstrom, Biology and Philosophy 22, pp. 217-230 (2007).

C. Schaffer (1994), op. cit.

Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification,
2nd edition (Wiley-Interscience 2000).

L.J. Fogel and W.S. McCulloch, “Natural automata and prosthetic devices.”
Aids to Biological/Communications: Prosthesis and Synthesis, Vol. 2, D.M.
Ramsey-Klee (ed.) 2, pp. 221-262. Reprinted in David B. Fogel, Evolutionary
Computation: the Fossil Record (Wiley-1EEE Press, 1998).

T.C. Service and D.R. Tauritz, “Free lunches in pareto coevolution.” Proceed-
ings of the 11th Annual conference on Genetic and Evolutionary Computa-
tion — GECCO ’09, pp. 1721-1727 (2009).

And “A No-Free-Lunch Framework for Coevolution.” in Proceedings of the
10th annual conference on Genetic and Evolutionary Computation— GECCO
08 (ACM Press, New York, USA, 2008), pp. 371-378.

D.H. Wolpert and W.G. Macready, “Coevolutionary free lunches.” IEEE
Transactions on Evolutionary Computation, 9(6), pp. 721-735 (2005).

D.W. Corne and J.D. Knowles, “Some multiobjective optimizers are better
than others.” In The 2003 Congress on Evolutionary Computation, 2003. CEC
’03, 4. IEEE, pp. 2506-2512 (2003).

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

Conservation of Information in Computer Search 183

S. Droste, T. Jansen, and I. Wegener, “Perhaps Not A Free Lunch But At Least
A Free Appetizer.” University of Dortmund, Dortmund, Germany, Tech. Rep.
(1998).

Winston Ewert, William A. Dembski, and Robert J. Marks 11, “Conservation
of information in relative search performance.” Proceedings of the 2013 IEEE
45th Southeastern Symposium on Systems Theory (SSST), Baylor University,
pp. 41-50 (2013).

M. Koppen, D.H. Wolpert, and W.G. Macready, “Remarks on a recent
paper on the “no free lunch” theorems.” IEEE Transactions on Evolutionary
Computation, 5(3), 295-296 (2001).

Ibid.

Unsupervised learning is typically performed using clustering. For example,
see R. Xu and D. Wunsch, Clustering (Wiley-IEEE Press, 2008).

Commonly used criteria for training such as use of test and validation data
to avoid needless complexity, are not addressed here. Interested readers are
referred to Duda op. cit.

C.A. Jensen, R.D. Reed, R.J. Marks Il, M.A. El-Sharkawi, Jae-Byung Jung,
R.T. Miyamoto, G.M. Anderson, and C.J. Eggen, “Inversion of feedforward
neural networks: algorithms and applications.” Proceedings of the IEEE, 87,
pp. 1536-1549 (1999).

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry (MIT Press, 1969). Later editions of the book were also published.
Ibid.

R.J. Marks Il, “CIFEr: Exchange and Synthesis.” Proceedings of the
IEEE/IAFE Conference on Computational Intelligence for Financial Engi-
neering (CIFEr), p. 7, April 9-11, 1995; New York, New York at http://
robertmarks.org/REPRINTS/1995 CIFEr_ExchangeAndSynthesis.pdf (URL
date May 2, 2016).

R.J. Marks Il and John Marshall, “Message from CIFEr ‘96 General Chairs.”
Proceedings of the IEEE/IAFE 1996 International Conference on Computa-
tional Intelligence for Financial Engineering, March 24-26, New York City,
p. 6 (1996).

J.F. Marshall & R.J. Marks I, “Message from the CIFEr ‘97 General Chairs.”
Proceedings of the IEEE/IAFE 1997 International Conference on Computa-
tional Intelligence for Financial Engineering, March 23-26, New York City,
pp. 6-7 (1997).

Russell D. Reed, and Robert J. Marks, Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks (MIT Press, 1999).

184

29.

30.
3L

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

Introduction to Evolutionary Informatics

John F. Marshall and Vipul K. Bansal, Financial Engineering (Kolb Publishing
Company, 1993).

John F. Marshall and Kenneth R. Kapner, Understanding Swaps (Wiley, New
York, 1993).

John F. Marshall, Dictionary of Financial Engineering. (John Wiley & Sons,
2001).

CIFEr, op.cit. Personal communication with Marks at the first CIFEr.

D. Thomas, “War of the Weasels: An Evolutionary Algorithm Beats Intelligent
Design.” Skeptical Inquirer, 43, pp. 42-46 (2010).

D. Thomas, “Target? TARGET? We don’t need no stinkin’ Target!.” http://
pandasthumb.org/archives/2006/07/target-target-w-1.html (2006) (URL date
May 2, 2016).

W. Ewert, William A. Dembski, and Robert J. Marks 11, “Climbing the Steiner
Tree—Sources of Active Information in a Genetic Algorithm for Solving the
Euclidean Steiner Tree Problem.” Bio-complexity, 2012(1), pp. 1-14 (2012).
D. Thomas, “Steiner Genetic Algorithm — C** Code.” http://pandasthumb.
org/archives/2006/07/steiner-genetic.html. (2006) (URL date May 2, 2016).
Ibid.

L. J. Fogel and W. S. McCulloch, op. cit.

Garry Wills, Lincoln at Gettysburg: The Words That Remade America,
(Simon & Schuster (1993)).

William A. Dembski and Robert J. Marks 11, “Conservation of information
in search: measuring the cost of success.” Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 39(5), pp. 1051-1061,
(2009).

“PegSolitaire” by Jonathunder — Own work. Licensed under GFDL 1.2
via Wikimedia Commons — https://commons.wikimedia.org/wiki/File:Peg
Solitaire.jpg#/media/File:PegSolitaire.jpg (URL date May 2, 2016).

J.D. Lohn, D.S. Linden, G.S. Hornby, A. Rodriguez-Arroyo, S.E. Seufert,
B. Blevins, and T. Greenling, “Evolutionary design of an X-band antenna for
NASA'’s Space Technology 5 mission.” 2004 IEEE Antennas and Propagation
Society International Symposium, 3(20-25), pp. 2313-2316 (2004).

J.D. Lohn, D.S. Linden, G.S. Hornby, and W.F. Kraus, “Evolutionary design
of a single-wire circularly-polarized X-band antenna for NASA’s Space
Technology 5 mission.” 2005 IEEE International Symposium Antennas and
Propagation Society, 2B (3-8) (2005).

Gerald J. Burke, Numerical Electromagnetics Code NEC-4, Method of
Moments, Part I: Users Manual, Lawrence Livermore National Laboratory.

42,
43.

44,

45,

46.
47.

48.
49.
50.
51.

52.

53.

54.
55.

56.

57.

Conservation of Information in Computer Search 185

See also Gerald J. Burke, Numerical Electromagnetics Code NEC-4, Method of
Moments, Part I1: Program Description Theory, Lawrence Livermore National
Laboratory (1992).

R.J. Marks 11, op. cit.

Thomas M. Cover, and Joy A. Thomas, Elements of Information Theory (John
Wiley & Sons, 2012).

This problem was apparently first proposed as The Two Child Problem in
Martin Gardner, The Second Scientific American Book of Mathematical Puzzles
and Diversions (Simon & Schuster, 1954).

J.D. Lohn, op. cit.

Gerald J. Burke, op. cit.

Detailed analysis of extraction of information from a Hamming oracle from
which this discussion is taken, including a discussion of Ewert’s algorithm,
may be found in Winston Ewert, George Montafiez, William A. Dembski
and Robert J. Marks II, “Efficient Per Query Information Extraction from
a Hamming Oracle.” Proceedings of the 42nd Meeting of the Southeastern
Symposium on System Theory, IEEE, University of Texas at Tyler, March 7-9,
2010, pp. 290-297. (Available at www.Evolnfo.org).

R.J. Marks Il, Handbook, ibid .

Ewert, Montafiez et al. ibid. Table 5.7 is from this paper.

John C. Sanford, Genetic Entropy & the Mystery of the Genome, ILN (2005).
Douglas D. Axe, “Extreme functional sensitivity to conservative amino acid
changes on enzyme exteriors.” J. Mol. Biol. 301, pp. 585-595 (2000).

J. Slocum, D. Singmaster, W.-H. Huang, D. Gebhardt, G. Hellings, and
E. Rubik, The Cube: The Ultimate Guide to the World’s Bestselling Puzzle —
Secrets, Stories, Solutions (Black Dog & Leventhal Publishers, 2009).

The authors thank George Montafiez for the Rubik’s cube and Chik-fil-A
examples.

R. Dawkins, Climbing Mount Improbable (W.W. Norton & Company, 1997).
H.S. Wilf and W.J. Ewens, “There’s plenty of time for evolution.” P Natl Acad
Sci, 107, pp. 22454-22456 (2010).

R. Dawkins. The Blind Watchmaker: Why the Evidence of Evolution Reveals
a Universe Without Design (Norton, New York, 1996).

William A. Dembski and Robert J. Marks 11, “Conservation of Information in
Search: Measuring the Cost of Success.” IEEE Transactions on Systems, Man
and Cybernetics A, Systems and Humans, 39(5), pp. 1051-1061 (2009).
Aversion of this section previously appeared as W. Ewert, William A. Dembski,
RobertJ. Marks 11, “Conservation of Information in Coevolutionary Searches.”
BIO-Complexity (2017).

186

58.

59.

60.

61.

62.

63.

64.
65.
66.
67.

68.
69.
70.
71.

Introduction to Evolutionary Informatics

W. D. Hillis, “Co-evolving Parasites Improve Simulated Evolution as an Opti-
mization Procedure.” Physica D: Nonlinear Phenomena, 42(1-3), pp. 228-
234 (1990).

K. Sims, “Evolving 3D morphology and behavior by competition.” Artif Life,
1(4), pp. 353-372 (1994).

PJ. Darwen, “Why Co-evolution beats temporal difference learning at
Backgammon for a linear architecture, but not a non-linear architecture.” in
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
N0.01TH8546), 2. IEEE, pp. 1003-1010 (2001).

K. Chellapilla and D. B. Fogel, “Evolving an Expert Checkers Playing Pro-
gram without Using Human Expertise.” IEEE Transactions on Evolutionary
Computation, 5(4), pp. 422-428 (2001).

D.B. Fogel, T.J. Hays, S.L. Hahn, and J. Quon, “A self-learning evolutionary
chess program.” Proceedings of the IEEE, 92(12), pp. 1947-1954 (2004).

S. G. Ficici, “Solution Concepts in Coevolutionary Algorithms.” Dissertation,
Brandeis University (2004).

T.C. Service op. cit.

This figure is from Ewert et al. op. cit.

Ibid.

William A. Dembski. and Robert J. Marks Il, “The Search for a Search:
Measuring the Information Cost of Higher Level Search.” J Adv Comp Intel,
Intel Informatics, 14(5), pp. 475-486 (2010).

Ibid.

T. M. Mitchell (1980) op. cit.

Cullen Schaffer (1994) op. cit.

Wolpert and Macready (1997) op. cit.

6

ANALYSIS OF SOME BIOLOGICALLY MOTIVATED
EVOLUTIONARY MODELS

“[T]he preservation of the complex, improbable organization of the living creature
needs more than energy for the work. It calls for information or instructions on
how the energy should be expended to maintain the improbable organization. The
idea of information necessary for the maintenance and, as we shall see, creation
of living systems is of great utility in approaching the biological problems of
reproduction.”

George Gaylord Simpson and William S. Beck!

When software engineers perform a computer search, they are always
looking for ways to improve the results of the search and how to better
incorporate knowledge about the problem being solved into the search
algorithm. Evolution computer programs written by Darwinists, on the
other hand, are aimed at demonstrating the Darwinian evolutionary process.
The efficiency of the search is of secondary importance.

Despite these differences, the fundamentals of evolutionary models
offered by Darwinists and those used by engineers and computer scientists
are the same. There is always a teleological goal imposed by an omnipotent
programmer, a fitness associated with the goal, a source of active informa-
tion (e.g. an oracle), and stochastic updates.

Having established the background for conservation of information?
for evolutionary processes, we are now ready to examine some of the more
publicized biological computer models of Darwinian evolution. In each of
the cases examined, information sources are tapped resulting in sufficient
active information to allow the models to work. We suspect the authors of the

187

188 Introduction to Evolutionary Informatics

software, possibly numbed by familiarity with the evolutionary paradigm,
had no hidden agenda when infusing the information into the algorithm.
In any case, for the computer simulations, we can specifically identify the
sources of the active information.

The first program we analyze is dubbed EV.

6.1 EV: A Software Model of Evolution

Thomas Schneider designed software simulation to demonstrate Darwinian
evolution. He called it EV and wrote a paper describing its performance.®
In the paper, Schneider made the following claims:

e “The [EV] simulation [of evolution] begins with zero information and,
as in naturally occurring genetic systems, the information measured in
the fully evolved binding sites is close to that needed to locate the sites
in the genome.”

e “The [evolutionary] transition is rapid, demonstrating that information
gain can occur by punctuated equilibrium.”

e “The EV model quantitatively addresses the question of how life gains
information.”

e “[The] EV program also clearly demonstrates that biological informa-
tion, measured in the strict Shannon sense, can rapidly appear in genetic
control systems subjected to replication, mutation and selection.”

In the light of the mathematics of conservation of information, these
statements are irrefutably wrong. There is no “information gain by natural
selection” as claimed by Schneider. Information sources are included in
the program. Using an evolutionary process, this information source is
mined for active information that guides the search to the desired result.
The evolutionary search, in fact, does a rather poor job in extracting active
information from information sources. Other algorithms do better. We saw
this property in the previous chapter where different algorithms extracted
active information from Hamming oracles with different efficiencies. This
also applies to EV.

6.1.1 EV structure

Cartoonist Rube Goldberg was famous for drawing cartoons of complicated
machinery that perform simple tasks.

Analysis of Some Biologically Motivated Evolutionary Models 189

o A small steal ball rolls down two closely spaced parallel rods and then
falls three feet and hits one side of a small see-saw.

e On the other side of the see-saw’s fulcrum is a spoonful of dry dirt, that
is launched into the air as a cloud of dust.

e The dust is inhaled by a tethered dog, who sneezes and blows out a lit
candle that has been keeping a small mouse warm.

e As it moves through a tube to a warm blanket, the mouse triggers a
trip wire that launches a marshmallow towards a delicately balanced
paperback book positioned above the light switch.

e The book falls and flips the switch from the upward on position to off.

This overly complicated Rube Goldberg machine has just successfully
turned off the light. A simple task is performed with a high overhead of
expensive complexity. EV is not unlike this.

Stripping away the Rube Goldberg structure of EV leaves the search
problem illustrated in Fig. 6.1. There are four nucleotides: A, C, G and T.
Two bits are assigned to each to them as follows:

A =00 c=01 G=10 T=11

A string of nucleotides, interpreted as a binary string, is fed into a
mechanistic number cruncher that outputs another string of bits. The output
is compared to the target and the Hamming distance between the output
and the target is announced by a Hamming oracle. Evolution is said to have
successfully occurred when the Hamming distance is zero and the target
has been identified.

EV

g T T e

' Hamming Oracle

Hamming
Distance

Fig. 6.1. The digital organism used in EV.

190 Introduction to Evolutionary Informatics

Sixty-four of the “digital organisms” shown in Fig. 6.1 are used to
find the target. This is shown in Fig. 6.2. The Hamming distance is used
as the fitness. During evolution, a copy is made of the 32 organisms
with the highest fitness. They replace the discarded organisms with the
worst Hamming distances. The population is then mutated by replacing a
randomly chosen nucleotide location with a randomly chosen A, C, Gor T.
There is therefore a 25% chance that the replaced nucleotide is the same as
the replacement. Each cycle is referred to as a generation. A different target
is chosen for each initialization of EV, but remains fixed throughout the
search. All organisms seek the same target. The target is said to represent
nucleotide binding sites. On the nucleotide strand, a one is assigned to a
binding site. Otherwise, a zero is assigned. Since a number of nucleotides
must be situated between adjacent binding sites, the targets chosen by EV
all consist of a sea of zeros with a sparse sprinkling of ones. As we will see,
this is one of many contributing factors to the success of EV.

In the literature, only positive research results are typically published.
When programs like EV appear, there is a requirement that successful
evolution has been demonstrated by the software. Programs that are not
successful won’t be published. As is the case with Edison designing the light
bulb or the 409 trials needed for the successful invention of Formula 409™,
one must ask how many trials were needed to design the EV program? How
much effort was taken in the debugging of the initial program? And if the
original idea didn’t work, how many times was the program rewritten trying
different scenarios? Writers of software know that original programs rarely
work the first, second, or the tenth time. The EV program could have been
written on the first try. We doubt it though. Computer languages, like C++,
offer sophisticated tools for the debugging of software. On this account,
we are prompted to ask the degree that active information was infused
into the EV program and other evolution software from the programmer’s
experience. The programmer’s brain is, of course, a source of information in
such programs. The difficulty of writing software, though, is rarely reported
in journal and conference papers. Thus, we will rarely if ever be able to
assess the active information infused into EV by the programmer.2 So let’s

8This is the man-in-the-loop source of active information discussed in Chapter 3.7.3.

Analysis of Some Biologically Motivated Evolutionary Models 191

Fig. 6.2. The computer program EV uses a population of 64 organisms of the type shown in
Fig. 6.1. Each seeks the same target. A Hamming oracle provides a measure of how close the
organism is to the target. In each generation, the 32 organisms with the smallest Hamming
distance are duplicated and replace those organisms with the largest. In the new population,
a single nucleotide is replaced in the input, the Hamming distances are recalculated, and the
process is repeated.

192 Introduction to Evolutionary Informatics

return to the concrete aspects of EV’s final manifestation and the identifiable
sources of active information therein.

6.1.2 EV vivisection

Details of the EV digital organism, with its Rube Goldberg details, are
shown in Fig. 6.3. DNA consists of four nucleotides: A, C, G, and T.

Make a Make a Make a Make a
Number Number Number Number

TACTAG

Add one if different.

Nothing if the same

ik A RUNNING
COMPARE SUM

Fig. 6.3. Details of the EV digital organism.

Analysis of Some Biologically Motivated Evolutionary Models 193

At the top of Fig. 6.3, there is a sequence of 256 nucleotides.” Since
there are four nucleotides, assuming Bernoulli’s PrOIR, each has I =
log, 4 = 2 bits of information each. We assign two bits each to them as
follows

This way, any string of N bits can be interpreted uniquely as a string of
nucleotides when N is even, and vice versa. The nucleotide sequence
CTAAGC becomes the bit string 011100001001 and the bit string
000111110010 becomes the nucleotide sequence ACTTAG. The EV
simulation of evolution uses a string of 256 nucleotides (512 bits) in each
of its digital organisms.

Accompanying the nucleotide string at the top of Fig. 6.3 are a sequence
of ones and zeros shown at the bottom of the figure. A “1” denotes that the
nucleotide is a binding site. A “0” means that it is not. The EV program
assigns the binary string at the program’s start. Although the assignments
have arandom component, the binding sites must be separated. This requires
that most of the bits in the binary string are “0’s” and that “1’s” are padded
on both sides by zeros. The goal of the search is to find a set of nucleotides
that generate the specified binding sites.

The manner that the nucleotides determine the binding sites is deter-
mined by the EV program diagramed with the flow graph in Fig. 6.3. First,
nucleotides are used to “Make a Number.” They are used in groups of five.
Since each nucleotide has two bits of information, each number has ten bits
of accuracy. Since 4° = 219 = 1024 and negative numbers are desired, EV
interprets each of these numbers between —512 and +511. These numbers
are fed into the “EV Number Cruncher.” The number cruncher allows input
of six nucleotides and outputs a zero or a one. The nucleotide sequence at
the top of Fig. 6.3 is shifted across the number cruncher one nucleotide at a
time. The first output of the number cruncher is determined by the first six
nucleotides. The second bit output of the number cruncher is determined

bThere are five additional nucleotides for a total of 261. The extra five are needed to
accommodate a sliding six nucleotide window. In Fig. 6.3, the window occurs in the
synchronized “Shift”.

194 Introduction to Evolutionary Informatics

by nucleotides 2 through 7. The shifting is continued until 256 bits are
generated by the number cruncher.©

Each time the number cruncher spits outa bit, it is compared to the target
bit stream. The shifting nucleotide string shifts with the target bit string.d
If the number cruncher output differs from the target bit, a running sum
is incremented by one. If they match, the running sum is not incremented.
After the shifting is complete, the running sum contains the Hamming
distance between the 265 bit target and the output of the number cruncher.
Only the Hamming distance is used as the fitness of the digital organism.
The specific locations along the genome where the number cruncher and
target bits agree and differ are not used in the search. Nor will we use them
in any of the searches we propose. Recording the total Hamming distance
between an output and a target constitutes use of a Hamming oracle. The
Hamming oracle can be a rich source of information.® Indeed, if our goal
is to find the 265 bit target in EV, we could do so in no more than 256
queries using the Hamming oracle. This is not, however, a very interesting
evolution problem. Our task, rather, is finding the target filtered through the
mechanistic Rube Goldberg EV number cruncher.

The workings of the number cruncher are shown in Fig. 6.4. The “Make
a Number” blocks in Fig. 6.3 are used to place numbers between —512 and
511ina4 x 6 matrix in Fig. 6.4 and to set a threshold. The width of four in
the matrix allows the four nucleotides to shift through. Six is the length of
the window. Each nucleotide activates one of four numbers depending on
whether the nucleotide is A, C, T or G. The six activated numbers are added
together and compared to a threshold generated from “Make a Number.”
Whether the sum exceeds the threshold determines whether the number
cruncher outputs a zero or a one.

6.1.3 Information sources resident in EV

The goal of EV is to find a set of nucleotides that gives a resulting
Hamming distance of zero. It is a search problem to which a number

CThe need for the additional five nucleotides is now evident. To generate the final output, for
example, the final nucleotide is needed, as are five additional nucleotides to fill the needed
six input locations in the number cruncher.

dAs is shown in Fig. 6.3.
€We saw this in Chapter 5.4.3.1.

Analysis of Some Biologically Motivated Evolutionary Models 195

Threshold
416

Fig. 6.4. The EV number cruncher. As the nucleotides shift across the top, selected numbers
in the matrix are added and compared to a threshold to determine whether the output is one
or zero. The nucleotides are shifted one to the right and the process is repeated for the
next bit.

of search algorithms other than evolutionary search can be applied. It is
not the evolutionary program that is responsible for generation of active
information. There are already rich sources of active information in EV.
Even though accessed through the EV number cruncher, the Hamming
oracle is one such source. We are accurately being told how close we are
to the desired result of a zero Hamming distance. And, as always, the large
number of digital organisms examined as in Fig. 6.2 is a minor source of
information.

The number cruncher is a rich source of information. The EV
programmer probably did not purposefully design the number cruncher to
be a source of information. But, then again, had the EV program not worked
using the number cruncher, no publication would have resulted. The number

196 Introduction to Evolutionary Informatics

cruncher is biased towards outputting strings that are primarily zeros with
a sprinkling of ones (or vice versa). This, as we have seen, is exactly the
type of target describing the binding site locations.

To show this, we chose a string of nucleotides uniformly according
to Bernoulli’s PrOIR and randomly generate an output string of 256 bits.
Adding all 256 bits gives the number of ones in the string. This was repeated
10 million times and the normalized" histogram at the top of Fig. 6.5% was

0.005

0.004

0.003

0.002

0.001

(226) =256

0 32 64 96 128 160 192 224 256

Fig. 6.5. The top plot is a histogram of the number of ones generated by the EV number
cruncher. The middle plot is the normalized histogram we would expect. The bottom plot
is the ratio of the two plots.

fThe histogram is normalized to give it a unit area. Such histograms can be viewed as
empirical estimates of probability density functions.

Analysis of Some Biologically Motivated Evolutionary Models 197

generated. If you look closely at the top graph, you’ll see that there is
a second plot. That’s 10 million additional trials except that the number
of zeros are added at the output. The histograms are graphically nearly
indistinguishable.

There are 2256 — 1.15792 x 1077 possible bit strings of length 256.
Only one of these strings contains all zeros. On the other hand, there are
(%5) = 5.76866 x 107 strings that contain exactly 128 ones. Thus, the
bulge in the middle of the histogram in the top plot in Fig. 6.5 is reasonable.
But it isn’t a big enough bulge. If we assume that each bit in a string is
generated with a 50-50 coin flip, the normalized histogram should be close
to the bell-shaped curve? in the middle of Fig. 6.5. The bottom curve in
Fig. 6.5 is the top curve divided by the middle curve. It shows the degree of
deviation amplification of what we would expect to see if each binary string
were determined by a sequence of fair coin flips. The number cruncher is
seen to drastically prefer binary strings with either a preponderance of zeros
or a preponderance of ones.

The biased nature of the number cruncher is illustrated if we examine
how the number cruncher can generate an output of all zeros. There is only
one way to generate an output of all zeros, so the endogenous information
of this problem is I = 256 bits. The 10 million queries of the number
cruncher, however, show that the probability of a single query generating
all zeros is an astonishingly large ¢ = 0.00155. This is an exogenous
information of Is = 9 bits corresponding to an astounding 7. = 247 bits
of active information generated by the number cruncher.

There is another interesting insight we can glean from this all-zeros
experiment. Since there are |Q| = 4261 = 1.37 x 10157 distinct nucleotide
sequences, and since the probability of choosing a sequence that produces
an output of all zeros is ¢ = 0.00155, we are left to conclude that there are
an astonishing ¢|2| = 2 x 1015 nucleotide sequences that will generate
an output of all zeros!

Although the goal of EV is not to generate a string of all zeros, the
plots in Fig. 6.5 illustrate conclusively that the EV number cruncher is

9t From the Laplace-Demoivre Theorem, the plot of (%°)2—256 in the middle of Fig. 6.5

is a Gaussian or normal curve often referred to as a bell-shaped distribution. With n = 256
and p = % its mean is np = 128 and its variance isnp(1 — p) = 64.

198 Introduction to Evolutionary Informatics

predisposed to generating a sequence of zeros peppered with ones or a
sequence of ones peppered with zeros. In this manner, the number cruncher
is a rich source of active information for the type of targets chosen in EV.

6.1.4 The search

We have identified a number of sources of information resident in EV. How
can we best exploit them to search for a set of nucleotides that give us a
match to the binding sites?

6.1.4.1 Search using the number cruncher

EV’s number cruncher provides active information when it generates
target-like bit strings. Using the number cruncher alone, the exogenous
information has been upper bounded as Is < 90 bits.? Forecasting the
outcome of 90 flips of a fair coin is highly improbable. Therefore, the
Hamming oracle or some other information source is required to work with
the number cruncher to yield a successful search.

6.1.4.2 Evolutionary search

EV’s evolutionary approach uses 64 copies of the organisms." The 32
organisms with the largest Hamming distances are discarded and replaced
with duplicates of the organisms with the lowest Hamming distance. Then
one nucleotide in each organism is chosen at random and replaced with
another nucleotide. The process is then repeated. The original EV paper
reports convergence in 704 cycles or generations. That’s 704 x 64 =
45,056 Hamming distances measured. We score each Hamming distance
measurement as a query. We ran a total of 100,000 EV simulations'
and 9,115 were successful. Each simulation was limited to a maximum
of one hundred thousand queries. Our simulations of EV averaged 993
generations for success or, on average, 63,552 queries. Although larger than
the 45,056 queries reported in the EV paper, the resulting comparisons are
not unreasonable.

NAs we see in Fig. 6.2.
IThat’s about 1,563 generations since 64 x 1,563 A 100,000 queries.

Analysis of Some Biologically Motivated Evolutionary Models 199

Using a query count, how does this performance compare to a simpler
search algorithm that uses the same source of knowledge?

6.1.4.3 EV and stochastic hill climbing

We can do better than multi-agent evolutionary search using a single
organism. We start with a single randomly chosen nucleotide string as an
input and note the Hamming distance between the output and the target.
Then one of the input nucleotides is changed and the new output Hamming
distance is noted. If the Hamming is larger, the change is discarded and
another nucleotide is randomly chosen and changed. Otherwise, the change
is kept and the process repeated. Ten thousand searches were performed
using the stochastic hill climbing search® and, even though the same upper
bound of 100,000 queries was imposed on the search, every search was
successful. The average query count for success using this algorithm is
10,601. This average was found from 10,000 separate searches.

The evolutionary algorithm used in EV requires six times the number of
gueries as compared to the stochastic hill-climbing approach. Both searches
used the same information sources. The hill-climbing search used them six
times more efficiently as measured by average query count.

The source of success in the EV program is not the evolutionary
program. It is the information sources embedded in the program by the
programmer, most notably the EV number cruncher and the Hamming
oracle.

6.1.4.4 Mutation rate

Search algorithms have parameters that can be tuned to make the search
more efficient. Both the evolutionary search algorithm and the stochastic
hill-climbing algorithm assume the mutation of a single nucleotide per
query. Is this the best mutation rate? As can be seen in Fig. 6.6, the answer
is no. Two mutations per iteration give better results. As was the case in
the original run, each point in Fig. 6.6 makes use of 10,000 runs using
a population size of 64 and a query cutoff of 100,000 queries. The plot
is the fraction of times the search succeeded prior to cutoff. Fractional

iAlso known as an evolutionary strategy.

200 Introduction to Evolutionary Informatics

1 _e-0-e
®

0.8 / ®
06 ®
0.4

02 /
@

%5 1 15 2 25 3 35 ¥

Fig. 6.6. Success rate as a function of mutation for the evolution algorithm search applied
to EV.

mutations are generated by randomizing the mutation number. To achieve
1.75 mutations per child, for example, each organism receives at least one
mutation and has a 75% chance of receiving another.

To increase the probability of success, the mutation rate in EV using
the evolutionary search must be tuned. If the rate exceeds four mutations
out of 261 nucleotides, there will be close to zero chance of success in the
search using the limited resources allotted.

6.1.5 EV ware

An interactive GUI, available on the Evolnfo.org web site X is capable of
demonstrating EV and its variations. The control panel for EV Ware, shown
in Fig. 6.7, allows a wide choice for implementing variations of the EV
algorithm.

Figures 6.8-6.10 shows three different runs using the EV structure. The
target (labeled “What you want”) is shown with the darker gray in the lower
portion of each row. The result of the latest query (labeled “What you got™)
is on top. The output corresponds to the bit stream shown at the bottom of
Fig. 6.3. The input, not shown, is the bit stream on the top of Fig. 6.3.

Khtp://www.evoinfo.org/ev.html.

Analysis of Some Biologically Motivated Evolutionary Models 201

Intreduction

Ev Ware

Target Type: ® Ev Binding Sites All Zeros Random Binding Sites

Start Search (Auto) | Speed: =} Step Forward: | 1 Stop Reset

Results
| IR Sy e s

Algorithm: Ev Search b History: View History

Organisms: 64

[Current Search Results Error Count: 0 Query Count: 0

Fig. 6.7. The control panel for EV Ware.

The futility of the blind search is illustrated in Fig. 6.8. An EV organism
was queried randomly over 900,000 times without a success.

A sample run of the EV algorithm in Fig. 6.9 found success after 50,048
queries. Since the evolutionary program used 64 organisms per generation,
this is equivalent to 782 generations. Fewer queries are required when using
a single EV organism and applying stochastic hill climbing. The example
in Fig. 6.10 found success in a few more than 9,000 queries and therefore
mines the knowledge source more efficiently than does the EV evolutionary
algorithm.

6.1.6 The diagnosis

With the analysis, simulations and understanding of the conservation of
information, we are now in a position to revisit the claims made by EV and
comment on them:

e “The [EV] simulation [of evolution] begins with zero information and,
as in naturally occurring genetic systems, the information measured in
the fully evolved binding sites is close to that needed to locate the sites
in the genome.”

202

Fig. 6.8. EV Ware for “Undirected (Blind) Search” generated no solution after over 900,000
queries.

e “The [evolutionary] transition is rapid, demonstrating that information

Introduction to Evolutionary Informatics

Ev Ware

Target Type: © EvBinding Sites) AllZeros) Random Binding Sites

‘ Start Search (Auto) ‘ Speed: :«I] Step Forward: | 15 Stop Reset |

Results

‘ Algorithm: Undirected Search: Random Input History: | View History |

Current Search Results Error Count: 184 Query Count: 900114
(ol e I N N L L i
5 s e e
EKNENED| © KN ° EN| © |KN/EN| © KN] o |KNEN/ENENEN| © |KN/ENEN/EN KN EN
R
[[EVEEN KRN EEVEVENENEN o |°[°|° | KKK
(8 = o e e o) o e o e)) o)
I N I D © | © |
{0 e))
I |
1 0 o i T T T N R
I N © | I B I
(oille [afl's s I olla[aile [o]ls [all = NN el atalla)a] o Mo []
I Ao B
1555 s N e e s
| NI K
£ o ot s o o i
ENENE ° | o |ENEN/EN/EN| © KN © KN © [ENENEN © || ° KN ° KNENEN
KN (o]0 [ofo (o fRlolo]o oo Wl 0olooloolololo [l

R 5 5| |5 HEEE || B [
[0]o (oo (oo WMo o oo o]0 ol ollo/olo]o]o]o ENle]

What you want What you got

[target)
[ofofofo]o [N

The EV program starts with rich sources of information the most
prominent of which are the Hamming oracle and the EV number
cruncher. These sources of active information are resident in the
program before the search begins.

gain can occur by punctuated equilibrium.”

Analysis of Some Biologically Motivated Evolutionary Models 203

Ev Ware

Target Type: © EvBinding Sites) AlZeros) Random Binding Sites.
‘ Start Search (Auto) | Speed: ———]] Step Forward: |7 Stop Reset ‘

Results

Algorithm: Ev Search History:

Organisms: Mutations: 1 Survival %: 50

Current Search Results Error Count: 0 Query Count: 50048

(]t)) T e i) 3) R A
T T Y 0

(8 . 0 A 8 (A) R R R A
53 s ey s s e s i 1
5 5 . i 1 . .
1o {5 e oo [o o o s o o i o i]
I
DoDDDDDDoDDDDDODDDDDDODDDDDD
(053 s o

[oolofoloolofolalololololafolo]elofolalolo]e
1 I S) [
(o[o"lFo {fo1 o [io" [N o[la" "o 0" Fo1 o ia {ro[HN[ic" (o[o /la [[o]
EENET EEREIE (- [EERENEE I EN I EE Y
[ofolofolololofRMofolclololMofo]clofola]o]
3] i . [[15 i [i

(o1] 0o {fo1.o1| Nl o[- [o1 o o1 Lo o) e o |l o) e o) o [o L o]
() 0) N RN
KMo [ofo]ololojENlojolcloolfMoofclofolofololfllo]o]
[ofojofofofo/EMojofolcfolojofEMofcjofojofofofgRofo]
10) I N [

DoEnEa What you want What you got
]

Fig. 6.9. In this run, EV evolutionary search succeeded in a bit over 50,000 queries.
The rapidness of the transition is due only to the mining of active
information in the sources resident in EV.

e “The EV model quantitatively addresses the question of how life gains
information.”

204 Introduction to Evolutionary Informatics

Ev Ware

Target Type: @ EvBinding Sites) All Zeros) Random Binding Sites

| Start Search (Auto) | Speed: =ﬂ Step Forward: | 15 Stop Reset |

Results

|Algorit||m: Ratchet Search Hislon': |

Current Search Results Error Count: 0 Query Count: 9189

{0 0 . 0 T A
0 e e o) e A

[o]ofofofofolgmofofojojofofojolgmofofofojojolglolo]
[0]o]olofololENofofololoolololEMofofofolololilolof

1 R R R 0 [A 1Y
[0 JloJio [0 [0 o [io [Nl o [0 o Jio [o [Ill[o Jlo Jlo[o [o [0 JioJioJo RN 0|

1 R R 0 0 [A Y
100 o 3 I o [N

KN| 0| oo fofojolglofofojofolglofojofofofojojolglolo]
KNl oo fofololofRNofololo]ofRlololofofofolololillo]of

[o]ofofofofolgmofofojojofofojgmojofofofojojolglolo]
[o]o]olofololENofofolofolololEMlolofo]ofololoflo]of

What you want What you got
1
Onoon-] are)

Fig. 6.10. Stochastic hill-climbing, discussed in Chapter 6.1.4.3, is called Ratchet Search
in this figure. Success here was achieved in 9,189 queries. This is far fewer than is required
by EV’s evolutionary search result in Fig. 6.9.

The implication is that the evolutionary program generates the
information. It does not. The evolutionary algorithm, rather, mines
information sources resident in the program and, as has been
demonstrated conclusively, does so rather poorly.

Analysis of Some Biologically Motivated Evolutionary Models 205

e “[The] EV program also clearly demonstrates that biological informa-
tion, measured in the strict Shannon sense, can rapidly appear in genetic
control systems subjected to replication, mutation and selection.”

Any information gained is not due to “replication, mutation and
selection.” It is due to the information sources designed by the
programmer and placed in the simulation program. The same results
are obtained more quickly using stochastic hill climbing.

When the stochastic hill-climbing search was applied to EV, we saw a
successful search in every case. A nucleotide sequence was always found
that generated the target string of 256 bits. We are reminded of the law
of large numbers as demonstrated through Buffon’s needle experiment.
Numerous implementations of Buffon’s needle problem converged to the
unexpected fixed point of 1/z. Each convergence followed a different path
but they all ended at 1 /7. This also appears to be the case in the simulations
we see of EV using stochastic hill-climbing. The target was achieved even
though there are different initializations and different mutations.

Most simulations claiming to illustrate Darwinian evolution are similar
to EV. The programmer writes a stochastic program with the goal in mind
of achieving some fixed point. When the program is run, we should not be
surprised that a fixed result is reached by different paths.

6.2 Avida: Stair Steps to Complexity Using NAND Logic

Like EV, Avida? is a computer program which, its creators say, “show][s]
how complex functions can originate by random mutation and natural
selection.” Also like EV, contrary to the claims of the authors, the source of
the success of Avida is not due to the evolutionary algorithm, but to sources
of information embedded in the computer program.® A strong contribution
to the success of Avida is stairstep information source embedded in the
computer program. Also like EV, the sources of information can be mined
more efficiently using other search algorithms.

Like EV, the Avida program is a complex Rube Goldberg algorithm.
Its goal is to generate a complex logic function called EQU. The pinball

lIn Chapter 4.2.1.

206 Introduction to Evolutionary Informatics

machine analogy is appropriate. As with the steel ball bouncing around
in a pinball machine, there are numerous possible paths, but the steel
ball eventually falls down the little hole behind the flippers. Well, almost
always. Sometimes the ball gets stuck between two bumpers and sometimes
searches get stuck in local minima.

6.2.1 Kitzmiller et al. versus Dover area school district

Avida has a legal history in the intelligent design debate. We’ll give a short
overview before getting into the technical aspects of the program.

The Dover Area School District in Pennsylvania wanted intelligent
design recognized as a viable alternative to Darwinian evolution. Contro-
versy built, some parents sued, and in stepped the ACLU to the defend the
Darwinists.

Even though there was no mention of a creator, and even though the
Dover statement to students could be used to defend agnostic Francis Crick’s
directed panspermia,™ the ACLU claimed that such actions were a violation
of the Establishment Clause of the United States Constitution. The first
amendment in the Bill of Rights reads

“Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
Government for a redress of grievances.”

The italicized portion is the Establishment Clause. Since the ACLU claimed
Dover violated the US Constitution and since Congress made a law about
the establishment of intelligent design as a religion (we’re still not clear
when the US Congress did this), the challenge by the ACLU was made in
federal court. The ACLU therefore needed to prove the Dover Area School
District in Pennsylvania was involved in the establishment of a religion.
In a federal bench trial, the Dover Area School District was found in
violation of the Establishment Clause. In the words of the ACLU*

“On December 20, 2006, Judge John E. Jones Il issued a blistering 139-page
opinion in which he found intelligent design to be a religious view and not a
scientific theory”

MThe belief that life was purposely planted on planet Earth by an alien intelligence.

Analysis of Some Biologically Motivated Evolutionary Models 207

Intelligent design was therefore tagged as a veil hiding religion.

The Dover trial included testimony from Robert Pennock,® a coauthor
of the original Avida paper. Avida was presented as evidence that evolution
was a scientific fact. Pennock was asked

“[Avida is] designed to instantiate Darwin’s law, correct?”

Interestingly, the need for the evolutionary program to require design was
an explicit component of the question. In his answer, Pennock testified
that"

“In the [Avida] system we’re not simulating evolution. Evolution is actually
happening.”

When this testimony was given, Avida had not yet been illuminated in the
light of COI. We’ll show that, like EV, the source of information required
for Avida to succeed was written into the program and the program was
fine-tuned to succeed. Before discussing the details, we need to establish a
background in Boolean logic which is the mathematics around which Avida
is designed.

6.2.2 Boolean logic

Avida is based on elementary Boolean logic and NAND gate synthesis.

AND and OR logic operations are used in everyday communication.
Another logic operation is NOT. Inthe 1992 movie Wayne’s World, Wayne’s
buddy, Garth, when stranded, says

“I’m having a good time... NOT!”

Putting a NOT at the end of a statement reverses its meaning. If a statement
is true, putting a NOT afterwards makes it false. The opposite is also true.

"The court reporter in the Dover trial typed Avida as “Evita”. In quotes from the transcript,
we insert “AVIDA” in place of “Evida”.

208 Introduction to Evolutionary Informatics

X

X NAND Y

X|Y XNANDY GATE

00| |

0|1 |

1 | 0 I

1 l | 0

Fig. 6.11. The NAND truth table and the schematic for a NAND gate. The output is the bit
flip of the AND. The little circle of the output of the gate denotes the NOT operation.

A false statement followed by a NOT is true. In logic, NOT is an operation
that operates on a single bit. If the input is a 0, the output is 1 and if the
input is 1 the output is 0. In other words, the NOT operation is a “bit flip.”

In terms of notation, NOT X is written as X. If X is one, then X is zero
and if X is 0, then X is 1. The NOT operation is often placed at the output
of a logic operation. The term NOT AND is contracted to NAND.

The NAND truth table is shown in Fig. 6.11. The consequent in each
row is the complement of the consequent of the AND logic operation.
A schematic of the NAND gate is also shown on the right in Fig. 6.11. The
inputs to the gate are X and'Y, either of which can be a 0 or a 1. The output
isa 0 or a 1 depending on the entry on the truth table.

We can likewise put a NOT after the OR operation and get a NOR, and
a NOT after the XOR to get an XNOR. There are many options. Some of
them are shown in truth tables in Table 6.1.

Table 6.1. Truth tables for some common logic operations.

XY X Y AND NAND OR NOR XOR XNOR XORY XORY XANDY XANDY

0011 O 1 0 1 0 1 1 1 0 0
0110 O 1 1 0 1 0 1 0 1 0
1001 O 1 1 0 1 0 0 1 0 1
1100 1 0 1 0 0 1 1 1 0 0

Analysis of Some Biologically Motivated Evolutionary Models 209

6.2.3 NAND logic

Here is a theorem from Boolean algebra that is important in Avida software:
All logic operations, including those in Table 6.1, can be realized by
connecting NAND gates together.’ For a given logic operation, there
can exist numerous configurations of NAND gates able to achieve the
operation. This property of NAND gates is essential for the success of
Avida. If Avida used, rather, both AND and OR gates without a NOT
gate, the ability to characterize an arbitrary Boolean function would not
be possible. The synthesis of all of the logic operations in Table 6.1 using
only NAND gates is shown in Figs. 6.12—6.15. These diagrams turn out to
be important for understanding Avida. As more and more NAND gates are
added, note that the structures contain components of simpler operations.
These are the stair steps used by Avida to achieve more complex NAND
logic using simpler NAND logic. The more complex operations are built
with simpler operations. A stair step information source to generate more
complex operations must signify that the more complex operations are
more fit than the simple operations. If this is not the case, the existence
of the stair steps is not useful. As the stairs are climbed, we must be
informed we are getting “warmer,” i.e. closer to the result we seek. When
a more complex operation degrades into a simpler one, we are informed
that we are getting colder. This active information source is the reason
for Avida’s success. As is always the case, the evolutionary program does
not create any information. Indeed, other algorithms mine the information
source better and achieve the results of Avida more efficiently. More on this
later.

16.2.3.1 Logic synthesis using NAND gates

Let’s walk through these operations one at a time. In all cases, we will
concentrate on connecting the minimum number of NAND gates to achieve

OStudents of Boolean logic know that any proposition in the Boolean truth table can be
expressed using AND, OR and NOT operations (e.g. prime implicants) As our treatment of
Avida unfolds, we will see that AND, OR and NOT gates can be synthesized using only
NAND gates. Hence the NAND gate alone is sufficient for implementation of all Boolean
logic. (The NOR gate can also be used to express all Boolean logic functions.)

210 Introduction to Evolutionary Informatics

|’-<|><

NAND NOT

= || (A Y
NOT
Y
XORY | NAND
T
y _.E}l_NAND
= XORY

Fig.6.12. NAND logic. In @, the Boolean operations of NAND and NOT can be performed
with a single NAND gate. Operations possible with two NAND gates are shown in @.
(Continued in Fig. 6.13.)

o 2]
Bl B By
Y ——
NAND
AND

I‘I:I
Y

an operation. (Those not interested in the details of the Boolean operations
and NAND logic may want to skip ahead.)

In Fig. 6.12 in the block marked @ are two operations that can be
performed with a single NAND gate. Obviously, the NAND operation is
possible. The NOT operation is also possible. As shown, both the inputs
of the NAND gates are connected and the same value serves as the input.
Since 1 NAND 1 = 0 and 0 NAND 0 = 1, an input of X = 1 gives and
output of X = 0 while an input of X = 0 gives and output of X = 1.
Thus when the same inputs are required, the NAND gate operates as a
NOT gate.

Also shown in Fig. 6.12 are logic operations that can be achieved
with two NAND gates. The first in the @ block is the AND operation
which takes the NOT of a NAND gate output. Since two negatives make a
positive, the composite operation is an AND. Note, significantly, how the

Analysis of Some Biologically Motivated Evolutionary Models 211

©
XORY
" 0,
A pt__ D,
ROl XORY o
XANDY

X ;P
Y [D_l_—NAND NOT
AND
NOT

XANDY

n'Drppt

NAND NOT
AND

Fig. 6.13. NAND logic. In @ we have the logic operations achievable with three NAND
gates. Each entry makes use of the operations using one NAND gate in @ and two NAND
gates in @. (Continued in Fig. 6.14.)

single gate operations NAND and NOT in @ are used as components in the
operations in @. This is the first case of the presence of stair step active
information. Block @ in Fig. 6.13 shows operations achievable with three
NAND gates. The firstis a logical OR. Two other operations from Table 6.1,
X AND Y and X AND Y, are also shown. Each of the logic operations uses
the stair step operations in @ and @ as building blocks to synthesize the
operations. On the top in block @ is the logic OR operation. It uses the
X OR'Y logic in block @ as a component. The remaining two operations

212 Introduction to Evolutionary Informatics

4

X }L XOR
—3 NAND
AND

>,

NAND NAND
X
N
NOR
Y _E}J_NAND NOT

NOT OR

Fig. 6.14. NAND logic. (Continued from Fig. 6.13.) Here are two operations that require
four NAND gates. Both the XOR and NOR operations require a minimum of four NAND
gates. (Continued in Fig. 6.15.)

use the AND operation from block @. Although not explicitly shown, the
middle operation, X AND Y, can also be viewed as having X ORY as a
component. Likewise, the bottom logic operation inblock &, X ANDY, can
be construed as having the operation X OR Y in block @ as a component.

Both the XOR and NOR, as shown in Fig. 6.14, require a minimum of
four NAND operations. The NOR operation in block @ contains the OR
operation as a component. It can also be construed as containing the AND
operation in @.

The XNOR operation in Fig. 6.15 requires, at minimum, five NAND
gates. Itis the operation sought by the Avida program. The XNOR operation
is referred to as EQU in the Avida paper. With attention to the XNOR truth
table in Table 6.1, note that the output is one only if both the inputs are the
same, i.e. inputs are both 0 or both 1. Hence the EQU tag.

Analysis of Some Biologically Motivated Evolutionary Models 213

XNOR

(5
X or
NAND

] -
Y }I_ NAND Nor

NAND NOR

Fig. 6.15. NAND logic. (Continued from Fig. 6.14.) In @ we have a minimal NAND logic
representation of the XNOR operation.

The EQU operation, as shown in block @, can be construed as having
the XOR in block @ as a component. It also has the X AND'Y operation
and the X OR Y components shown in block @ and the AND operation in
block @.

The NAND logic shown in Figs. 6.12-6.15 are examples of using the
minimum number of NAND gates to perform the designated operation.
There exist other NAND gate configurations that achieve these operations.
Two cascaded NOT gates cancel each other and can be placed anywhere in
the circuit. For example, one additional NOT can be cascaded at the end
of the EQU in Fig. 6.15. The augmented circuit will undo the effect of
the other NOT gate and the overall circuit will generate an XOR operation
using six NAND gates. In the top circuit in block @, the XOR operation is
achieved using only four NAND gates.

6.2.4 The Avida organism and its health

Like EV, Avida contains a digital organism. Unlike EV, Avida displays
transitional functional viability in the sense that each step towards its goal
corresponds to one or more logic operations. Avida s illustrated in Fig. 6.16.
On the left there is a loop on which there are simple computer commands.
There are a total of 26 commands in Avida and each is depicted by a lower
case letter. The instruction (q), shown in a larger font than the other letters in

214 Introduction to Evolutionary Informatics

X=[100001000..]
Y=[001010010..]

-T_
- ® '
(d)
0
-

—

[000110110..]

—

| Ax-{o1001011.] |
(q) | BX=111011010-1 | (400110110,]

| cx-fo1100011.] | STACK
&)
(a)
o l / |
om O ~ ouTPUT
®
e

[010100101..]

Fig. 6.16. The Avida digital organism.

Fig. 6.16, is the current instruction. The instructions manipulate the binary
numbers to the right in Fig. 6.16. When there are multiple organisms, the
instructions can also dictate the interaction among organisms.

Each organism is born with two strings of bits titled X and Y. These
strings, shown at the top of the organism, remain the same throughout the
organism’s life. Internal to the Avida organism are a number of scratch
pads where strings of bits can be stored. Three of these pads, as shown in
Fig. 6.16, are AX, BX and CX. The default target register is BX unless
modified by a previous instruction. There is also a STACK that can be used
to store strings of 32 bits. An instruction might copy the string of bits in X,
for example, into AX. There is also an OUTPUT shown on the bottom.
An instruction, for example, might dictate the contents of register CX be
copied into the OUTPUT.

Analysis of Some Biologically Motivated Evolutionary Models 215

Table 6.2. The 26 operations used by Avida.

(a) nop-A (h) swap-stk (o) sub (u) h-search
(b) nop-B (i) swap (p) nand (v) mov-head
(c) nop-C (j) shift-r (q) 10 (w) jmp-head
(d) if-n-equal (k) shift-I (r) h-alloc (x) get-head
(e) if-less () inc (s) h-divide (y) if-label

(f) push (m) dec (t) h-copy (2) set-flow
(9) pop (n) add

Here is a description of some of the more important operations listed
in Table 6.2.

e (p) nand performs a nand operation on BX or CX and writes the result
in the target register. For example, if

AX: 00011011110101110010100111001010
BX: 10001110111011110101100110010111

the bitwise nand operation generates
1111010100111000112111111001111101

which it writes in the target register. The default target register is BX.
If the nand operation is taken from the Avida list of instructions, the
possibility of producing any logic operation nosedives. Avida counts
on the nand operation to perform the NAND gate implementation and
therefore all other logic operations.

e () 10 places the target register into the OUTPUT register and reads in
the next value of X and .

o (f) push and (g) pop inputs or outputs from the stack register.

o (i) swap interchanges the target register with the next register of interest.

The other operations manipulate the internal registers, facilitate the repro-
duction of the Avida organism, or manipulate the content and size of the
program loop. Some of the operations as we will see are deleterious to the
formation of logic operations by AVIDA. The 10 operation is, however,
essential for the operation of AVIDA. If removed, Avida will not work. The
shuffling of bit streams by operations such as push, pop and swap, are
likewise essential for the operation of Avida.

216 Introduction to Evolutionary Informatics

The fitness of Avida is determined by the relationship of the X and Y
registers to the OUTPUT register. If, for example, each bit in the output is
the logic OR of the corresponding two bits in X and Y, then Avida is credited
with performing an OR operation. If O denotes the output, an example of
a successful OR operation is as follows.

X:10110100110010100111001010000110
Y:10001100111101011001100101110110
0:1011110011112111112111101111110110

Since Xand are assigned at the organism’s creation, only O is changed
as the program runs.

The values of X, Y and OUTPUT used in Fig. 6.16 illustrate the XNOR
operation. This is the operation using NAND logic that minimally requires
the most NAND gates.P Avida does not refer to the operation as an XNOR,
but as an EQU.

The fitness used by Avida for performing operations is a function
of the number of NAND gates needed for its minimal representation. If
G is the number of gates used in a minimal representation, the fitness
assigned by Avida is f = 2°. The OR operation in block C at the top
of Fig. 6.13 requires a minimum of G = 3 NAND gates and therefore
has a fitness of f = 23 = 8. The fitness of the logic operations shown in
Figs. 6.12—-6.15 used by AVIDA is listed in Table 6.3.

The use of stair steps as an information source in AVIDA is now
evident. Lower stairs for logic operations required fewer NAND gates. As
we saw in the logic synthesis using NAND gates, blocks of less complicated
operations can be combined to achieve more complicated operations.

Avida’s search for logic operations is akin to the stair step example of
finding longer phrases built on the success of finding shorter phrases. In an
example of stair step information,% we used the 26 letters of the English
alphabet plus a space to search smaller phrases so we can climb the stairs
to success in a complex search. Now we are using the 26 instructions in
the alphabet in Table 6.2 to find simpler logic operations to climb the stairs
to obtain the more complex EQU operation. Recognizing a series of letters

PSee Fig. 6.15.
YPresented in Chapter 5.6.

Analysis of Some Biologically Motivated Evolutionary Models 217

Table 6.3. Fitness, f assigned by Avida for performance
of different logic operations using NAND logic.

Logic Figure G f
NOT 6.12 (1] 2
NAND 6.12 (1] 2
AND 6.12 (2] 4
(XORY)or (XORY) 6.12 (2] 4
OR 6.13 (3] 8
(XANDY) or (XAND Y) 6.13 (3] 8
NOR 6.14 (4] 16
XOR 6.14 (4] 16
EQU (XNOR) 6.15 (5 32

is more intuitive than analyzing a string of computer instructions, but the
searches are conceptually the same.

Like EV, Avida uses a large population for its evolutionary search. As
depicted in Fig. 6.17, for most generations of the evolutionary search, 3,600
of the organisms in Fig. 6.16 are used.

6.2.5 Information analysis of Avida

Avida provides a nurturing environment for the computation of the XNOR
(EQU) logic operation. In comparison to the other logic operation steps on
the staircase, EQU is the most complicated in the sense that it requires the
most nand gates. Avida interconnects these intermediate results to generate
EQU. Stairstep active information is mandatory to do this.

The authors of Avida recognize and confess to the need for the active
information in allowing Avida to work. They write that when stairstep active
information is available,

“...at least one population evolved EQU.”

What happens when no stairstep active information is applied? Nothing.

“At the other extreme, 50 populations evolved in an environment where only EQU
was rewarded, and no simpler function yielded energy. We expected that EQU
would evolve much less often because selection would not preserve the simpler
functions that provide foundations to build more complex features. Indeed, none

218 Introduction to Evolutionary Informatics

Fig.6.17. Each of the 3,600 dots in this array represents a single Avida organism in Fig. 6.16.

of these populations evolved EQU, a highly significant difference from the fraction
that did so in the reward-all environment.”

Firmly entrenched ideology can blind its proponents to the obvious. How
did the stairstep information get there to allow Avida to work? The answer
is obvious. It was put there by a designer. The writers of Avida agree in
part:

“Some readers might suggest that we stacked the deck by studying the evolution
of a complex feature that could be built on simpler functions that were also
useful. However, that is precisely what evolutionary theory requires, and indeed,
our experiments showed that the complex feature never evolved when simpler
functions were not rewarded.”

Yes, the deck is stacked. And if this is what “evolutionary theory requires,”
then evolution requires intelligent design. As we show in our discussion of

Analysis of Some Biologically Motivated Evolutionary Models 219

the search for the search (S4S), searching for information-rich environments
is exponentially harder than performing the search being sought.

We have published a detailed critique of Avida where sources of active
information are identified and measured.® Those interested in nitty-gritty
details should examine this paper available on Evolnfo.org.

6.2.5.1 Performance

Here are some results from simulations using Avida software.”

6.2.5.1.1 The evolutionary approach

Using analysis applied to simulations using Avida, we showed that, using
85 instructions, there are about 1.82 x 10198 of the possible 268> = 1.87 x
1020 programs that will compute an EQU. For a single random sequence
of 85 instructions, the probability of choosing a program that generates
EQU is the ratio of these two numbers which is p = 9.71 x 10713, The
corresponding endogenous information is the — log, of this probability
which is

I ~ 39.9 bits.

This means that the chance of a randomly drawn sequence of 85 instructions
has more than one chance in one trillion of producing an EQU.

All of the logic operations in Table 6.3 can be used as stair steps in
Avida. What happens when a stair or two is removed? Here is a comparison
of different results for Avida using I = active information per instruction.®

"Fifteen instructions, native to the Avida organism, allow the process of replication in
the evolutionary search. The 85 instructions referred to here are added for a total of 100
instructions.
$t The active information per instruction is Ig, = E[/+ /3] where E denotes expectation, J is
arandom variable corresponding to the number of instructions, and 7. is the corresponding
active information. We estimate this mean using K trials by

Io 1
K successes Jk

where J; is the number of instructions for the case of a successful trial. Results for
unsuccessful trials do not contribute to the sum.

220 Introduction to Evolutionary Informatics

1. Using Avida’s default parameters (all 26 instructions and all steps), we
find that

1819 ~ 1.90 x 10~° /¢,

2. Removing some steps from the staircase should worsen performance. If
we remove rewarding the XOR and NOR stair steps in Table 6.2, we get
the worse figure

IXORENOR ~ 1 36 x 10714,

3. Let’s take away a few more steps. Besides XOR and NOR, let’s remove
AND_N and OR stairs. The active information per instruction becomes
even smaller

IE)éOR&NOR&OR&AND&OR ~ 0.62 x 10—919.

4. What happens if, in the previous example, we took away the AND step
instead of the OR step? In this case, it looks like the OR step is more
important than the AND step since

Ié)éOR&NOR&OR&AND&AND ~ 052 x 10—919‘

6.2.5.1.2 The ratchet approach

The fitness available from the stair steps can be viewed as an oracle. When an
Avida program is presented to the stairstep oracle, the oracle responds with
a fitness value. As we saw with the Hamming oracle, there are bad and good
ways to extract active information from the stairstep oracle. Remember how
we were able to extract more active information from a Hamming oracle
using more efficient algorithms? We can do the same with the stairstep
oracle resident in the Avida program. In fact, evolutionary extraction of
active information is a relatively poor method for mining information from
the stairstep oracle.

The other search algorithm we analyze is a simple ratchet approach.
Let’s take a single Avida organism and mutate it. If the mutation gives a
smaller fitness according to the stairstep oracle, we discard the mutation
and try again. This way, the fitness of the single Avida organism never
decreases. In terms of query count, this ratchet (or stochastic hill climbing)
approach performs significantly better than Avida’s evolutionary approach

Analysis of Some Biologically Motivated Evolutionary Models 221

using 3,600 organisms. Let’s go through the same scenarios as we did for
the Avida search. For notation contrasts, let’s call the active information per
instruction Rg (R for ratchet) rather than Ig. Here are the results:

1. Using all 26 operations and all stair steps, we get
RA ~ 2530 x 10~ %14
2. Removing the XOR and NOR steps, we get
RZOR&NOR ~ 16.26 x 10~ °I¢,.

3. Besides XOR and NOR, remove the AND_N and OR stairs. The active
information per instruction for the ratchet search is then

RgOR&NOR&OR&AND&OR ~B6.72 x 10_gIQ

4. And lastly we remove the XOR, NOR, AND_N and AND stairs.
RéOR&NOR&OR&AND&AND ~ 8.05 x 10~ %1,

Interestingly, for the ratchet search the AND stairstep looks more
important than the OR stairstep in this particular scenario. The opposite
was true for evolutionary Avida.

6.2.5.1.3 Comparison

The active information results for the various searches are summarized in
Table 6.4. The conclusion is inescapable. Like all evolutionary programs
that work, Avida has resident in it an oracle mined by the evolutionary
search program. And the evolutionary search program does a poor job of
mining information in comparison to a simpler ratchet search.

6.2.5.2 Minivida

Minivida is a web-based simulator available on Evolnfo.org.! It is similar
to, but not identical to, the simulation done by the main Avida program."

thitp://www.evoinfo.org/minivida/.

UY1In order to run efficiently in a web-based environment several elements of Avida have been
simplified. All instructions relating to copying instructions are either ignored or only partially
implemented. The simplifications have been done on non-critical elements of Avida’s design

222 Introduction to Evolutionary Informatics

Table 6.4. Comparison of the endogenous infor-
mation per instruction multiplier for Avida and
a rachet search using the same stairstep oracles.
The ratchet approach proved superior every time
revealing that, on a per instruction basis, the ratchet
search mines information from the stairstep oracle
more efficiently than does Avida. (Each number in
the table should be multiplied by 10~9.)

Avida Ratchet

No Stairs Removed 1.90 25.30
XOR and NOR 1.36 16.26
XOR, NOR, AND_N, OR 0.62 6.72
INXOR, NOR, AND_N, AND 0.52 8.05

For those interested in details, Minivida runs on an internet browser and
anyone can download and see the code.

Not only are the elements of Avida resident in Minivida, but the user
can change them to see what happens.

e Instructions. Minivida’s 26 instructions, the same as for Avida, are
shown in Fig. 6.18. Minivida allows all of the instructions to be either
turned off or on. Not all of the instructions available to Avida are useful.
In fact a majority of them can be thrown out with affecting the ability
of the programs to produce EQU. Under the instructions tab, you can
control which instructions the program is allowed to do.

e Fitness. The fitness from the stair step finesses in Table 6.3 are
represented in Minivida in Fig. 6.19. By default, in both Avida and
Minivida, operations are rewarded relative to the number of NAND gates
required to produce them. Minivida allows you to vary these values and
even remove steps from the stairstep oracle.

e Population Size. Avida has a default population size of 3,600. Minivida
lets you choose whatever population size you want. (See Fig. 6.20.)

(continued) so that this simulation is sufficiently similar to the original Avida program to
make it helpful. An attempt has been made to maintain as much compatibility with Avida
as possible, so most Avida programs should run on this simulator with the same results.

Analysis of Some Biologically Motivated Evolutionary Models 223

[Description Simulation Tasks Instructions Settings
|

Avida has a set of instructions that it uses to produce ils results. Here you can control which ones are
available

Minivida

Preselect minimal

a nop-A No effect, but may change operation of instruction before it.
b nop-B No effect, but may change cperation of instruction before it.
® c nop-C No effect, but may change operation of instruction before it.
d if-equal Skips an instructions if two registers are equal.
e if-less Skips an instructicn if one register is less then the other.
B f pop Pops a value off of the stack.
® g push Pushes a value onto the stack.
h swap-stk Switches between the two stacks.
I swap Swaps two registers.
Jj shift-r Shift a register value to the right.
k shift-1 Shift a register value to the left.
| ine Increment the value in a register.
mdec Decrement the value in a register,
n add Add two register values together.
o sub Subtract two register values.
® p nand Calculate the bitwise nand of two register values.
®q IO Read in an input and write out an output.
r h-alloc Allocates memary for offspring (side-effects anly)
s h-divide Signal the end of the copying process (not-implemented)
t h-copy Copies a instruction (side-effects only)
u h-search Search for a label
v mov-head Move one of the heads (partially implemented)
w jmp-head Move one of the heads forward (partially implemented)
% get-head Move the location of one of the heads into a register
y if-label Skip an instruction if a certain label has just been copied. {not implemented)
z set-flow Moves the flow-head to the position of one of the other heads.

Fig.6.18. A page from Minivida on Evolnfo.org. The 26 operations in Avida are all assigned
a letter in the English alphabet.

6.2.5.2.1 The full program

For the full simulation, there are 3,600 digital organisms. All 26 instructions
are used and the oracle uses all nine stairsteps.

Good Result: One outcome, shown in Fig. 6.21, converged to EQU in only
13,449,600 queries to the stairstep oracle. That’s 3,736 generations of 3,600
organisms. As is seen in the figure, logic schematics are shown for each
generation. For this version of EQU, six NAND gates are used.

Less Favorable Result: Another simulation with identical parameters had
less favorable results. As shown in Fig. 6.20, 600,000,000 queries was not
enough to create an EQU.

224 Introduction to Evolutionary Informatics

Description | Simulation Tasks Instructions Settings

Minivida

Avida is rewarded for performing a number of different tasks. Here you can control which tasks are
rewarded and how much

“«nand 1
* not 1
* orn 2
*and 2
* or 3
«andn 3
“ nor 4
“ xor 4
v equ 5

Fig. 6.19. The 9 stairs in the Avida staircase. Stairs can be added or deleted in Minivida.
Also, the weight of the contribution of each stairstep can be changed. The default, as shown,
is to weight each stair equal to the minimal number of NAND gates required to perform the
operation. The contribution, as shown in Table 6.3, is two raised to the number of gates.

[Description Simulation Tasks Instructions m

There are a number of settings you can tweak

Minivida

Random Inputs * Standard Inputs You can either use random inputs, or standard inputs which are
designed to test all cases for the bitwise operations,

Population Size 3600

Fig. 6.20. In Minivida, you can specify the population size for your simulation. In Avida,
the default value is 3,600 digital organisms.

6.2.5.2.2 Remove the staircase

If all of the Minivida parameters are kept the same except that the staircase
is removed, what happens? For Avida, when there are no stairs,

“. .. none of these populations evolved EQU, a highly significant difference from
the fraction that did so in the reward-all environment.”

The same thing happens in Minivida when only the top stair, EQU, is
recognized and rewarded. In the simulation shown in Fig. 6.23, over 2 billion

Analysis of Some Biologically Motivated Evolutionary Models 225

Description m Tasks Instructions Settings

Resume Resst

Minivida

Generation: 3736 Queries: 13449600 Current Best. 15

Genome: agmctqpiqgppgapqeocqiqdjqpifpghfphh purokfgnfmreprnjupajgexxcfghjtmsgensirf
Target: Target consistently found: Stopping Search

Fig. 6.21. A successful implementation of Minivida using all of Avida’s default parameters.
EQU is found. The evolved computer code giving rise to this result is in the block labeled
Genome. Each letter is assigned an operation in Fig. 6.18. A less favorable result using the
same parameters is shown in Figure 6.22.

queries produce no result. This is understandable. Jumping to the top of the
building when there are no stairs is difficult.V

6.2.5.2.3 Minimal instructions

Not only are all 26 instructions not needed in Avida, some junk instructions
actually get in the way of finding an EQU. If we strip away all of
the instructions we consider obstructions, the minimal set of instructions
remains.Y When the junk instructions are scrapped, Minivida finds EQU
very quickly.

The target EQU is now easily found. A simulation result is shown in
Fig. 6.25 where EQU is found by Minivida in 11 generations using less
than 40 thousand queries to the stairstep oracle.

The EQU is found using the minimal set even when the stairsteps are
removed. See Fig. 6.26.

VSee the cartoon in Fig. 6.24.
WThe minimal set of instructions is shown by the checked boxes in Fig. 6.18.

226 Introduction to Evolutionary Informatics

[Description m Tasks Instructions Settings

Resume Reset

Minivida

Generation: 166669 Queries: 600008400 Current Best: 16

Genome; idxhrsrvedti jzfmzfwzvtzeqogdpbaf qifmpedingpgpyvg

Target: Target not found

Fig. 6.22. Six hundred million instructional queries are insufficient to generate an EQU in
this Minivida run.

Resume Reset

Minivida

Generation: 591335 Queries: 2128806000 Current Best: 0

Genome: yrhhnwislahmuggnjnggfvexdeskgexomhresgtsdnyynwindvfkjdbme feisftmounbtipdgjkevrym
Target: Target not found

Fig. 6.23. When the staircase is removed, no EQU is found in this simulation after over
2 billion queries.

So much active information can be extracted from the oracle when
using minimal instructions, even a blind search will work. Setting the
population size to one in the Minivida Settings tab results in a blind search.
For the minimal set of instructions the simulation in Fig. 6.25* finds EQU
in less than 20,000 program queries to the full stairstep oracle. The minimal

Xt The operation performed in Fig. 6.25 is ((—=X)N(YN(XNY)))N(XNY) = EQU.

Analysis of Some Biologically Motivated Evolutionary Models 227

EQU 5

XOR 4
NOR 4
AND_N 3
OR3
OR_N 2
AND'2
NAND 1
NOT 1

Fig. 6.24. Carefully constructed stairstep active information is one of many design
parameters that allows Avida to work. From the S4S, finding a design for a successful
search is more difficult than performing the search itself.

number of 5 NAND gates is used but using different corrections than
Fig. 6.27.

6.2.6 Avida is intelligently designed

The analysis of Avida via simulation results reveals that Avida is designed
to work. We believe the authors of the original Avida paper had no goal
of deceit or sneaking active information to the search. A more probable
explanation is that they were numbed by their exhilaration in demonstrating
Darwinian evolution and the celebration of its success. Here are some facts
and one supposition supporting the claim Avida is intelligently designed.

228 Introduction to Evolutionary Informatics

Minivida

Resume

Generation: 11 Queries: 39600 Current Best: 18

Genome: fffigpfpgaqacqafpapicgpegafepgpagppicgpacqgpiicqepfccpecipappapfafafacgqqeapafqcqgpeag
Target: Target consistently found: Stopping Search

Fig. 6.25. Using the minimal set of instructions in Minivida. Three thousand six hundred
digital organisms are used per generation. All stairsteps are used.

Description i Tasks Instructions Settings
Minivida
Resume

Generation: 10 Queries: 36000 Current Best: 5

Genome: pacfgpegecpcfacgfpgpfapggaaappafgagppegpafpegpeqcfqepfepfepeqgegegpggepppgcicfectffpg

Target: Target consistently found: Stopping Search

Onr-.;‘.."

Fig. 6.26. The minimal set of instructions works in Minvida even when the stairsteps are
removed and only the EQU is awarded.

Analysis of Some Biologically Motivated Evolutionary Models 229

| Description m Tasks Instructions Settings

Resume Reset

Minivida

Generation: 18579 Queries: 19579 Current Best: 7

Genome: paapapfffpcepgfagecippeacaapggpcipfgegaqapppefepacaafagpegfaccaaciaacpgciafpapcgapfip
Target: Target consistently found: Stopping Search

Fig. 6.27. When the junk instructions are purged from Minivida, the remaining minimal
instruction set is efficient at accessing active information. Blind search in this simulation
found EQU quickly.

e Man-In-The-Loop. First the supposition. There is no report of which we
are aware that documents the iterative development of Avida. Software
is written and repetitively tested, debugged, and tested again. Design by
its nature is iterative and a man-in-the-loop is part of this process. We
are aware of no one who writes search software of non-trivial length that
works correctly on the first try.Y

e Stair Step Active Information. Avida works only because of the
designed staircase. Avida’s designers are to be congratulated on designing
a staircase where each step displays functional viability. Without a
carefully designed staircase, the probability of success for a search for
EQU nosedives. The unassisted endogenous information of the search,
at I = 40 bits is simply too large.

e Obfuscation Tuning. With the minimal set of instructions, EQU is
found quickly. Too quickly. We could claim to prove evolution by
rolling two dice until we rolled snake eyes (two ones). Avida using
minimal instructions is not as easy as rolling snake eyes, but converges

YSee Chapter 3.7.3.

230

Introduction to Evolutionary Informatics

too quickly to inspire any awe. Junk instructions, get in the way of
convergence. They have allowed an EQU to evolve slowly enough to
appear interesting. Like Goldilocks’s porridge, the search must not be as
difficult as to be nearly impossible, must not be so easy as to get an EQU
too quickly, but must be just right for convergence in a reasonable amount
of time.

e Other Sources of Active Information. Other design conditions allow
the EQU to be produced from the software. Here are some we haven’t
discussed:

1. Mutation. The mutation rate in Avida is fixed but its choice is not

explained. Chances are that it was chosen by a man-in-the-loop. We
saw in the EV simulation that the mutation rate had to be tuned in
order for EV to work. Considerations of the extreme cases dictates
that they must always be a sweet spot for mutation. At one extreme,
no mutation means nothing changes. This is no good. At the other
extreme, everything changes and we are performing a blind search.
For Avida, this makes no sense. A sweet spot must exist between these
two extremes.

. Fitness. Why are the fitness values shown in Table 6.3 chosen? The

fitness of the stairstep is f = 2° where G is the number of NAND
gates required for minimal representation. Why not use f = G or
f =1logG or f = G2 The default choice of the fitness in Avida
fully crafts the staircase to allow easy accent while discouraging the
search from falling down the stairs. It is the work of a penalty function
artist.

Initialization. For reasons we explain elsewhere,® the initialization
of Avida is critical.

Lastly, we make note of the obvious: Avida slams into Basener’s ceiling.
The program will never do anything more exciting than generate an
EQU. It will never learn how to play chess or solve the Cracker Barrel
Puzzle.

6.2.7 Beating a dead organism

Despite its limitations and clear use of wired information to succeed, Avida
has had a significant impact in academia. Supply Side Academics measure

Analysis of Some Biologically Motivated Evolutionary Models 231

success by publications and funding. The National Science Foundation
(NSF) awarded a $25 million grant for the study of digital evolution. The
grantis centered at the Digital Evolution Lab® (DevoLab?) at Michigan State
University. The Lab was founded by Charles Ofria and Richard Lenski, who
are two of the co-authors of the Avida paper.1°

The Avida software platform has been embraced by numerous authors
claiming to have demonstrated various aspects of Darwinian evolution.!!
Avida has even been used as a teaching tool to support Darwinian
evolution.12 Papers continued to appear even after our debunking of Avida
in 2009.13

Some mathematical facts apparently take time to sink in.

6.3 Metabiology*

Metabiology is a model of Darwinian evolution grounded in the discipline
of algorithmic information theory.

Gregory Chaitin developed algorithmic information theory®® indepen-
dently in parallel with Kolmogorov and Solomonov. Building on the work of
Godel and Turing, algorithmic information theory deals in part with mind-
bending mathematics such as proving there are unprovable propositions
and knowing there are things that can’t be known.

Gregory Chaitin has embarked on the project of developing a field
he calls metabiology.’® The underlying impetus in Chaitin’s model is
to provide a solid mathematical under pinning for Darwinian evolution.
Although the mathematics are beautiful, the end model sheds no light on the
process of biological Darwinian evolution theory. Metabiology’s approach
is to consider evolution in the abstract realm of computer programs run
on Turing machines. Chaitin claims, essentially, that evolution is about
software and not hardware or simulations. By focusing on the software
alone, Chaitin hopes to focus on the pure essence of the evolutionary
process.

Chaitin evolves programs that output strange enormously large num-
bers dubbed busy beaver numbers. He shows that the programs will produce

Zlronically (or not) Devo was the name of a 1970’s rock band who wore red plastic flower
pots for hats and whose name is a contraction of the word “de-evolution.” The title of their
first 1978 album began with the question “Are We Not Men?”

232 Introduction to Evolutionary Informatics
large numbers very quickly.?® Chaitin’s model uses

e A halting oracle: A computer program known not to exist.

e Busy beaver numbers: Numbers so large, making a list of them is
non-computable.’

e Unbounded albeit finite resources: Both in space and time.

And despite these extraordinary tools, Chaitin’s algorithm follows in nearly
all respects the other models of evolution we have analyzed. The halting
oracle is a source of knowledge that can be mined in numerous different
ways with a varying amount of active information resulting.

Turing’s halting problem!® is taught to undergraduates in computer
science. Given an arbitrary computer program X, there is no meta computer
program, Y, able to analyze X to announce whether or not, when run, X will
stop or not. Turing showed that writing a halting program'Y is not possible.
A hypothetical device capable of answering this question is dubbed a halting
oracle. Halting oracles do not exist.?

@t As measured in big O notation.

bb+ The Halting Problem in a Nutshell. All computer programs can be written as a binary
string of ones and zeros. Each possible program can therefore be written as a positive
integer. We arrange all these programs in a list starting with the smallest. The pth program
isappropriately labeled as an integer p. LetH(p, 1) be a halting oracle program that decides
if a program p with input i, written p(1) halts or not. H(p, 1) outputs a 1 if the program
p(1) halts and O if it doesn’t. As with programs, all possible inputs can be ordered and
assigned an integer number, in this case i. Then, consider the program

function N(p) {
if(H(p.p) == 1) {
while(1 == 1) {
}
}

return O;

}

Given a program p, this program outputs a O when p(p) doesn’t halt and runs forever
in a while loop if the program p(p) halts. What, then, of the program N(N)? In
this case, the program is analyzing itself to see whether or not it will halt. The results are
contradictory. IfH(N, N)=1 in the program, we get stuck in thewhile loop forever. But
H(N, N)=1 means the program N(N) halts. This isa contradiction. Likewise, if H(N,N)=0
in the program, a zero is printed and the program stops. But H(N , N)=0 means the program

Analysis of Some Biologically Motivated Evolutionary Models 233

If halting oracles did exist, all open problems in that could be disproven
by a single counterexample could be solved. An example is Goldbach’s
conjecture which hypothesizes that all even numbers greater than two can be
written as the sum of two primes. Instances include 10 = 743,56 = 5145,
1028 = 1021 + 7, 73200 = 73189 + 11 and 143142 = 71429 + 71713.
A program X could be written to sequentially test each even number to
see if it were the sum of two primes. If a counterexample is found, the
program stops and declares “I have a counterexample!” Otherwise, the
next even number would be tested. If Goldbach’s conjecture were true,
the program would run forever. If a halting oracle existed, we could feed
it X. If the halting oracle says “this program halts” Goldbach’s conjecture
is disproved. If the halting oracle says “This program never halts,” then
Goldbach’s conjecture is proved. There are numerous other open problems
in mathematics that can be proved or disproved if we had a halting oracle.
Examples are the question of the existence of an odd perfect number and
the Riemann hypothesis. Substantial cash prizes are offered for the solution
to many of these problems.

Chaitin uses the halting oracle in his model of Darwinian evolution.®
The use of computer tools proven not to exist, like the halting oracle, is at the
outset, an obvious major strike against a theory purporting to demonstrate
reality.

6.3.1 The essence of halting

All evolutionary processes seek increased fitness. In Chaitin’s metabiology,
fitness is found through seeking busy beaver numbers.2%:21 Although not
immediately apparent, there is a relationship between busy beaver numbers
and the halting problem.

Here is the standard definition for busy beaver numbers: For a Turing
machine with N states that utilize only zeros and ones, what program will
output the largest number? This program is dubbed the busy beaver program
and the number output is the busy beaver number. As N increases, the busy
beaver number cannot get smaller.

(continued) N(N) doesn’t halt. Another contradiction. Thus, the assumption there is a halting
program H(p, 1) that works for all p and 1 has been proven false.

234 Introduction to Evolutionary Informatics

Simply generating larger and larger numbers is not difficult. For
example, a program can be improved by the construction of a new program
that runs the original program and adds one to the result. Without imposition
of any stop criterion, the search for ever-increasing numbers as N increases
requires unbounded computational resources. The increase is enormous
in the search for busy beaver numbers. Chaitin’s metabiology programs
have unbounded length and can run for an unbounded amount of time. The
unboundedness undermines the creativity required to solve the large number
problem. With unbounded resources and unbounded time, one can do almost
anything. One can also quickly exceed the computational resources of the
known universe.?2

Chaitin uses a variation of the busy beaver number, calling BB(K): the
largest number of steps using a (prefix free) computer program of length
K before the program halts. Here is the relationship between BB(K) and
the halting problem. When BB(K) is reached, all programs of length K
that haven’t halted will never halt. And because BB(K) gets larger as K
increases, all programs with length less than K that haven’t halted will
also never halt. Achieving BB(K) therefore is the same as having a halting
oracle for all computer programs less than or equal to K. Since a halting
oracle is not possible, it is not surprising that BB(K) soon increases faster
than can be computed.

6.3.2 On with the search

Chaitin’s metabiology asks whether busy beaver programs can be found
by evolving computer programs. Unlike many other proposed models of
evolution, there is no artificially imposed fitness function or artificially
designed fitness landscape. Rather, metabiology’s landscape flows from
the mathematical structure of Turing machine programs. Using the math-
ematical construct of busy beaver programs, Chaitin’s metabiology does
not undertake to deliberately assist the evolutionary process as many
other evolutionary models have done. We note, though, mathematics is
replete with other number theoretic landscapes, e.g. prime numbers, perfect
numbers and twin primes.

Numerous properties in Chaitin’s model have been critically examined
earlier in this Chapter.23 Alleged demonstrations of the power of evolution,
for example, often work by extracting information from an oracle. The

Analysis of Some Biologically Motivated Evolutionary Models 235

oracle is the source of the information and is responsible for the success
of a program. Evolution is a process that merely mines this information.
Often, other search approaches can mine the information more efficiently.2*
Chaitin’s model is an example.

We have discussed four ways to extract information from a Hamming
oracle in Chapter 5.4.3.1.°© When presented a binary string, the base 2
Hamming oracle returns a single number indicating the number of mis-
matches in 1’s and 0’s between a binary string of specified length, L, and
an unknown target of the same length. We outlined a poor way to use the
Hamming oracle to do this, and a good way and a better way. The goodness
of an extraction method was measured by the number of queries required
to fully identify the target string. The fewer the queries, the better. We also
identified an optimal best search. The number of queries is minimized but
the computational overhead of each query becomes large.

Metabiology’s use of the halting oracle differs from use of a Hamming
oracle, but there are compelling similarities. Both seek identification of an
unknown binary string of fixed length L. In the case of metabiology, the
binary string corresponds to a computer program. For both oracles, there
are both efficient and inefficient ways to extract active information. Chaitin
uses the halting oracle to search for busy beaver numbers in three different
ways. He dubs the different algorithms

e Exhaustive Search (Poor)
e Random Evolution (Good)
e Intelligent Design (Better)

The contrast between the use of the Hamming and halting oracles is
summarized in Table 6.5.99 For exhaustive search, both Hamming and
halting oracle programs require 2& queries on the average. The introduc-
tion of guided search in ratchet search (a.k.a. stochastic hill climbing)
and metabiology’s “random evolution” greatly decreases the number of
expected operations. Both oracles can be used more intelligently to reduce
the expected number of queries even lower.

CIn Chapter 5.4.3.1.
ddDetails of the entries for the Hamming oracle are from Chapter 5.4.3.1.

236 Introduction to Evolutionary Informatics

Table 6.5. Comparison of three ways to use the Hamming and the halting oracles.
The value given next to metabiology requires interpretation in big O notation which
is read “on the order of”” O(L2) means® “on the order of L2”.

Hamming Oracle Metabiology
Oracle Hamming Halting Oracle
Poor Needle-In-A-Haystack Oracle 2L “Exhaustive Search” 2L
Good Ratchet Search <L “Random Evolution” between L2
and L3
Better Ewert’s FOOHOA < L “Intelligent Design” L

Chaitin properly refers the halting oracle as a source of creativity in
metabiology. The three different methods he uses to mine active information
from the halting oracle again reveal that the evolutionary process itself does
not create information. It is simply mining information from a source of
information, the oracle. And it does so more poorly than other available
algorithms.

16.3.3 The math: “intelligent design” in metabiology

(Those impatient with math will want to skip to the next section.)

Metabiology is indirectly delated to Chaitin’s number. Recall prefix-
free computer programs.f Let p be the index of a prefix-free code and let
the length of the code be ¢, bits. The Kraft inequality®9 is illustrated in
Fig. 6.28 and requires that

Yoo <1 (6.1)

all p

Some of the programs at the leaves of the tree halt. Some don’t. Chaitin’s
number,2® illustrated in Fig. 6.29, is this sum over all of the programs that
halt.

Q= > 2% (6.2)

all p’s that halt

'+ Introduced in Chapter 2.2.1.1.
99+ Also introduced in Chapter 2.2.1.1.

Analysis of Some Biologically Motivated Evolutionary Models 237
10000
1 1000 {
1 { 100 10001
. {

tFig. 6.28. Illustration of the Kraft inequality in Equation (6.1). Each of leaves on the
tree correspond to a prefix-free computer program. (Actual programs are, of course, much
longer.) The leaves are prefix-free because one program cannot be the start or prefix of
another. For example, one program is 001. None of the other programs begins with 001.
There are two programs of length £ = 2, three programs are of length ¢ = 3, one of length 4
and two of length 5. Then 2 x 272 1 3% 273 1 1x 27442 x 275 = 1, which satisfies
the Kraft equality.

o1
o ™ fouo]
P L]

10000 {-

1" 1000*{7
100001
Ay

tFig. 6.29. Illustration of Chaitin’s number. The tree of programs is the same as in the
previous figure. The programs in the shaded boxes halt. The others don’t. Chaitin’s number,
Q in Equation (6.1), is tallied like the Kraft inequality except the sum is only over programs
that halt. In this example Chaitin’s number is = 22 4 2—4 4+ 2=6 = 0.328125.

If we run all programs of length L or fewer for L steps, some of the programs
will stop. We can look at all of these programs and compute

Qr = Z 2761’.

all p’s not more than L bits
that halt in L or fewer steps

Clearly, we have not yet identified all of the programs that have stopped
so that Q; < Q. But as the number of steps increases without bound

238 Introduction to Evolutionary Informatics

(L — oo) we are assured we will approach Chaitin’s number Q; — Q
from below.

So here is how we search for the busy beaver function: We guess at a
number * and ask whether it is smaller or bigger than Chaitin’s number,
i.e. whether Q* > Q or @* < .M We write a program X to step through
different values of L and keep track of @, until Q; > Q*. If we have
guessed ©2* > € then X will never halt. We can find this out by submitting
X to the halting oracle. If the halting oracle says “X doesn’t halt,” it is saying
“Your guess of * is too big. Guess a smaller value.” A smaller value is
guessed and the process is repeated. If the halting oracle, on the other hand,
says “X halts,” itis telling us that Q; < Q* < . Sowe run all programs of
one bit one step, 2 and 1 bit programs for two steps,’ . . ., programs 10 bits
or less for 10 steps, etc. We keep tally of Q1, Q1, ..., Q10, ..., Q¢ at each
step. We keep going until we get an L such that Q; > Q* We know this
will eventually happen because the halting oracle says it will. We can then
choose a larger value of 2* and repeat the process.

Search for busy beaver type programs is similar. Chaitin has devised
a clever search algorithm that he has proven to work. The evolutionary
algorithm efficiently mines information available from the halting oracle.
If, on the other hand, search were performed using random bit mutations
within the program using the same oracle, we suspect the algorithm would
require a astronomically larger number of queries.

The search for € uses interval halving.jj If we have overshot €2, the
halting oracle tells us so and we make a smaller guess. If the halting oracle
says the program will halt, we keep finding €2, for ever increasing ¢ until
we find an L where Q; > Q.

An illustration is shown in Fig. 6.30. A staircase of €2, is shown as a
function of £. It asymptotically approaches Q as £ — oo. Our first guess of
Qis Q*[1]. A program X[1] is written to sequentially compute €2, for ever
increasing £ until it equals or exceeds 2*[1]. The halting oracle says X[1]

hh+ We are assured equality doesn’t happen when Q* is rational because €2 has been shown
to be irrational.

'+ There are, of course, probably no one or two bit programs that are complete programs.
This is for illustration.

iit As we saw in Chapter 2.2.2.2, interval halving is an effective method of performing
search when resources allow.

Analysis of Some Biologically Motivated Evolutionary Models 239

(1]

Q'[3]

Q'[4]

Q'[2]

£ (bits)

L L

Fig. 6.30. Interval halving in the “intelligent design” version of metabiology.

will never stop. So the estimate needs to be reduced. We choose 2*[2] and
submit X[2] to the halting oracle which says that the program will eventually
stop. So we run X[2] until we get an £ = L such that Q; > Q*[2].

Once 2 is found, we know the true value of 2 lies between €2;, which
we know is too small and *[1] which we know is too big. Using interval
halving, we next test 2*[3] which lies between these two values. This is
shown in Fig. 6.30. The program X[3] is presented to the halting oracle,
which responds “This program will never halt.” In other words, *[3] is
too big. Now we know € lies between €27 and Q*[3]. The intermediate
value of 2*[4] is chosen and X[4] is presented to the halting oracle, which
announces that the program will halt. Thus, as before, we sequentially
evaluate Q,’s until we findan ¢ = L where, for the first time, Q; > Q*[4].
We now know that the true value of 2 lies between ; and Q*[3]. This
interval halving process is repeated to get estimates closer and closer to 2.

Recall, however, that the search is not for Chaitin’s number €2, but
for busy beaver numbers. The interval halving process allows us to do so.
When all the programs ¢ bits long have been run for L steps (¢ < L),
some of the programs have stopped and some have not. Of those that have
halted, the program that ran the longest provides a lower bound to BB(¢).
As the interval halving search progresses, more and more programs will halt
giving better and better estimates to BB(£). Eventually, the program with

240 Introduction to Evolutionary Informatics

BB(¢) steps will halt and we have our busy beaver number. We will never
know when this occurs, but are guaranteed it will as the search continues
endlessly into the future.

The interval halving procedure just described is dubbed “intelligent
design” by Chaitin. Except for the first few choices of Q*, the search
algorithm is deterministic as is the case with all interval halving searches.
There is also a “random evolution” variation to the search that is a stochastic
hill-climbing ratcheted algorithm kK

6.3.4 Resources

The evolving programs in metabiology pay no attention to resource
limitations. The programs can run for any arbitrarily large number of steps
for any period of time. Additionally, programs can be of any length with no
penalty imposed for longer programs. Running a program for the number of
steps for busy beaver type numbers requires more computational resources
than are universally available.

Chaitin also considers the class of all programs, not merely those limited
by a certain size. As a result, there is no program which is a true busy beaver,
only some programs with longer run times. It is always possible to produce a
longer Turing machine program which produces a larger number. Creativity
is required in attempting to solve the problem because the program must
make the most out of limited resources. Unbounded resources separates
metabiology from any possibility of modeling reality.

The most interesting part of Chaitin’s result is that he has shown
evolution amongst Turing machine programs which we would not suspect
are suitable for the evolutionary process. We would think that changing a
single bit of a Turing machine program can produce very large changes
in the output. As any computer programmer will tell you, landscapes of
computer program fitness are not smooth. Changing a single character can
cause a program to crash, generate a totally different output, or transform a
program that halts into one that runs forever. As aresult, we would not expect
evolution to fair well. Metabiology overcomes this problem by running

kkAs discussed in Chapter 5.4.3.1.

Analysis of Some Biologically Motivated Evolutionary Models 241

all viable programs. This is very computationally expensive and is only
possible in theory where there are no resource limitations.

Chaitin notes that, as his metabiology is made more biologically
realistic, he will probably be unable to prove results and instead have to
be content with simulation. It seems that the first step toward making it
realistic would be the introduction of these limitations. However, it is the
very absence of such limitations which makes the proofs work.

Even if the question of resources was not an issue, metabiology has
the same characteristics as other models of Darwinian evolution such as
Avida and EV. An embedded resident source of knowledge is mined for
active information that allows the seeking stochastic process to perform a
successful search.

6.4 Conclusion: Sweeping a Dirt Floor

Despite firm establishment of the concept of active information in our 2009
paper,26 there are still claims being published that purport to demonstrate
Darwinian evolution as a creator of information. All of the efforts we have
seen so far show a lack of awareness of conservation of information, or else
they misinterpret it or fail to take it into account.

Here is a quick synopsis of two more failed attempts to model
Darwinian evolution.

6.4.1 Evolving a Steiner tree

Assume we want to build roads for a bunch of houses so that the roads
connect every house with every other house. Furthermore, we want the
overall length of the roads minimized. The connection that does this is
called a Steiner tree.!! An example is shown in Fig. 6.31.

David Thomas wrote a genetic algorithm that came close to solving the
Steiner tree. Wishing to discredit proponents of 1D, David Thomas wrote?’

“...two pillars of ID theory, ‘irreducible complexity’ and ‘complex specified
information’ [have been] shown not to be beyond the capabilities of evolution,
contrary to official ID dogma.”

IIsteiner trees can be constructed in higher dimensions. For our purposes, two dimensions
suffice.

242 Introduction to Evolutionary Informatics

Fig. 6.31. A Steiner tree for six cities.

At the conclusion of his blog post, Thomas issued a challenge to ID
advocates?®:

“If you contend that this algorithm works only by sneaking in the answer (the
Steiner shape) into the fitness test, please identify the precise code snippet where
this frontloading is being performed.”

So we did.2 One snippet is presented in Chapter 5.2.3 and it shows that
Thomas tuned his algorithm to work.

Other code indicates that the mutation rate was tuned using a man-in-
the-loop.

Adjusting parameters in genetic algorithms is common practice and is
in fact necessary in cases, like the Steiner tree problem, where fine tuning
is required to make the search work. In addition, based on knowledge of
the problem being solved, a number of other sources of active information
were identified in our analysis.3°

6.4.2 Time for evolution

Inapaper published in the prestigious Proceedings of the National Academy
of Sciences, Wilf and Ewens®! offer a model that they claim supports
Darwinian evolution. Their model is similar to the problem of guessing
letters in a word or phrase, as on the television game show Wheel of Fortune.
A phrase 20,000 letters long is specified, with each letter in the phrase
corresponding to a gene locus that can be transformed from its initial
“primitive” state to a more advanced state. Finding the correct letter for

Analysis of Some Biologically Motivated Evolutionary Models 243

a particular position in the target phrase roughly corresponds to finding
a beneficial mutation in the corresponding gene. During each round of
mutation all positions in the phrase are subject to mutation, and the results
are selected by a partitioned search® oracle based on whether the individual
positions match the final target phrase. Those that match are frozen in place
for the remainder of the search.

Partitioned search oracles are loaded with active information. Consider,
for example, a string of ones and zeros used as a target. We choose a random
string of ones and zeros and the oracle tells us which of the bits match.
We keep these locations while flipping all of the incorrect bits. We have
identified the target with one query! If the binary string is L bits long, a
blind search would require, on average, Q = 2 queries. Wilf and Ewens
do not use the partitioned search oracle opting instead for random mutations
of the incorrect characters. They mine the available source of information
poorly.

The assistance of the oracle as the source of active information is
undeniable.

6.4.3 Finis

AVIDA, EV, Dawkin’s WEASEL problem, and metabiology are all written
by proponents trying to demonstrate Darwinian evolution works. Each is
a designed stochastic process that, like Buffon’s needle™™ or tetherball,™
converges to one or more fixed points. To do so, each requires sources
of knowledge to generate active information to guide the search. The
success of the program depends on an intelligent designer. Conservation of
information requires it.

Notes

1. George Gaylord Simpson and William S. Beck, Life: An Introduction to
Biology, 2nd ed. (London: Routledge and Kegan, 1965).

2. William A. Dembski and Robert J. Marks Il, “Conservation of Information
in Search: Measuring the Cost of Success.” IEEE Transactions on Systems,

MMSee Chapter 4.2.1.
MMSee Chapter 4.2.3.

244

© o N

10.

11.

Introduction to Evolutionary Informatics

Man and Cybernetics A, Systems and Humans, vol. 39, #5, September 2009,
pp. 1051-1061.

. W. Ewert, William A. Dembski, and R.J. Marks Il, “Evolutionary synthesis

of Nand logic: dissecting a digital organism.” Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics. San Antonio,
TX, USA, pp. 3047-3053, (2009).

. American Civil Liberties Union of Pennsylvania, Kitzmiller et al. v. Dover

Area School District, http://www.aclupa.org/our-work/legal/legaldocket/
intelligentdesigncase/dovertrialtranscripts/ (URL date May 2, 2016).

. American Civil Liberties Union of Pennsylvania, Dover Trial Transcripts,

http://www.aclupa.org/our-work/legal/legaldocket/intelligentdesigncase/dove
rtrialtranscripts/ (URL date May 2, 2016).

. W. Ewert, W.A. Dembski, and R.J. Marks Il, “Evolutionary synthesis of

Nand logic: dissecting a digital organism.” Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics. San Antonio,
TX, USA, pp. 3047-3053, (2009).

Ibid.

Ibid.

. Digital Evolution Lab: http://devolab.msu.edu/ (URL date May 2, 2016).

R.E. Lenski, C. Ofria, R.T. Pennock, and C. Adami, “The evolutionary origin
of complex features.” Nature, 423(6936), pp. 139-144 (2003).
Here are a few:

e 2003: Bill O’Neill, “Digital evolution.”PLoS Biology 1(1), €18 (2003).
F. Tim Cooper and C. Ofria, “Evolution of stable ecosystems in populations
of digital organisms.” Artificial Life, 8. Proceedings of the Eighth Inter-
national Conference on Artificial Life, International Society for Artificial
Life: 9-13 December 2002; Sydney, Australia. (2003).

e 2004: C. Ofriaand O.C. Wilke, “Avida: A software platform for research in
computational evolutionary biology.” Artif Life, 10(2), pp. 191-229 (2004);
M. Dusan, R.E. Lenski and C. Ofria, “Sexual reproduction and muller’s
ratchet in digital organisms.” Ninth International Conference on Artificial
Life. (2004); W. Daniel and C. Adami, “Influence of chance, history, and
adaptation on digital evolution.” Artif Life, 10(2), pp. 181-190 (2004);
H. George et al., “Using Avida to test the effects of natural selection on
phylogenetic reconstruction methods.” Artificial Life, 10(2), pp. 157-166
(2004); Goings, Sherri, et al., “Kin selection: The rise and fall of kin-
cheaters.” Proceedings of the Ninth International Conference on Artificial

Analysis of Some Biologically Motivated Evolutionary Models 245

Life (2004); J. Tyler and C.O. Wilke. “Evolution of resource competition
between mutually dependent digital organisms.” Artif Life 10(2), pp. 145—
156 (2004).

2005: C. Ofria and O.C. Wilke, “Avida: Evolution experiments with
self-replicating computer programs.” Artificial Life Models in Software
(Springer, London, 2005), pp. 3-35; Carl Zimmer, “Testing Darwin.”
Discover, 26(2), pp. 28-34 (2005); Philip Gerlee and T. Lundh, “The
genetic coding style of digital organisms.” Advances in artificial life
(Springer, Berlin Heidelberg, 2005), pp. 854-863.

2006: Christoph Adami, “Digital genetics: unravelling the genetic basis
of evolution.” Nat Rev Genet, 7(2), pp. 109-118 (2006); B. David
Knoester et al., “Evolution of leader election in populations of self-
replicating digital organisms.” Dept. Comput. Sci., Michigan State Univ.,
East Lansing, MI, Tech. Rep. MSU-CSE-06-35 (2006); C.O. Wilke and
S.S. Chow, “Exploring the evolution of ecosystems with digital organisms.”
Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford
University Press, New York, 2006), pp. 271-286; Terence Soule, “Resilient
individuals improve evolutionary search.” Artif Life, 12(1), pp. 17-34
(2006).

2007: Robert T. Pennock, “Models, simulations, instantiations, and evi-
dence: the case of digital evolution.” J Exp Theor Artif Intell, 19.1,
pp. 29-42 (2007); Benjamin E. Beckmann et al., “Evolution of coop-
erative information gathering in self-replicating digital organisms.” First
International Conference on Self-Adaptive and Self-Organizing Systems,
2007.SASO’07. IEEE, 2007; Heather J. Goldsby et al., “Digitally evolving
models for dynamically adaptive systems.” Proceedings of the 2007
International Workshop on Software Engineering for Adaptive and Self-
Managing Systems. IEEE Computer Society (2007); B. David Knoester
et al., “Directed evolution of communication and cooperation in digital
organisms.” Advances in Artificial Life (Springer Berlin Heidelberg,
2007), pp. 384-394; Elena, F. Santiago et al., “Effects of population size
and mutation rate on the evolution of mutational robustness.”Evolution,
61(3), pp. 666-674 (2007); J. Clune, C. Ofria, and R.T. Pennock,
“Investigating the emergence of phenotypic plasticity in evolving digital
organisms.” Advances in Artificial Life (Springer, Berlin Heidelberg,
2007), pp. 74-83; Dehua Hang et al., “The effect of natural selection on
the performance of maximum parsimony.” BMC Evol Biol, 7(1), p. 94
(2007).

246

Introduction to Evolutionary Informatics

e 2008: J. Heather Goldsby and Betty H.C. Cheng, “Avida-MDE: a digital

evolution approach to generating models of adaptive software behavior.”
Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation (ACM, 2008); Philip McKinley et al., “Harnessing digital
evolution.” Computer 41(1), pp. 54-63 (2008); J. Heather Goldsbhy
et al., “Digital evolution of behavioral models for autonomic systems.”
International Conference on Autonomic Computing, 2008. ICAC’08. IEEE,
2008; E. Benjamin Beckmann et al., “Autonomic Software Development
Methodology Based on Darwinian Evolution.” International Conference
on Autonomic Computing, 2008. ICAC’08. IEEE, 2008; Charles Ofria,
Wei Huang, and Eric Torng, “On the gradual evolution of complexity
and the sudden emergence of complex features.” Artificial Life 14(3),
pp. 255-263 (2008); M. Laura Grabowski et al., “On the evolution of
motility and intelligent tactic response.” Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation (ACM, 2008);
Santiago F. Elena and R. Sanjuén, “The effect of genetic robustness
on evolvability in digital organisms.” BMC Evolutionary Biology, 8(1),
p. 284, (2008); J. Heather Goldsby and Betty H.C. Cheng, “Automatically
generating behavioral models of adaptive systems to address uncertainty.”
Model Driven Engineering Languages and Systems (Springer, Berlin
Heidelberg, 2008), pp. 568-583; Philip Gerlee et al., “The gene-function
relationship in the metabolism of yeast and digital organisms.” ALIFE,
(2008).

2009: E. Beckmann Benjamin and P.K. McKinley, “Evolving quorum sens-
ing in digital organisms.” Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation (ACM, 2009); David B. Knoester
et al., “Evolution of robust data distribution among digital organisms.”
Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation (ACM, 2009); Sherri Goings and C. Ofria, “Ecological
approaches to diversity maintenance in evolutionary algorithms.” IEEE
Symposium on Artificial Life (2009). ALife’09. IEEE (2009); B. David
Knoester and P.K. McKinley, “Evolution of probabilistic consensus in
digital organisms.” Third IEEE International Conference on Self-Adaptive
and Self-Organizing Systems, 2009. SASO’09. IEEE, 2009; Elsberry,
Wesley R. et al., “Cockroaches, drunkards, and climbers: Modeling the
evolution of simple movement strategies using digital organisms.” IEEE
Symposium on Artificial Life, 2009. ALife’09. IEEE, 2009; Mark A. Bedau,
“The evolution of complexity.” Mapping the Future of Biology (Springer

Analysis of Some Biologically Motivated Evolutionary Models 247

Netherlands, 2009), pp. 111-130; Charles Ofria, David M. Bryson, and
Claus O. Wilke, “Avida: A software platform for research in computational
evolutionary biology.” Artificial Life Models in Software (2009): 1; Heather
J. Goldsby et al., “Problem decomposition using indirect reciprocity in
evolved populations.” Proceedings of the 11th Annual conference on
Genetic and evolutionary computation (ACM, 2009); C. Ofria, David M.
Bryson, and Claus O. Wilke, “Avida.” Artificial Life Models in Software
(Springer London, 2009), pp. 3-35.

12. Robert T. Pennock, “Learning evolution and the nature of science using
evolutionary computing and artificial life.” McGill J Educ 42.2 (2007),
pp. 211-224.

Elena Bray Speth et al., “Using Avida-ED for teaching and learning about evo-
lution in undergraduate introductory biology courses.” Evolution: Education
and Outreach 2.3 (2009), 415-428.

Diane Ebert-May and Everett Weber, “O0S 17-5: Avida-ED: Learning
evolution through inquiry.” (2007).

W. Johnson, “Introduction to Evolutionary Computation (lesson & activity).”
Teach Engineering Digital Library Submission Portal (2012).

13. Here are a few:

e 2010: Laura M. Grabowski et al., “Early Evolution of Memory Usage in
Digital Organisms.” ALIFE. 2010; Goldsby, Heather J., David B. Knoester,
and Charles Ofria, “Evolution of division of labor in genetically homoge-
nous groups.” Proceedings of the 12th annual conference on Genetic and
evolutionary computation (ACM, 2010); Beckmann, Benjamin E., Jeff
Clune, and Charles Ofria, “Digital evolution with avida.” Proceedings
of the 12th annual conference companion on genetic and evolutionary
computation (ACM, 2010); Brian D. Connelly, Benjamin E. Beckmann,
and Philip K. McKinley, “Resource abundance promotes the evolution of
public goods cooperation.” Proceedings of the 12th annual conference on
Genetic and evolutionary computation (ACM, 2010).

e 2011: B. David Knoester and P.K. McKinley, “Evolving virtual fireflies.”
Advances in Artificial Life. Darwin Meets von Neumann (Springer
Berlin Heidelberg, 2011), pp. 474-481; B. David Knoester and P.K.
McKinley, “Evolution of synchronization and desynchronization in digital
organisms.” Artif Life, 17(1), pp. 1-20 (2011); Heather J. Goldshy
et al., “Task-switching costs promote the evolution of division of labor
and shifts in individuality.” Proceedings of the National Academy of

248

14,

15.

Introduction to Evolutionary Informatics

Sciences, 109(34), pp. 13686-13691 (2012); Heather J. Goldshy et al.,
“The evolution of division of labor.” Advances in Artificial Life. Darwin
Meets von Neumann (Springer Berlin Heidelberg, 2011), pp. 10-18;
Evan D. Dorn and Christoph Adami, “Robust Monomer-Distribution
Biosignatures in Evolving Digital Biota.” Astrobiology, 11(10), pp. 959-
968 (2011); J. Daniel Couvertier and P.K. McKinley, “Effects of biased
group selection on cooperative predation in digital organisms.” GECCO
(Companion). 2011; Robert John Platt, “The evolutionary dynamics of
biochemical networks in fluctuating environments.” Diss. University of
Manchester, 2011.

e 2012: Tomonori Hasegawa and Barry McMullin, “Degeneration of a von
Neumann Self-reproducer into a Self-copier within the Avida World.”
From Animals to AnimalLs 12 (Springer, Berlin, Heidelberg, 2012),
pp. 230-239; L. Bess Walker and C. Ofria, “Evolutionary potential is
maximized at intermediate diversity levels.” Artificial Life, 13 (2012);
B. David Knoester et al., “Evolution of resistance to quorum quenching
in digital organisms.” Artif Life, 18(3), pp. 1-20 (2012); W. Arthur Covert
Il et al., “The role of deleterious mutations in the adaptation to a novel
environment.” Artificial Life, 13 (2012).

e 2013: Jack Hessel and S. Goings, “Using Reproductive Altruism to
Evolve Multicellularity in Digital Organisms.” Advances in Artificial
Life, ECAL, 12 (2013); T. Hasegawa and B. McMullin, “Analysing the
mutational pathways of a von Neumann self-reproducer within the Avida
world.” (2013); Hasegawa, T. and B. McMullin. “Exploring the point-
mutation space of avon Neumann self-reproducer within the Avida world.”
Advances in Artificial Life, ECAL, 2 (2013).

Some of this section is taken from E. Winston, W.A. Dembski, and R.J.
Marks I1, “Active information in metabiology.” BIO-Complexity (2013).

G.J. Chaitin, The limits of mathematics, IBM TJ Watson Research Center,
(1995).

G.J. Chaitin, The Unknowable (Springer-Verlag, 1999).

G.J. Chaitin, Exploring Randomness (Springer-Verlag, 2001).

G.J. Chaitin, Conversations with a Mathematician (Springer-Verlag, 2002).
G.J. Chaitin, Algorithmic Information Theory (Cambridge University Press,
2004).

G.J. Chaitin, Meta math!: The Quest for Omega (Vintage, 2006).

G.J. Chaitin, Thinking about Gddel and Turing: essays on complexity, 1970-
2007 (World Scientific Pub Co Inc, 2007).

16.
17.
18.
19.
20.
21.

22.

23.

24.

25.
26.
27.

Analysis of Some Biologically Motivated Evolutionary Models 249

G.J. Chaitin, Proving Darwin: Making Biology Mathematical (Pantheon,

2012).

T. Rado, “On non-computable functions.” Bell Syst Tech J, 41(3), pp. 877-884
(1962).

T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd edition,
(Wiley, 2006).

G.J. Chaitin, Proving Darwin, op. cit.

Ibid.

S. Aaronson, “Who Can Name the Bigger Number?” http://www.scotta
aronson.com/writings/bignumbers.html (URL date May 2, 2016).

S. Lloyd, “Computational capacity of the universe.” Phys Rev Lett, 88(23),
(2002).

See also W.A. Dembski, “The logical underpinnings of intelligent design.”
Debating Design: From Darwin to DNA (Cambridge University Press,
2004).

Dembski and Marks (2009), op. cit.

See also G. Montafiez, W. Ewert, W.A. Dembski, and R.J. Marks I,
“Vivisection of the EV Computer Organism: Identifying Sources of Active
Information.” Bio-Complexity, 2010(3), pp. 1-6 (2010).

See also W. Ewert, W.A. Dembski, and R.J. Marks Il, “Climbing the steiner
tree — sources of active information in a genetic algorithm for solving
the Euclidean Steiner tree problem.” Bio-Complexity, 2012(1), pp. 1-14,
(2012).

See also W. Ewert, W.A. Dembski, and R.J. Marks |1, “Evolutionary Synthesis
of NAND and Logic: Dissecting a Digital Organism.” Proceedings of the
2009 IEEE International Conference on Systems, Man, and Cybernetics, San
Antonio, TX, USA (2009), pp. 3047-3053.

See also W.A. Dembski and R.J. Marks II, “Life’s Conservation Law: Why
Darwinian Evolution Cannot Create Biological Information.” In B. Gordon
and W.A. Dembski, editors, The Nature of Nature (ISI Books, Wilmington,
Del, 2011), pp. 360-399.

W. Ewert, G. Montafiez, W.A. Dembski, and R.J. Marks I1, “Efficient per query
information extraction from a Hamming Oracle.” Proceedings of the 42nd
Meeting of the Southeastern Symposium on System Theory, IEEE, University
of Texas at Tyler, March 7-9, 2010, pp. 290-297.

Cover and Thomas, op. cit.

Dembski and Marks (2009), op. cit.

D. Thomas, “War of the Weasels: An Evolutionary Algorithm Beats Intelligent
Design.” Skepti Inqg 43, pp. 42-46 (2010).

250 Introduction to Evolutionary Informatics

28. D. Thomas, “Target? TARGET? We don’t need no stinkin’ Target!”
(2006), http://www.pandasthumb.org/archives/2006/07/target_target w_1.
html (URL date May 2, 2016).

29. W. Ewert, W.A. Dembski, and R.J. Marks Il. “Climbing the Steiner Tree—
Sources of Active Information in a Genetic Algorithm for Solving the
Euclidean Steiner Tree Problem.” BIO-Complexity, 2012.

30. Ewertet al., op. cit.

31. H.S. Wilfand W.J. Ewens, “There’s plenty of time for evolution.” Proceedings
of the National Academy of Sciences, 107(52), 22454-22456 (2010).

32. Dembski and Marks (2009), op. cit.

7

MEASURING MEANING: ALGORITHMIC
SPECIFIED COMPLEXITY

“No amount of argument, or clever epigram, can disguise the inherent improba-
bility of orthodox [Darwinian] theory; but most biologists feel it is better to think
in terms of improbable events than not to think at all”

Sir James Gray!

7.1 The Meaning of Meaning

Fundamentally, meaning is related to context. An image of the sunset is
meaningful because the viewer experientially relates it to other remembered
sunsets. Any object exhibiting contextual content rather than random noise
fits some pattern known a priori by the observer.

The two pictures in Fig. 7.1 contain the same number of bits, but the
picture on the left has more meaning than the image of noise on the right.
The fundamental context on the left is recognition of people. Additional
context includes a rough idea of people’s age, demeanor (most are smiling)
and clothing. These assessments come from experiential context. There are
various degrees of meaning depending on available context. If you know
the identity of the people in the left image (Ray, Monika, Bob, Marilee,
Kris, Tristan, Leslie, Joshua, Jeremiah), the picture has more meaning than
if you don’t. The degree of meaning increases with the context in which
information is interpreted.

We can use this contextual definition of meaning to develop a model
by which meaning can be measured.

Both Shannon and Kolmogorov—Chaitin—Solomonoff (KCS) measures
of information are famous for not being able to measure meaning.2 Shannon

8As discussed in Chapter 2.

251

252 Introduction to Evolutionary Informatics

Fig. 7.1. Nlustration of meaningful information (left) versus random noise. Uncompressed,
both images require the same number of bits and therefore the same Shannon information.
The picture on the left has even more meaning if you know the people. Meaning is a function
of context.

information is useful in assessing the amount of active information that has
been infused into a search,” but is not able, by itself, to assess the final
meaning of that design. A Blu-ray containing the movie Braveheart and a
Blu-ray full of correlated random noise can both require the same Shannon
information, as measured in bytes. The KCS measure of information is
therefore also not able to, by itself, measure informational meaning. A
maximally compressed text file can either contain a classic European novel
or can correspond to a sequence of random meaningless alphanumeric
characters.

To have meaning, an object needs to be complex. Both of the images
in Fig. 7.1 are complex because they each require thousands of bits. Only
the image on the left displays specificity: there are three women and six
men, all fully clothed, mostly happy, one is wearing glasses, another a hat,
one of the males is very young, etc. Appropriately, complex objects with
specificity are said to display specified complexity.22

A striking example of the reader’s ability to acquire image context
is in Fig. 7.2. Upon first viewing, the image seems to have no meaning.
It seems, rather, to consist of a number of meaningless gray splotches.
During prolonged viewing of Fig. 7.2, however, the mind scans its library
of content to place the image in context and the meaning of the image

bThis was the topic of Chapter 5.4.2.

Measuring Meaning: Algorithmic Specified Complexity 253

Fig. 7.2. Here is an image that initially appears to be only random splotches of gray. After
prolonged viewing, however, the mind finds context by which to interpret the image. Once
the context is established and the image seen, subsequent viewing will immediately revert
to the contextual interpretation of the image: W.C. Stone? describes the image: “The object
in the picture is a cow. The head of the cow is staring straight out at you from the center of
the photograph, its two black ears framing the white face. The picture is widely used by the
Optometric Extension Program Foundation to demonstrate the difference between eyesight
and vision.”

typically becomes clear. Interestingly, once the image is recognized by the
reader, it will always be recognized. Spoiler alert: a description of the image
is in the caption.

7.2 Conditional KCS Complexity

In order to discuss measuring specified complexity, a quick recap of
Kolmogorov—Chaitin—-Solomonov (KCS) information (or complexity) is
necessary. The KCS complexity of Y is®

K(Y) = the length of the shortest computer program that will produce
output Y.

CThis is covered more in detail in Chapter 2.2.1.

254 Introduction to Evolutionary Informatics

The KCS complexity is famously unknowable? and varies by a translation
number from programming language to programming language. We will
interchangeably use the terms KCS information and KCS complexity.

The conditional KCS information assumes we have a context C to use
in compressing the string.

K(Y|C) = the length of the shortest computer program that will produce
output Y given context C.

The notation K(Y|C) is read “the KCS complexity of Y given context C.”
The length of any code used to express C is not included in the KCS bit
count. We can think of the context as free background information or free
subroutines that are not tallied in the KCS bit count.

The conditional KCS has a value equal to or lower than the KCS infor-
mation with no context. Even if the context doesn’t help, the conditional
KCS complexity will not exceed the KCS without context. So if the context
does not help with the compression, simply ignore it and we end up with
the original KCS information without context. Thus

K(Y|C) < K(D). (7.1)

Let Y be the King James version of the Bible and let C be a list of batting
averages for a Little League team. The batting averages have next to no
useful information concerning the Bible and we would expect K(Y|C) ~
K().

The fact that KCS complexity K(Y) is unknowable at first seems
problematic. Note, however, any compression we achieve is an upper bound
to the KCS complexity. Whatever compression we achieve must be equal
to or greater that the maximum compression. We will call the upper bound
the observable KCS bound and will denote it with a tilde as K. Since K is
the length of the smallest program, we are assured that

K < K.

Lastly in our review, recall that the KCS complexity differs from com-
puter to computer, at most, the length of the translation program between the

dThis was proved in Chapter 2.2.1.3.

Measuring Meaning: Algorithmic Specified Complexity 255

two programming languages.® We will assume that such additive constants
are dwarfed by the other contributions to the KCS.
Those interested in these details are referred to our technical papers.®

7.3 Defining Algorithmic Specified Complexity (ASC)

Both of the images in Fig. 7.1 are highly improbable. The probability of
choosing either by random bit selection is both identical and miniscule.
Improbable events happen all the time. This probability, p, of randomly
choosing either image can be expressed as the endogenous information
Ig = —log, p. The endogenous information, however, assume that we
know nothing about the target. We might, though, know something about
the target. For images, adjacent pixels change gray levels slowly. Images
of faces display symmetry. For an object Y, we’ll let p(Y) describe the
probability of choosing the target image using a specified model. There
is a corresponding self-information of 1(Y) = — log, p(Y) which we will
dub the intrinsic information. Intrinsic information is a measure of the
difficulty of constructing X using a model where the chance occurrence
of X has probability p(X). There is no consideration of meaning in the
intrinsic information.

The algorithmic specified complexity (ASC), as illustrated in Fig. 7.3,
is defined as:

AY,C, I)=I(Y) — K(Y|C). (7.2)
The ASC is a function of

e Y = the object to be compressed

e C = the context

e [(Y) = the intrinsic information of the object
e K(Y|C) = the conditional KCS complexity

If context does help reduce the conditional KCS complexity, then the ACS
will be small.

€As discussed in Chapter 2.2.1.
fEndogenous information is defined and discussed in Chapter 5.4.1.

256 Introduction to Evolutionary Informatics

Program X Turing Output: ¥
Machine Probability
Model
ngmm Length: Output Length: |

IX| = K(¥|C) 1v]

Context p(Y) ;
c I(Y) =—log, p(Y) < |Y|

Fig. 7.3. Ilustration of ASC is defined in Equation (7.2). The shortest program X to generate
a given output string Y given context C is, by definition, an elegant program with length
|X| = K(Y|C). The probability of the occurrence of the output is determined by a probability
model that evaluates the probability p(Y) with corresponding self-information I(X) =
—logy p(Y). The difference between this self-information and the length of the elegant
program is the ASC.

It is simpler to write out this equation using shorter notation where
arguments are assumed implicit.

A=1-KY|C). (7.3)

If K is used in lieu of K in the definition of ASC, then we are assured, since
K < K, that

A=1—KYI|C)>1-K(|C). (7.4)

The observed conditional KCS complexity can thus be used to establish a
lower bound for the ASC.

17.3.1 High ASC is rare

Randomly generating items with meaning is highly improbable. If an object
has a high ASC, the probability it occurred by chance is miniscule. The
chance of getting more than 10 bits of ACS are less than chance in a
thousand. Getting more than 40 bits is less than chance in a trillion. In
general, for « bits,

PrlA > o] <27% (7.5)

Proof: For those wanting to dive into the math, here we go. Using the
definition in Equation (7.1)

Pr{A(Y) = a] = Pr{I(Y) — K(Y|C) = a] = Pr{I(Y) = K(¥Y|C) + «]

Measuring Meaning: Algorithmic Specified Complexity 257

But (1) = —log, p(¥) 50
PrfA(Y) > «] = Pr [p(Y) < Z*K(YIC)*a]

According to the probability model, some output binary strings will be
more probable than others. Define the set

Bu(Y) = {Y|p(Y) < 27 KO-}

Comparing
PrIA(Y) > o] = Prp(y) < 27K1O=e] = 3" p(y)
YeBu(Y)
< Z o—K(Y|O)~a _ o—a Z o—K(Y|0)
YeBu(Y) YeBu(Y)

From the Kraft inequality,®

Z 2—K¥IC) -1
Yepa(Y)

and we have proved the proposition in Equation (7.5).

7.4 Examples of ASC

Now that the math is out of the way, we can illustrate ASC with some
examples.

7.4.1 Extended alphanumerics

Here’s an example of ACS and conditional KCS using extended alphanu-
meric characters using different types of context. Each example uses a
codebook for context. The codebook tells us how we encode and decode
the bits for compression and decompression. The thickness of the codebook
does not enter into the calculation of the conditional KCS complexity. It
is known context. In the series of examples to follow, the context becomes
more useful and the conditional KCS becomes smaller.

Assume we are tasked with finding the ACS complexity of 5 million
extended alphanumeric characters. We assume we have access to an

9The Kraft inequality is discussed in Chapter 2.2.1.2.

258 Introduction to Evolutionary Informatics

extended ASCII" codebook. Extended ASCII assigns an 8 bit binary
number (one byte) to each of 256 different letters, symbols, numbers and
instructions. For example, the ASCII codebook assigns “H” the binary
string 01001000, “q” 01110001, “8” is represented by 10100111, and “?”
by 00111111. A space has the number 00100000. If we have four million
extended characters randomly drawn from the 256 available in the ASCII
codebook, the resulting string has an intrinsic information of

I = 5,000,000 characters x 8 bits per character = 40 million bits.

1. Extended ASCII context. Using the extended ASCII codebook Cascii
almost assuredly generates a sequence that is not compressible when the
characters are drawn at random. The shortest program is something like

Print the 40 million bits: 0100 ... 1100. Stop.
The observed KCS conditional complexity in this case is

K(Y|Cascn) = 40,000,000,
where c is a constant. There is therefore no ASC since.

Apscn = I — K(Y|Casci) _ZCO-

2. Frequency of occurrence® context. Knowledge of the percentage of
times a character is used can reduce the complexity. The letter “z” is
the least used letter in the English language and the letter “e” is the
most commonly used. The space is used even more. The percentage
of the total of each character’s occurrence is the letter’s frequency of
occurrence (FOO).

Coding in communication uses the FOO to write a codebook which
assigns short binary strings to frequently used characters and longer
strings to less frequently used ones.":7 We’ll call the context available

_hASCII = American Standard Code for Information Interchange.

't For a known frequency of occurrence, Huffman Codes are optimal. The average
transmitted binary string in bits is bounded by the entropy of the describing probability
density and the entropy plus one bit.

Measuring Meaning: Algorithmic Specified Complexity 259

from this codebook Croo. For FOO context, we know that

K(Y|Croo) < K(Y)

A classic example is the Morse code first used in telegraphy in the
mid-19th century. A short tone, a dot, and a longer tone, a dash, serve
as the binary alphabet. If we assign a “1” to a dot and a “0” to a
dash, then the commonly used letter “e” in Morse code is assigned
the one bit symbol “1”. The less frequently used letter “z” is assigned
the longer code 0011. Some intermediately used letters include “a” = 11
and “r” = 101. Using the context of a Morse code codebook, messages
require fewer bits to characterize than when using the same number of
bits for each letter using ASCII.J

3. Dictionary. A dictionary codebook can allow even greater compression.
If we assume there are about five letters per word, including spaces,
commas, periods, etc., there are about a million words in the 5 million
character document. Consider, then, a codebook Cp,ct containing all of
the words used in the document. To illustrate, let’s assume the dictionary
codebook contains

214 — 16,384 words.

We number each of the words in the dictionary starting with the 14 bit
string

00,000,000,000,000
for the first word in the dictionary and
11,111,111,111,111

for the last. Using 14 bits for each of the million words in the document
then requires

K(Y|Cpict) = 14 bits per word x 1,000,000 words = 14,000,000 bits.

It Although the difference between of using the FOO applied to Morse code versus ASCII
coding is clear, there are unaddressed issues in this comparison. Morse code requires a pause
between groups of bits (It is not a prefix-free code). Morse code does not distinguish between
upper and lower case letters, etc. Discussing these issues in detail will unnecessarily bog
the presentation down in petty details, so is not addressed.

260

4.

Introduction to Evolutionary Informatics

This is roughly a third of the 40 million bits required when using the
extended ASCII codebook.

K(Y|Cpict) = K(Y|Croo) + 26 million bits.

The context provided by the dictionary has reduced the size of the elegant
programX and the corresponding ASC is

Apict =1 — IN((Y|CD|CT) = 26,000,000 bits.

Word FOO Dictionary. Just as knowledge of characters, FOO results
in lower conditional KCS complexity, so can knowledge of word FOO
decrease the conditional KCS information. We can then tag commonly
used words with short binary strings and rarely used words with
longer strings. Commonly used words assigned short strings of bits
include “the,” “and,” “a,” “that,” “an” and “of.” Less commonly used
words assigned longer binary strings include “xu,” “aby,” “adit” and
“erinaceous.”!

. Book ID. The numbers in the previous examples are rough approxima-

tions of statistics of the King James translation of the Bible. If you have,
as context, the contents of King James Bible along with 1,027 other
books in your library on your computer, the only required information
is specifying and opening the correct file. Since 219 = 1,028, each of the
1,028 books can be tagged with a 10 bit ID number. One of the indices

Kt The astute reader will note that if there are too many words in the dictionary there

will
cod

be no reduction in the bit count. If there are 240 ~ 1 trillion words in the dictionary,
ing from the dictionary would require about 40 x 1,000,000 = 40 million bits, the

same as the value for K(Y). If there are more, say 2*° dictionary words in the dictionary,
more than 40 million bits are required when the dictionary is used. Recall that K(Y|CpicT)
is the shortest representation and if using Cpjct makes the maximum compression smaller,
then Cp)cT is abandoned as a resource and, when the dictionary is too long, we revert to
K(Y|CpicT) = K(Y) ~ 40 million bits.

layy” = a monetary unit of Vietnam, equal to one hundredth of a dong. “aby” = expiate:
make amends for. “adit” = a horizontal passage leading into a mine for the purposes of
access or drainage. “erinaceous” = of, pertaining to, or resembling a hedgehog.

Measuring Meaning: Algorithmic Specified Complexity 261
specifies the KJV of the Bible. If we call this context C| g, then
K(Y|CLB) = 10 bits,
< K(Y|Cro0) ~40 million bits.

Cy g provides rich context and reduces the conditional KCS complexity
to a handful of bits. The corresponding ASC is large.

ASChooks = I — K(Y|CLig) ~ 40 million bits.

The more useful context brought to an interpretation of Y, the smaller the
conditional KCS complexity.

The ACS results for the 5 million characters using different contexts
are summarized in Table 7.1.

7.4.2 Poker

Here’s an example of ASC using a standard deck of playing cards. In
the game of poker, there are 2,569,682, possible five-card hands.™ Any
of these hands occurs with one chance in 2,569,682, corresponding to a
self-information of 7 = 21.3 bits.

Table 7.1. A summary of the different observed conditional KCS information
and ASC for 5 million ASCII characters. The intrinsic information for all cases
is I = 40 million bits. The observed conditional KCS decreases as we go down
the table and the ASC bound increases. This indicates that available context is
becoming more and more useful in identifying the string.

A>
Context Codebook ?
Extended ASCII Cascii Extended ASCII 40 million bits 0
Character FOO CeEoO Character FOO
Dictionary CDict Dictionary 14 million bits 26 million bits
Word FOO Cwroo Word FOO
Library CLiB Library 10 bits 40 million bits

52\ _ B2l __
my (5) = 22 = 2,869,682.

262 Introduction to Evolutionary Informatics

Table 7.2. Poker hands and their algorithmic

specified complexity (ASC).

Poker hand Frequency ASC
Royal Flush 4 16.0
Straight Flush 36 12.8
Four of a Kind 624 8.7
Full House 3,744 6.1
Flush 5,108 5.7
Straight 10,200 47
Three of a Kind 54,912 2.2
Two Pair 123,552 1.1
One Pair 1,098,240 0.0
High Card 1,302,540 0.0

To place the five cards in the context of poker, we will use the 10
categories of hands listed in Table 7.2. Specifying a category takes log, 10 =
3.3 hits.

Some hands in the 10 categories have more meaning than others. There
are only four royal flushes and, in the context of poker, a royal flush is
uniquely identified by specifying a suit: ¢ ¥ 4. Since there are four suits,
this requires only two bits of information. The conditional KCS complexity
for a royal flush is thus K(X|C) = 3.3 + 2 = 5.3 bits and, for the royal
flush. Thus ASC = 21.3 — 5.3 = 16 bits.

Uniquely identifying an element of the straight flush category requires
more information, i.e. (1) specifying the suit and (2) identifying the highest
card in the hand. There are 36 straight flushes so that K(X|C) = 3.3 +
log, 36 = 8.5 bits and, for the straight flush, ASC = 21.3—8.5 = 12.8 bits.

We can continue and calculate the result of all of the ten categories.
The resulting frequency and ASC is shown in Table 7.2. As expected, the
weaker the hand, the lower the ASC.

7.4.3 Snowflakes

Using the same available context, strings can display different levels of
ASC when, within the same context, a rare event occurs. We illustrate this
using snowflakes.

Measuring Meaning: Algorithmic Specified Complexity 263

“No two snowflakes are alike” is a common claim. In 1988, though,
Nancy Knight was looking at snowflakes for the National Center for
Atmospheric Research and found what appeared to be two identical
snowflakes.8 This is remarkable since an estimate for the number of visually
indistinguishable distinct snowflakes® is 1018, Snowflake shapes, however,
are a function of temperature, humidity and other environmental conditions.
Two snowflakes have a greater chance of being identical when formed in
the same place at the same time.

Although Nancy Knight’s two snowflakes were identical in appear-
ance, Caltech physics professor Kenneth Libbrecht stresses that the two
snowflakes were assuredly different at the atomic level.l9 The claim
that “No two snowflakes are alike” therefore requires carefully defining
the word “alike”. A one-third milligram snowflake contains about 101°
water molecules!!-" and the combinatorics of their possible arrangements
into snowflakes at the molecular level is astronomical. This is further
complicated by the occurrence of snowflakes forming around a speck of
dust.12 There can thus be molecules other than H,O in the snowflake.

e One Snowflake. If we estimate that there are 1019%0 possible snowflake
types, then the corresponding intrinsic information is

I = log, 10199 — 3322 bits.

We can then have an astronomically thick codebook label where each of
the snowflakes is indexed by a 3322 bit number. If all of the snowflakes
are equally likely, the best we can do is print out the 3322 bit index
of the snowflake. Then the observed conditional KCS information, in
bits, is

K(Y|C)=3322.

c

The corresponding ASC of the snowflake?® is

A>=T1-K(¥|0)=0. (7.6)

NLaboratory snowflakes have been created with only 275 water molecules.
OUsing Equation (7.4).

264 Introduction to Evolutionary Informatics

Even though the snowflake is improbable, its low ASC bound indicates
it has little specified complexity.P

e Two Different Snowflakes. Two arbitrarily chosen non-identical
snowflakes will have twice the intrinsic information as one. The intrinsic
information for two snowflakes (let’s call it I7) is thus

I, = 2 x I = 6644 bits. (7.7)

This is a case of the information additivity property of Shannon
information.” The conditional KCS information for 2 snowflakes, let’s
call it K2(Y2|C) where Y> is the bit string indexing the two snowflakes, is

K (Y2|C) =6644.

The same codebook, C, we used for one snowflake is used for the two
different snowflakes. The corresponding ACS is

Az = I — K2(Y|C) = 0.

The ACS for two different snowflakes is thus the same as the ASC
calculated for one snowflake.> The same ASC of 0 will be calculated
when calculating the ACS of 10 or a thousand non-identical snowflakes.
e Two Identical Snowflakes. The intrinsic information for two
snowflakes is the same, whether or not they are the same, i.e. I, =
6644 bits. If the two snowflakes are the same, however, the KCS
complexity is much less. We simply write out 3322 bits for the first
snowflake and enter a REPEAT command. The observed conditional

Pt The probability of an individual snowflake under our assumptions is p = 1071990, Thus
Pr[Pr(snowflake) < 10~1900] = 1.

This expression is an example of the claim that “Improbable events happen all the time.”
At If there are 101000 snowflakes, then the number of distinct snowflakes pairs with regard
to order is (101000)(101000 _ 1y ~ (101000)2 The corresponding two snowflake intrinsic
information, consistent with Equation (7.7), is then

I = logy(101990)2 = 2109, (101900) = 2 x 3322 = 6644 bits.

"As discussed in Chapter 2.2.2.
SThe ASC for one snowflake is in Equation (7.6). It is essentially zero.

Measuring Meaning: Algorithmic Specified Complexity 265

KCS complexity of the two snowflakes is about the same as it is for one
snowflake: K (X|C) =3322. The ACS for two identical snowflakes, let’s

C
call it Aggme, iS

Asame > I — K (Y|C) = 3322 bits. (7.8)

This is a significant amount of ASC according to our model! Two
identical snowflakes therefore have an enormous amount of specified
complexity.

e Probability of Occurrence. For the two identical snowflake example,
a + ¢ > 3322 and the probability an ASC exceeds this value is a very
small number:

Pr{A > a + ¢ > 3322 bits] < 27332 = .

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 9513808474 5598544585 6525238905 9987188429 1599954...

7.4.4 ACS in the Game of Life

ASC can be nicely illustrated using various functional patterns in Conway’s
celebrated Game of Life.1

7.4.4.1 The Game of Life

The Game of Life and similar systems allow a variety of fascinating
behaviors insimple cellular automata.'* The Game of Life is played onagrid
of square cells. A cell is either alive (a one) or dead (a zero). A cell’s status
is determined by the other cells around it. Only four rules are followed.

1. Under-Population. A living cell with fewer than two live neighbors dies.
2. Overcrowding. A living cell with more than three living neighbors dies.

266 Introduction to Evolutionary Informatics

-

1. Under-Population

—>

2. Overcrowding

—>

3. Reproduction

4. Family

Fig. 7.4. lllustration of the four rules used in the Game of Life.

3. Reproduction. A dead cell with exactly three living neighbors becomes
a living cell.

4. Family. A living cell with two or three live neighbor lives on to the next
generation.

The four rules are illustrated in Fig. 7.4.
There are many object classes of Game of Life patterns. Here are the
most elementary examples:

1. Astill life is a pattern that doesn’t change. Two examples are shown in
Fig. 7.5. Many interesting patterns are given names. The patterns here
are named block and beehive. Inspection of the four laws reveals that
these patterns are, indeed, still lifes.

2. Oscillators change into another pattern in accordance to the rules of
the Game of Life. For an oscillator of period two, this second pattern

Measuring Meaning: Algorithmic Specified Complexity 267

Block

Beehive

Fig. 7.5. Two examples of still lifes.

Blinker

1 2

NE B

W)

Toad
- mml M mm

Fig. 7.6. Two oscillators with period 2. In both cases, the pattern on the left turns into a
different pattern shown in the middle. This second pattern then becomes the first pattern.
The process continues and the pattern is seen to oscillate.

changes back to the original image. Two examples, the blinker and the
toad, are shown in Fig. 7.6.

3. Spaceships are like oscillators except that when the original pattern is
repeated, it is centered at a different position. As iterations continue,

268 Introduction to Evolutionary Informatics

Fig. 7.7. The glider. In five iterations, the pattern in Step 1 at the top is replicated in Step 5
diagonally. Further iterations show the pattern moving diagonally in the southeast direction.

the sequence of displacements can be viewed as movement. The glider
shown in Fig. 7.7 is an example. The pattern on the bottom after five
steps is the same as the pattern in step one except that it has moved one
cell over and one cell down.

Simpler Game of Life objects can appear as components in more
complex objects as is the case with the glider gun shown in Fig. 7.8. On
the top, patterns close in on each other, separate, and close in on each other
again. Every time this happens, a glider is born. Immediately after birth,

Measuring Meaning: Algorithmic Specified Complexity 269

Fig. 7.8. The glider gun.

the glider begins its never-ending southeast trek. We have a glider gun
that creates gliders. Can we go one step further and create a breeder that
manufactures glider guns that then manufacture gliders? Remarkably, as
illustrated in Fig. 7.9, the answer is yes. The cell configuration is dubbed a
puffer-type breeder.

The Game of Life features an equivalent of the primordial soup in which,
we aretold, life firstarose. Ash objects are life forms surviving when random
pixels are chosen on a grid. There is a separate list for oscillators. As one
expects, Game of Life life forms created by chance have low ASC.1°

As witnessed by videos on YouTube, astonishing functionality can
be achieved with the Game of Life’s four simple rules.1® If the reader
is unfamiliar with the diversity achievable with these operations, we
encourage them to view these and other short videos demonstrating the
Game of Life. Static pictures not do justice to the remarkable underlying
dynamics. There is also an active users group.t’

7.4.4.2 Cataloging context

We should not go too far before tying the discussion back to the model of
ASC complexity.1® The context that allows us to make classes like still
lifes, oscillators and spaceships is so familiar that it might escape our
attention. We are familiar with still life objects that don’t move, oscillator

270 Introduction to Evolutionary Informatics

Fig. 7.9. A puffer-type breeder moves downward leaving glider guns in its wake. Each
glider gun spews out gliders as shown in Fig. 7.8.

objects that periodically repeat themselves and objects moving at a constant
velocity like spaceships. In such cases, we need not describe the Game of
Life object with a sequence of bits denoting whether a cell is on or off. We
can simply say “it’s an oscillator” and, using this context, fill in additional
details to specify the object. There are other descriptive attributes of the
objects, such as the number of living cells in the initialization, the period
of oscillation for oscillators and spaceships, and the speed and direction of
spaceships. Using this and other context, the conditional KCS complexity
can be reduced significantly.

Measuring Meaning: Algorithmic Specified Complexity 271

Let’s start a codebook for the Game of Life based on simple experiential
context.

7.4.4.2.1 Still lifes and oscillators

Let Y denote an object in the Game of Life and & a single time step. If an
object is a still life, it does not change after an iteration. Using our notation,
we can denote a still life as obeying

Y = @Y.

An example is the block, ¥ = @ for which @ = @@.

Still lifes are a degenerate case of oscillators, one that repeats itself
every cycle. Anoscillator that repeats itself every two cycles has the property

Y=Y
which we can more concisely write as
Y = @2Y.

But we must be careful. Still lifes” iterated twice also obey this property and
our aim is to represent single cycle oscillators while excluding still lifes.
So we will implicitly restrict the notation ¥ = @?2Y to exclude objects

obeying Y = @Y. An example is the blinker, Y = % which we can

characterize as
% = @2%

The generalization is now obvious. The notation
Y =&Y

indicates an object that repeats itself in i time steps without repeating itself
in fewer time steps.

The membership of an object in the class of oscillators is now
represented by the single number i that specifies the period of oscillation.!

U+ The period of oscillation is i — 1.

272 Introduction to Evolutionary Informatics

We can now make a codebook for all oscillators. We’ll start by ordering
the still lifes (i = 1) by how simple they are by figuring out rules placing
them in lexicographical order, i.e. a method to unambiguously number each
still life starting at zero. Here are the rules we will use:

(1) Cells: Order objects from the smallest to the largest number of living
cells

(2) BB: If the number of living cells is the same, order from smallest to
largest bounding box area. In Fig. 7.5, for example, the area of the
bounding box for the block is 4 x 4 = 16 and the area of the bounding
box for the beehive is 5 x 6 = 30.

(3) W: If both (1) and (2) are the same, order from smallest to largest
bounding box width.

(4) N: If all three of the previous criteria are the same, assign a base 2
number to the bounding box across rows and down columns, the same
way we read English. Assign a 0 to a living cell and 1 to a dead cell. For
the block in Fig. 7.5, the number is (1111 1001 1001 1111), = 63,903
while the beehive is assigned the number (111111 110011 101101
110011 111111), = 1,070,521,599.

(5) When there is more than a single frame, as is the case in oscillators and
gliders, a score can be applied to every frame and the minimum value
chosen.

Using these ordering rules, a list can be made of all still lifes as is shown
in Fig. 7.11. The jth pattern in the codebook page is ¥ = @1V, #;. Instead
of describing all of the ones and zeros comprising the 5 x 5 array needed
for the pattern called Ship #1, we simply need to say “Y = @'Y, #11.”
Using the context catalog in Fig. 7.10, this uniquely specifies Ship #1.

A similar codebook page can be made for single period oscillators.
These would be denoted by Y = @27, # . The first two of the single period
oscillators are shown in Fig. 7.6. The first two entries of the codebook page
for single period oscillators are

Y = %Y, #1 blinker, (7.9)
Y = ®%Y, #2 toad.

Similar codebook pages can be constructed for &3, ®*, etc.

Measuring Meaning: Algorithmic Specified Complexity 273
Jly=ewvs | LJj|Y=@'Y.# |
_____) Block NV Ship #1
! _-_ Cells=4.BB=16. 1| = " - 6 cells. BB=25. W=3
|- I ﬁ 1 | N=11111 10011
- | i | 10101...~33.150.783
o Tw 0 Ship #2
2 |4 — Cells=4.BB=30. 12 | ——pugw— | Cells=6. BB=25. W=5
- : = [ﬂ 1 N=11111 11001
o o R CLL T | 10101..233.347.199
| Boat #1 Carrier #1

ud

Cells=5, BB=215, W=3 13
N=11111 10011
10101..=33,150.847

Cells=6. BB=30. W=3
N=11111 10011 10111
11101.. =L060,894.527

| Boat #3

Boat #2

Cells=5. BB=25, W=3 4|

N=11111 11001
10101..= 33,347.455

Cells=5.BB=25W=3
N=11111 11010

Carrier #2

Cells=6, BB=30. W=3
N=11111 11001 11101
10111.. =L.067.376,255

" Hive #1

Cells=6. BB=30, W=3
N= 11111 11011 10101

10101..= 33,412,735 10101...= 1,069.209.471
Boat #4 | Carrier#3
6 Cells=5.BB=25.W=3 16 || Cells=6. BB=30. W=6
N=11111 11011 f N= 111111 100111
10101.= 33.412927 | | 101101..=1.067.367.255
Snake #1 Carmer#4
7 Cells=6.BB=24. W=4 17 | /= 1 | Cells=6, BB=30. W=6
N=1111 1001 1011 | N= 111111 111001
1101..= 16.367.007 101101..=1.069.209.471
Snake #2 Hive #2
8 Cells=6.BB=24.W=4 18 | - Cells=6. BB=30. W=6
N=1111 1001 1101 N= 111111 110011
1011..= 16374687 101101.,.=1,072.093.695

| Snake #3

Cells=6.BB=24.W=06 19 | H

N= 111111 100101

' Barge #1

Cells=6. BB=36. W=6
N= 111111 110111

101001..= 16,669,311 101011..=68,579,.974.911
- — | Snake fi4 I — ‘]’*“"GL‘ #2
10 | } — e — | Cells=6.BB=24 W=06 20 | ¢ - Cells=6.BB=36. W=6
| H ;. { | N= 111111 101001 | N= 111111 111011

100101..=

16, 683,439

1 | 110101..=68,649,663.999

Fig. 7.10. The beginning of a lexicographical ordering of all still lifes in the Game of Life.
The jth entry in this list can be uniquely specified by the short index.

7.4.42.2 Gliders

Gliders are like moving oscillators. The pattern is repeated except that the
replication occurs at a different location. In part, we recognize gliders in the
context of movement. This can be used to add to our Game of Life catalog.
We can denote left and right movement by horizontal arrows (<« and —)
and up and down movement by vertical arrows (1 and). The glider in

274 Introduction to Evolutionary Informatics

period | ASC>
block | | [1 -25
blinker E 2 -2%
caterer l l | I 1 3 21
mazing T 4 19
T
1T
11
1
pseudo-barberpole 11 5 52
unix 6 33
burloaferimeter 7 74
figure eight B 7
L}
=n
13
]
1]
==
»
am
29p9 9 69

Fig. 7.11. The simplest oscillators with different periods and the corresponding ASC bound.
The dynamics of each oscillator can be viewed by a simple Google search of the name
followed by Conway’s Game of Life. Note the difference between the blinker’s ASC bound
here and Equation (7.11). The manner in which the ASC bounds were computed are similar
but at variation. Note that the bounding rectangles are different.

Measuring Meaning: Algorithmic Specified Complexity 275

Fig. 7.7 moves one cell down and one cell to the right in 4 cycles. Game of
Life forms obeying such behavior can be characterized as

X |>=a*X.

This means that four cycles will reproduce the glider one unit to the right
and one down. As is the case with the oscillators, we can make a page in
the codebook labeled

X |—>=®*Xt#].

The ordering of the entries would follow the same rules used for oscillators.
The glider in Fig. 7.7 is the first on this list and would be designated by

X |>=@*X#1.

We can use such movement characterizations to estimate the ASC.
Remember, though, there is no direct way of calculating the ASC. We
can only get bounds. There are more efficient ways to catalog glider
movement!® that include variations that capture more complex movement.
A higher ASC bound results.

7.4.4.2.3 Higher complexity

Let’s move on to more complicated designs. Many patterns in the Game of
Life can be constructed by colliding generalized gliders.2° The glider gun
in Fig. 7.8 is an example. In the description of the glider gun, we can make
reference to the glider cataloged as (X |—= @*X#1). The gun, on top,
can be viewed as colliding gliders each of which is able to be indexed from
the glider catalog pages.

The puffer-type breeder in Fig. 7.9 is even more complex. As the breeder
moves down the page, glider guns are left in its wake. So there will be
repeated references to the glider gun (X |—= @*X#1) in the program
describing the breeder. In turn, each of the glider guns spits out gliders.
Characterizing of the big puffer cloud that creates the glider guns has not
yet been done. But what is familiar about the puffer cloud? It is like an
enormous glider that moves and repeats its pattern while, each time, spitting
out a glider gun. Using such context can allow us to construct a catalog page
of such objects.

276 Introduction to Evolutionary Informatics

Readers may respond to our cataloging and say “l can do a more
compact characterization than that!” That, of course, is great. Your catalog
will result a tighter bound on the ASC than ours does.

7.4.4.3 Measuring ASC in bits

All our effort thus far has been focused on setting up the structure of a
codebook according to context in the Game of Life. We can use this structure
to measure ASC in bits.

7.4.4.3.1 Measuring I(X)

Let’s start with computing the self-information term, I(X), in the ASC
formula ASC = I(X) — K(X|C). We’ll model the literals in the Game of

Life, like E inside rectangles. If the rectangle has width w and height
h, then there are w x h cells to specify. So we need a binary string that
specifies w and & followed by a string of w x & bits. One way to efficiently
represent integers is Levinson coding.?! Let /(n) denote the number of bits
to define the integer »n. Levinson coding of integers supplies compact prefix
free characterization of n. For our purposes, the details of Levinson coding
are of secondary importance."

To count the number of bits needed to characterize X, we need to specify
the rectangle length, the rectangle width and the identity all of the w x &
bits inside the rectangle. The total number of bits we need to encode a literal
is the sum of these values.”

1(X) = [(w) + I(h) + w x h.

Here’s an example. For the blinker % w = h = 5. Since [(5) = 5 bits,

IsLINKER(X) = 5+ 5+ 25 = 35 bits. (7.10)

U+ Levinson coding expresses the number n using I(n) = [log(n + 1) + logy (n)] + 1 bits.
VThere are more efficient ways to do this that require fewer bits, e.g. when there is a
preponderance of ones sprinkled with a few zeros. We will stick with the simple sum
operation, though, since it is easily explainable and easy to understand.

Measuring Meaning: Algorithmic Specified Complexity 277

7.4.4.3.2 Measuring the conditional KCS complexity in bits

To measure the conditional KCS information, we need bit streams
assigned to numbers, variables like X and Y and symbols such as —, 1,
®, A(power), =, and #. For the formalism so far, 32 characterizations
suffice for the variables and the symbols. Since 2° = 32, each variables
and symbol can be assigned a five bit code. To declare there are no
more operations to be had, we’ll use the five bit sequence, 11111. Simply
concatenating all the equations would not be a prefix free code since the
binary encoding would be a valid prefix to other codes. After the last
describing bit, 11111 is appended as a suffix preventing any longer codes
from being valid and making the system prefix free.

For numbers, we’ll use Levinson coding. To calculate the length of the
encoding we add up the following.

1. Five bits for every symbol.

2. 1(n) bits for each number n in the equation.

3. The length of the bit encoding of any pattern literals, like %

4. Five bits for the stop and integer call symbols.
Equation (7.9) assigns the blinker’s symbols. Counting the symbols and
adding a stop signal gives

KBLINKER(X|C) = 8 x 6 + 3 + 2 = 42 bits.
Thus
ASCBLINKER = 35 — 53 = —18 bits. (7.11)

The low ASC is not surprising since the blinker is the most common of all
ash objects — even more common than the simplest still life, the block.?2

7.4.4.3.3 Oscillator ASC

Oscillator periods vary according to the oscillator. Figure 7.11 lists the
simplest oscillators with cycles of 1,2,3 all the way up to 9. An ASC bound
is listed in each case. Not surprisingly, the ASC bound roughly increases
with the period. The exception is the “figure eight” with period 8 that
registers an ASC bound of only 7 bits.

278 Introduction to Evolutionary Informatics

7.4.4.4 Measuring meaning

Before we thought of analyzing the Game of Life, users had assigned
meaning to the objects that can be generated by Conway’s four simple
rules. Gliders, still lifes and oscillators are so hamed because they relate
to context common to experience. The fascinatingly complex objects such
as puffer breeders are more complex than a simple glider. ASC is a simple
methodology for assigning numbers to the specified complexity of objects
in the Game of Life.

7.5 Meaning is in the Eye of the Beholder

An episode of the television series Twilight Zone titled “The Eye of the
Beholder”23 tells the story of an ugly woman about to undergo an operation
to make her more beautiful. The black and white program, filmed in
shadows, has a surprise ending. The woman is already beautiful but the
doctors and nurse are hideously ugly — at least in our eyes. In their world,
the opposite was true.

Poets agree. Shakespeare wrote?*

“Beauty is bought by judgment of the eye”

David Hume concurs.?®

“Beauty in things exists merely in the mind which contemplates them.”

Let’s substitute the term “meaningful information” for “beauty” and see
how these phrases read.

“Meaningful information is bought by judgment of the eye”

“Meaningful information in things exists merely in the mind which contemplates
them.”

As interpreted from the viewpoint of the information definition applied to
specified complexity, these phrases ring true in the sense that the degree of
meaningful information is determined by the context of the observer. ASC
is a model that allows quantitative assessment of contextual meaning.

Measuring Meaning: Algorithmic Specified Complexity 279

Notes

10.
11.

12.

13.

14.
15.

. Sir James Gray, Nature, 173, p. 227 (1954).
. W. Ewert, William A. Dembski, and Robert J. Marks Il, “Algorithmic

Specified Complexity.” In Engineering and the Ultimate: An Interdisciplinary
Investigation of Order and Design in Nature and Craft, edited by J. Bartlett,
D. Halsmer, and M. Hall (Blyth Institute Press, 2014), pp. 131-149.

. W. Ewert, William A. Dembski and Robert J. Marks 11, “On the improbability

of algorithmically specified complexity.” Proceedings of the 2013 IEEE
45th Southeastern Symposium on Systems Theory (SSST), Baylor University,
March 11, 2013.

. W.C. Stone, The Success System that Never Fails (Prentice Hall, 1962).
. Winston Ewert et al. (2014), op.cit.

Winston Ewert et al. (2013), op.cit.

. William A. Dembski, and Robert J. Marks, “Conservation of information in

search: measuring the cost of success.” IEEE Transactions on Systems, Man
and Cybernetics: Systems and Humans. 39(5), pp. 1051-1061 (2009).

. Thomas M. Cover and Joy A. Thomas. Elements of information theory, 2nd

edition (John Wiley & Sons, 2012).

. ChrisV. Thangham, “No two snowflakes are alike.” Digital Journal, December

2008.

. And others estimate 106 different types of snowflakes. Wonderopolis, “Why

are all snowflakes different?” http://wonderopolis.org/wonder/why-are-all-
snowflakes-different/ (URL date May 2, 2016).

Ibid.

A. M. Helmenstine, “Avogadro’s Number Example Chemistry Prob-
lem.” About.com, http://chemistry.about.com/od/workedchemistryproblems/
a/avogadroexampl3.htm (URL date May 2, 2016).

A Guide to Snowflakes, “The Old Farmer’s Almanac.” http://www.
almanac.com/content/guide-snowflakes. (URL date May 2, 2016).

Martin Gardner, “Mathematical Games — The fantastic combinations of
John Conway’s new solitaire game life.” Scientific American 223, Oct 1970,
pp. 120-123.

S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, IL, 2002).
A catalog of common ash objects ordered by their frequency of occurrence
is available online. There is a separate list for oscillators. http://wwwhomes.
uni-bielefeld.de/achim/freq_top_life.html. (URL date May 2, 2016).

280 Introduction to Evolutionary Informatics

16. “Amazing Game of Life Demo.” http://youtu.be/XcuBvjOpw-E, “Epic Con-
way’s Game of Life,” http://youtu.be/C2vgICfQawE, “Life In Life,” http://
youtu.be/xP5-ileKXES; (URL date May 2, 2016).

17. http://lwww.conwaylife.com/wiki/ (URL date May 2, 2016).

18. W. Ewert, William A. Dembski, and Robert J. Marks Il, “Algorithmic specified
complexity in the game of life.” IEEE Transactions on Systems, Man and
Cybernetics: Systems, 2014. Much in this section, including some figures, are
from this paper.

19. Ibid.

20. Lifewiki http://www.conwaylife.com/wiki/Main_Page (URL date May 2,
2016).

21. A.Adamatzky, ed., Collision Based Computing (Springer Verlag, London, UK,
2002).

22. LifeWiki, op.cit.

23. Douglas Heyes, “The Eye of the Beholder.” The Twilight Zone, CBS television,
first aired November 11, 1960.

24. W. Shakespeare, Love’s Labours Lost (1588).

25. D. Hume, Essays: Moral, Political, and Literary (Longmans, Green, and
Company, 1907).

8

INTELLIGENT DESIGN & ARTIFICIAL
INTELLIGENCE

“The most erroneous stories are the ones we think we know best — and therefore
never scrutinize or question.”
Stephen Jay Gould?

“Any physical theory is always provisional, in the sense that it is only a hypothesis:
you can never prove it. No matter how many times the results of experiments
agree with some theory, you can never be sure that the next time the result will
not contradict the theory. On the other hand, you can disprove a theory by finding
even a single observation that disagrees with the predictions of the theory. As
philosopher of science Karl Popper has emphasized, agood theory is characterized
by the fact that it makes a number of predictions that could in principle be disproved
or falsified by observation. Each time new experiments are observed to agree with
the predictions the theory survives, and our confidence in it is increased; but if
ever a new observation is found to disagree, we have to abandon or modify the
theory.”

Stephen Hawking?

The fields of artificial intelligence (Al) and intelligent design (ID) both
address intelligence. Intelligent design addresses the information observed
in nature beyond that explainable by undirected randomness. Artificial
intelligence has historically dealt with the mimicry of human intelligence.
But computer based artificial intelligence lies far from the creative ability
of the human mind. The limitations of computer creativity, as dictated
by the law of conservation of information and algorithmic information
theory (AIT) applied to computers, places a ceiling on the creativity both in
computer models of nature and of human intelligence. Computers, are able
in principle to execute any algorithm. There is something more happening
in observable nature and the human mind that has not, and probably cannot,

be explained by algorithms and computers.

281

282 Introduction to Evolutionary Informatics

The first seven chapters of this monograph have addressed issues
concerning ID. A primary conclusion is that there is no successful
model that explains the success of undirected Darwinian evolution. The
evidence against this possibility is drawn largely from the debunking of
computer models that claim evolutionary processes create information.
The limitations of the computer, as evidenced by Basener’s ceiling and
conservation of information, preclude creativity beyond that infused into
the program by the computer programmer. The same limitations are also
used to argue that computers will never be creative. There is a link here
worth exploring.

8.1 Turing & Lovelace: One is Strong and the Other
One’s Dead?®

Al is claimed to be achieved when a computer program passes the Turing
Test. But there is Strong Al and Weak Al, and success in passing the Turing
Test requires only Weak Al. Strong Al seeks a manmade machine capable
of displaying the intellectual abilities associated with humans. Weak Al
seeks only to mimic the human intellect. Strong Al seeks to duplicate it.

8.1.1 Turing’s failure

Alan Turing’s test* requires that a text chat with a computer fools us into
thinking that the computer is human. The Turing test only demonstrates
Weak Al. By the Church—Turing thesis, all modern computers are variations
of the Turing machine. Passing the Turing test today is impressive — but
not surprising. Computers are only getting faster — not smarter. Deep Blue
beating Garry Kasparov at chess and the computer program Watson winning
at Jeopardy! are examples of what computationally powerful computers
can do.

Alan Turing hoped that the computer would someday display all
the intellectual capabilities of humans.2-°> He investigated the science of
computation, hoping to show someday that man was nothing more than
a machine. Turing’s genius resonated with his motivation and he is today

8Turing lost his close friend Christopher Morcom to bovine tuberculosis while both were
still in their teens. Turing lost his faith in religion, embraced atheism, and began a quest to
show that human intelligence was a material phenomenon.

Intelligent Design & Artificial Intelligence 283

considered the father of modern computer science. His contributions are
taught to all computer science students. But Turing’s larger goal, to show
a computer is capable of matching man’s creative intellect, has failed.
Bringsjord, Bello and Ferrucci® summarize the current state of the Turing
Test nicely:

“[T]hough progress toward Turing’s dream is being made, it’s coming only on
the strength of clever but shallow trickery. For example, the human creators of
artificial agents that compete in present-day versions of [the Turing test] know all
too well that they have merely tried to fool those people who interact with their
agents into believing that these agents really have minds.”

When introducing conservation of information, we offered numerous
quotes at the beginning of Chapter 5 dismissing the dismissing the computer
as a creative agent. The statements are equally applicable to strong Al.
French philosopher and mathematician René Descartes expressed doubts
about strong Al as early as 1637:

“[WI]e can easily understand a machine’s being constituted so that it can utter
words, and even emit some responses to action on it of a corporeal kind, which
brings about a change in its organs; for instance, if touched in a particular part it
may ask what we wish to say to it; if in another part it may exclaim that it is being
hurt, and so on. But it never happens that it arranges its speech in various ways,
in order to reply appropriately to everything that may be said in its presence, as
even the lowest type of man can do.”’

Roger Penrose, probably best known for sharing credit with Stephen
Hawking for the Penrose—-Hawking Singularity Theorem governing the
physics of formation of black holes, also does not believe computers will
ever display Strong Al.8 Using Godelian arguments, Penrose argues that
humans have the ability to create beyond the ability of a computer. Godel’s
requirement states that consistent formal systems based on foundational
axiomatic rules, like the computer and its programs, are limited as to what
they can do. According to Penrose, humans surpass this limit with their
ability to innovate and create. Penrose believes there must be a materialistic
explanation and looks to quantum mechanics for an answer.

bHis conjecture does not concern so-called quantum computers. Quantum computers have
the same Al limitations as Turing machines.

284 Introduction to Evolutionary Informatics

If Penrose is right and we find out how to make machinery akin to what
is between our ears, strong Al might be possible. With current computers
and current models of quantum computers, however, that is almost certainly
not possible.

8.1.2 The Lovelace test and ID

If the Turing test doesn’t demonstrate Strong Al, what test does? Bringsjord,
Bello and Ferrucci® suggest the Lovelace test, named after Augusta Ada
King, the Countess of Lovelace.® The Countess is among those who believe
computers will never be creative. Her quote in Chapter 5.1 bears repeating:

“Computers can’t create anything. For creation requires, minimally, originating
something. But computers originate nothing; they merely do that which we order
them, via programs, to do.”

The criterion to establish computer creativity is named after her.d

The Lovelace test: Strong Al will be demonstrated when a machine’s
creativity is beyond the explanation of its creator.

Creativity should not be confused with surprise or the lack of an expla-
nation facility. Some of our own recent work in evolutionary development
of swarm intelligencel® displays surprising behavior but, in retrospect,
the results can be explained by examination of the computer program we
wrote. Layered perceptron neural networks!! lack embedded explanation

¢DOD’s Ada computer program is named after Ada Lovelace. Lovelace is considered by
some to be the first computer programmer.
d+ Here’s Bringsjord, Bello and Ferrucci’s more formal definition of the Lovelace test (LT):

DefLT | Artificial agent A, designed by H, passes LT if and
only if

e A outputs o;

e A’s outputting o is not the result of a fluke hardware
error, but rather the result of processes A can repeat;

e H (or someone who knows what H knows, and has H’s
resources — for example, the substitute for H might he a
scientist who watched and assimilated what the designers
and builders of A did every step along the way) cannot
explain how A produced o.

Intelligent Design & Artificial Intelligence 285

facilities, but behave in the manner the programmer intended. The Lovelace
test demands innovation and creativity beyond this level. In a Godelian
sense, strong Al must create beyond the developmental level allowed by
its foundational axioms, e.g. writing a great novel or proving the Riemann
Hypothesis without the creator of the machine setting up all the dominoes
to knock down.

Godelian computer limitations are also linked to the inability of Turing
machines to ever experience consciousness or free will.

“AIT [based on Gddel’s Theorem] and free will are deeply interrelated for a
very simple reason: Information is itself central to the problem of free will. The
basic problem concerning the relation between AIT and free will can be stated
succinctly: Since the theorems of mathematics cannot contain more information
than is contained in the axioms used to derive those theorems, it follows that no
formal operation in mathematics (and equivalently, no operation performed by a
computer) can create new information.”

“AIT appears to forbid free will not just in a Newtonian universe, or in a
quantum mechanical universe, but in every universe that can be modeled with
any mathematical theory whatsoever. AIT forbids free will to mathematics itself,
and to any process that is accurately modeled by mathematics, because AIT shows
that formal mathematics lacks the ability to create new information.” Douglas S.
Robertson!2

Robertson is appealing to the limitations of computers to only execute
algorithms. And the existence of free will, necessary to information creation
(e.g. creativity), is beyond the algorithmic capacity of the axiomatic abilities
of a Turing machine.

8.1.3 *“Flash of genius”

In Psychology of Invention,!® mathematician Jacques Hadamard® describes
his own creative mathematical thinking as wordless and sparked by mental
images that reveal the entire solution to a problem. Penrose agrees.* He
says mathematical solutions to complex problems can appear wordlessly in
his mind. It may take days to work out the details even though the solution
is clearly understood.

€Engineers and computer scientists will recognize the Hadamard transform.

286 Introduction to Evolutionary Informatics

The great mathematician Friedrich Gauss’ describes such an experi-
ence:

“Finally, two days ago, | succeeded not on account of my hard efforts, but by the
grace of the Lord. Like a sudden flash of lightning, the riddle was solved. | am
unable to say what was the conducting thread that connected what | previously
knew with what made my success possible.”

The Lovelace test was even imposed by the U.S. Patent Office for
a while. A “flash of creative genius9 was required for patentability."
Regarding patents, the Supreme Court ruled in 19411:

“The new device [to be patented], however useful it may be, must reveal the

flash of creative genius, not merely the skill of the calling. If it fails, it has not
established its right to a private grant on the public domain.”

A machine that exhibits the Supreme Court’s “flash of creative genius” or,
as Gauss called it, “a sudden flash of lightning,” displays Strong Al.

The flash of genius claimed by mathematicians Penrose, Gauss, and
Hadamard is also experienced by creative minds in the arts. According to
the Guinness Book of World Records, among the most recorded songs of
all time is Yesterday written by Paul McCartney and John Lennon.1® There
were over 1,600 versions of the song recorded. Paul McCartney, who wrote
the melody, was concerned he had not written the song.

“For about a month I went round to people in the music business and asked them

whether they had ever heard it [the melody to Yesterday] before. Eventually it

became like handing something in to the police. | thought if no one claimed it
after a few weeks then I could have it.”17

Songwriter extraordinaire Bob Dylan' similarly chronicles the flash of
genius experienced by composer Hoagie Carmichael who wrote the classic

fGauss’s namesakes are legion. They include (a) the Gauss (metric unit of magnetic field);
(b) Gaussian elimination (solving simultaneous linear equations); (c) Gauss’s Law for
magnetism (one of Maxwell’s equations); (d) Gaussian noise, and many more.

9Flash of Genius is the title of a book, later made into a movie, about the patent dispute
concerning the invention of the intermittent windshield wiper.

_hThe policy was eventually rejected by Congress in 1952.

'Bob Dylan was awarded the 2016 Nobel Prize in Literature “for having created new poetic
expressions within the great American song tradition.” He was given a special Pulitzer Prize
in 2008 for “his profound impact on popular music and American culture, marked by lyrical

Intelligent Design & Artificial Intelligence 287

song Stardust. When he first heard the recording of his composition, Hoagie
Carmichael said

“And then it happened. That queer sensation that this melody was bigger than me.
Maybe | hadn’t written it at all. The recollection of how, when and where and
how it happened became vague. As the lingering streams hung in the rafters in the
studio, | wanted to shout back at it ‘Maybe I didn’t write you. But | found you.”"18

Bob Dylan ends his account with agreement.

“l know just what he [Hoagie Carmichael] meant.”

Innovation that is neither anticipated nor explainable by the creator of
a computer program is required to pass the Lovelace test. Humans appear
to pass the Lovelace test in both mathematics and music. Turing machines
look to be incapable of passing the Lovelace test. Whether some other
manmade machine can do so is still an open question.

8.2 ID & the Unknowable

The creativity of the human mind and the design seen in nature have some-
thing in common. Computers look as if they are incapable of displaying the
creativity demanded by strong Al. And evolution can’t be simulated on a
computer so that new information is created. The computer only does what it
is programmed to do. Attempts by Darwinian proponents to model unguided
evolution in Avida, EV and Tierra have failed. Well-intentioned Tierra just
didn’t do what Darwinians thought it should do. Avida and EV work only
because the programmers had a specific goal in mind and designed the
programs to achieve the goal. In Chapter 6, we showed both Avida and
EV were infused with active information that eventually guaranteed their
success. And Basener’s ceiling prohibits creativity in computer evolutionary
models. An evolutionary program written to design an antenna will never
develop the ability to play championship chess. A separate evolutionary
program dedicated to chess would need to be written and the programmer
would need to set the chess-playing performance goals.

compositions of extraordinary poetic power”. In May 2012, Dylan received the Presidential
Medal of Freedom from President Barack Obama. He received the Nobel Prize in Literature
in 2016 for “for having created new poetic expressions within the great American song
tradition”.

288 Introduction to Evolutionary Informatics

8.2.1 Darwinian evolutionary programs have failed
the Lovelace test

There are those, like Roger Penrose, who agree that the human mind is
beyond the capability of the computer insofar as displaying strong Al,
but believe a materialist solution exists. None has yet been found. If the
mechanism driving the human mind is ever identified and reproduced
by technology, the impact on mankind will be unimaginable. Another
possibility is that the mechanism allowing creativity in the human mind
exists but, like Chaitin’s number, is unknowable.

In terms of computer modeling, the information product of evolution
looks to be a subset of strong Al. Conservation of information does not allow
the needed creativity for successful computer-modeled evolution. If this is
true, then there will never be an algorithm to explain evolution without a
guiding designer. All computers are Turing machines and Turing machines,
by definition, are capable of executing algorithms. Could a non-algorithmic
process behind evolution be unknowable?

8.3 Finis

This book started with a quotation from Gregory ChaitinJ-1° We repeat
it here:

“The honor of mathematics requires us to come up with a mathematical theory of
evolution and either prove that Darwin was wrong or right!” Gregory Chaitin

In this book, we have addressed Chaitin’s challenge and have concluded
mathematics shows that undirected Darwinism can’t work. An intelligent
designer is the most reasonable conclusion.

Thanks for listening.

Notes

1. D.E. Jelinski, “On the notions of mother nature and the balance of nature
and their implications for conservation.” In Human Ecology (Springer US,
2010), pp. 37-50.

2. S.W. Hawking and M. Jackson, A Brief History of Time (Bantam, 2008).

Iwho, interestingly, in harmony with the topic this chapter, wrote a book titled The
Unknowable.

10.

11.

12.

13.

14,
15.

16.

17.

18.

19.

Intelligent Design & Artificial Intelligence 289

Portions of this chapter were previously published in: Robert J. Marks I,
“The Turing Test Is Dead. Long Live the Lovelace Test.” Evolution
News & Views, July 3, 2014 http://www.evolutionnews.org/2014/07/the_
turing_test_1087411.html (URL date May 2, 2016).

A. Turing, “Computing machinery and intelligence.” Mind, 59(236), 433460
(1950).

P. Gray, “Computer Scientist: Alan Turing.” Time Magazine (March 29,
1999).

S. Bringsjord, P. Bello, and D. Ferrucci. “Creativity, the Turing Test, and the
(better) Lovelace test.” Minds and Machines, 11(3), pp. 3-27 (2001).

R. Descartes, Discourse on Method and Meditations on First Philosophy
('Yale University Press, New Haven & London, 1996), p. 3435.

R. Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and
the Laws of Physics (Oxford University Press, Oxford, 1999).

R. Penrose, Shadows of the Mind (Oxford University Press, Oxford, 1994).
S. Bringsjord, P. Bello, and D. Ferrucci, op.cit, p. 27.

W. Ewert, R.J. Marks Il, B.B. Thompson and A. Yu, “Evolutionary inversion
of swarm emergence using disjunctive combs control.” IEEE Transactions
on Systems, Man & Cybernetics: Systems, 43(5), pp. 1063-1076 (2013).

J. Roach, W. Ewert, R.J. Marks Il, and B.B. Thompson, “Unexpected
Emergent Behaviors From Elementary Swarms.” Proceedings of the 2013
IEEE 45th Southeastern Symposium on Systems Theory (SSST), Baylor
University, pp. 41-50 (2013).

Russell D. Reed and R.J. Marks I, Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks (MIT Press, Cambridge, MA, 1999).
D.S. Robertson, “Algorithmic information theory, free will, and the Turing
test.” Complexity, 4(3), pp. 25-34 (1999).

J. Hadamard, An Essay on the Psychology of Invention in the Mathematical
Field (Dover Publications, New York, 1954).

R. Penrose, op.cit.

United States Supreme Court, Cuno Engineering Corp. v. Automatic Devices
Corp., 314 U.S. 84 (1941).

Yesterday: http://www.beatlesbible.com/songs/yesterday/ (URL date May 2,
2016).

C. Cross, The Beatles: Day-by-Day, Song-by-Song, Record-by-Record
(Lincoln, NE: iUniverse, Inc. 2005).

B. Dylan on The Mystery of Creativity, YouTube, https://youtu.be/UpuQCK
JIfOM (URL date May 2, 2016).

G.J. Chaitin, The Unknowable (Springer, 1999).

9

APPENDICES
9.1 Acronym List
Al artificial intelligence
AIT algorithmic information theory
ASC algorithmic specified complexity
ASCII American Standard Code for Information Interchange
col conservation of information
DNA deoxyribonucleic acid
FOO frequency of occurrence

FOOHOA frequency of occurrence Hamming oracle algorithm
GB gigabyte

GUI graphical user interface

ID intelligent design

IEEE Institute of Electrical and Electronics Engineers
JPG Joint Photographic Experts Group

KCS Kolmogorov—Chaitin—-Solomonov (complexity)
LMC Ldopez—Ruiz, Mancini and Calbet (complexity)
NASA National Aeronautics and Space Administration
NEC Numerical Electromagnetics Code

NFLT No Free Lunch Theorem

PNG portable network graphics

PrOIR (Bernoulli’s) principle of insufficient reason
S4S search for the search

291

292 Introduction to Evolutionary Informatics

SETI Search for Terrestrial Intelligence

URL Uniform Resource Locator

URL date The latest date a web page was accessed

WD-40 water displacement, formulation successful in 40th attempt
XOR exclusive or

9.2 Variables

Here are the math variables used in this monograph and the section they
are first used. Usually, these variables are used in the sections marked with
a dagger () can be skipped by those not wishing to dig into the math.

a average 421

a distance 421

« real number 7.3.2

A pounds 5221
A algorithmic specified complexity 7.3

b bet 41221
b distance 4.2.1

B bits 2.2.1

BB busy beaver number 6.3.3

B pounds 5221
B set 7.3.2.1
c constant 221

C context 7.3

d distance 41.2.2.3
f probability density function 41223
F fitness 6.2.6

G number of logic gates 6.2.6

w height 74431
H Shannon entropy 41221
I self information 222

I, endogenous information 54.1

I, active information 54.2

Ig active information per query 54.2.2
Iy active information per mean query 5.4.2.2

Appendices 293

Is exogenous information 5.4.2

k integer 5.6.2.2
K KCS complexity 2.2.1

L length of a phrase in characters 5.2.3

¢, length of a program p in bits 2.2.1.1
M integer 41223
M Mmean 42.1

n integer 2.2.1

N integer 2.2.1

N number of characters in an alphabet 5.4.1

O Big O notation 2.2.1

Q search space 54.1

Q Chaitin’s constant 6.3.3

p program index 2211
p probability 2.2.2

g probability 5.4.2

p program index 2211
O number of queries 54.1

r circle radius 421

m pi=3.14159... 421
probability 5.8.3.3
S winnings 41221
T target 5.4.1

v volume random variable 41223
w width 7.4.43.1
W doubling rate parameter 41221
X string of characters, object 2.2.1

Y string of characters, object 221
9.3 Notation

Here is a list of notation and the section in which it is first used.
| -| absolute value 2.2.1

| -] number of elements in a set 54.1

(-) average 54221

= equality to within constant ¢ 2.2.1

c

L@

sum over all p

vector

XOR operation
single time step
shift down
shift right

Introduction to Evolutionary Informatics

2211

41221
5221

74421
74422
744272

INDEX

A

abductive inference, 3

Abraham, 21-24

absorbing states, 93

aby, 260

academia, 230

ACLU, 206

ACS, 255

active information, 1-2, 31, 42-43, 47,
49-50, 55-56, 72, 76-77, 86, 91, 100,
117, 120, 125, 130-150, 154-157,
163-164, 166, 171-174, 176, 178,
184, 188, 190, 192, 195, 197-198,
202-203, 209, 211, 217, 219-221,
226-227, 229-230, 232, 235-236,
241-243, 248-250, 252, 287, 292

active set method, 58

adaptive coordinate descent, 58

adit, 260

algorithmic information theory (see also
AIT), 18, 105, 231, 281, 285, 289, 291

algorithmic specified complexity (see also
ASC), 9, 18, 251, 255-258, 260-265,
269, 274-279, 291-292

alpha—beta pruning, 58

alphanumeric, 252, 257

alternating projections onto convex sets,
58

ant colony optimization, 58

antenna, 31-32, 43-45, 48, 60, 94, 135,
145, 287

181,

295

anthropic principle, 171, 181

antibiotics, 3

appendix, 52

Aristotle, 68-69

armadillo, 48

artificial immune system optimization, 58

artificial intelligence (see also Al), 62,
109, 117, 121, 245, 281-282, 291

artificial life, 96-98, 102, 244-248

ASCII, 258-261, 291

ash objects, 269, 277, 279

atheism, 282

auction algorithm, 58

average, 4, 23, 74, 76, 88-91, 107-109,
112, 120-123, 136-137, 147, 150-155,
161, 172, 177, 180, 198-199, 243, 254,
258, 292-293

Avida, 95-96, 100, 155, 160, 205-207,
209, 212-225, 227, 229-231, 241,
243-248, 287

B

backgammon, 167, 186

Barricelli, Nils, 4

Basener, 94, 102

Basener ceiling, 93, 95, 97-100, 230, 282
Basener, William F., 94

basketball, 112-118

Beck, William S., 187

beehive, 266, 272

296

Behe, Michael, 9, 26-27, 98-99, 102-103,
167
bell shaped distribution, 197
Berndt—Hall-Hall-Hausman algorithm, 58
Bernoulli, Daniel, 70
Bernoulli, Jakob, 70
Bernoulli’s principle of fluid dynamics, 70
Bernoulli’s Principle of Insufficient
Reason, 69-70, 100, 173
Bernoulli’s PrOIR (see also PrOIR),
70-72, 78-86, 90, 126, 130,
141-144, 168, 177, 193, 196,
269
Bernoulli PrOIR initialization, 163
Bertrand, Joseph, 78, 82, 101
Bertrand’s paradox, 78-80, 90, 173
Bible, 70-71, 254, 260
Big Bang, 3, 69-70
Bill of Rights, 206
binding site, 188, 190, 193, 196, 198, 201
blind chance, 31
biosphere, 96, 102
bit flip, 208
blackjack, 73
blind search, 31, 40, 58-59, 120-122, 124,
151, 154, 156, 172, 201, 226, 229-230,
243
blinker, 267, 271-272, 274, 276-277
block, 266, 271-274, 277
Blu-ray, 8-9, 26, 122
Blu-ray disc, 7
Bohr, Neils, 47
Boolean logic, 207, 209
Borel’s Law, 5
bounding box, 272
bovine tuberculosis, 282
Bradley, Walter, 61
branch and bound, 58
branch and cut, 58
branch and price, 58
Braveheart, 7-9, 26, 252
breeder, 269, 275, 278
Brillouin, Leon, 106, 181
Bringsjord, Selmer, 106, 181, 283-284,
289

Index

Broyden—Fletcher-Goldfarb—Shanno, 58
Buffon’s needle, 89-90, 92, 205, 243
busy beaver number, 231-235, 240, 292

C

Cambrian explosion, 95-97

card counting, 73, 101

Carmichael, Hoagie, 286-287

casino, 71, 73, 88

cellular automata, 265

Chaitin, Gregory, 1, 5-6, 10-11, 18, 28,
59, 163, 231-236, 238, 240-241,
248-249, 288-289
Chaitin’s metabiology, 22, 233-234
Chaitin’s number, 236-239, 288
Chaitin’s constant, 293

Champernowne Constant, 12

chaos, 93-94, 102

checkers, 55, 62, 128, 167, 186

chess, 55, 62, 67, 94, 167, 186, 230, 282,
287

Chesterton, G.K., 100

Chik-fil-A, 158

Church—Turing thesis, 282

classifier, 112-113, 115-118

codebook, 257-261, 263-264, 271-272,
276

coevolution, 109, 167-170, 182, 185-186

coevolutionary search, 167

combination lock, 132—-133

combinatoric explosion, 38

compression, 10-11, 254, 257, 259-260

computational intelligence, 8, 27, 60,
63-64, 118, 183

computer search, 29, 32, 43-44, 70, 100,
105, 107, 113, 187

computer-in-the-loop, 55

conjugate gradient, 58, 63, 173

conservation of information (see also
COQl), 2, 4, 22, 105-112, 120-121, 130,
140, 154, 156, 167-168, 170-171, 174,
182, 185, 187-188, 207, 243, 279, 281,
283, 288, 291

constrained optimization by linear
approximation, 58

Index

convergence with probability one, 88

cosmology, 70

covariance matrix adaptation evolution
strategy, 58

Cracker Barrel, 128-130

Cracker Barrel puzzle, 128-130, 138, 140,
230

Crick, Francis, 206

criss-cross algorithm, 58

criteria, 30

Croshy, J. L., 4

cross-entropy optimization, 58

crossover, 41, 152

cryptographic systems, 47

cuckoo search, 58

Curse of Dimensionality, 46

cybernetics, 8, 27, 66, 100-101, 182,
184-185, 244, 249, 279-280, 289

D

Darwin, Charles, 1, 5-7, 59, 61, 95, 102,
105, 160, 163, 167, 181, 245, 247, 249,
251, 288

Darwinian evolution, 1-5, 29, 45, 52, 55,
59, 94-96, 155, 161-162, 171, 181,
187-188, 190, 205-206, 227, 231, 233,
241-243, 246, 249, 282, 287
Darwin’s Black Box, 27

Darwinian idea, 4
Darwin’s law, 207
Darwinian process, 1
Darwinian proponents, 287
Darwinian search, 3
Darwinist(s), 95, 97-98, 156, 160, 187,

288

Davidon’s variable metric method, 58

Dawkins, Richard, 6

decompression, 257

dehydrated food, 10

Dembski, William A., 9, 26-27, 100-102,
182-186, 243, 248-250, 279-280

Descartes, René, 283, 289

297

design criteria, 29, 32, 35, 48, 51, 53

design criterion, 30, 32-34, 37, 39, 44, 48,
53-54, 56-57, 113

design parameters, 38, 4647, 227

detection probability, 53

detection theory, 53

determinism, 67, 99

deterministic, 67, 87-88, 93, 240

DevoLab, 231

dice (see also die), 71, 73-74, 76-78, 101,
229

dictionary, 184, 259-261

differential evolution, 58

digital evolution, 244

Digital Evolution Lab, 231

digital organism, 101, 189-190, 192-195,
213-214, 223-224, 243-246, 248-249

dinosaur, 99

diversity, 95-96, 98, 246, 248, 269

DNA (see also junk DNA), 27, 52, 61,
127,192, 249, 291

domain expertise, 29-32, 43, 47, 69, 130

dominoes, 285

doubling rate, 75-76, 293

Dover, 206-207

Dover Area School District in
Pennsylvania, 206

Dreyfuss, Richard, 160

Durston, Kirk K., 9, 27

dyadic, 17

Dylan, Bob, 286-287, 289

dynamical systems, 94

E

E. coli, 99

eagle strategy, 58

earth, 3, 95-96, 99, 123, 206

Edison, Thomas Alva, 30-31, 44, 60, 190

Ekeland, Ivar, 77, 101

elegant program, 11, 18, 256, 260

endogenous information, 22, 125-128,
130-133, 136-137, 140-142, 147-148,
160-161, 163, 172, 174, 176, 197, 219,
222, 229, 255, 292

298

English alphabet, 223

entropy, 75, 81-82, 185, 258

environmental pressure, 99-100

EQU, 212-213, 216-219, 222-226,
228-230

erinaceous, 260

Establishment Clause, 206

EV, 95, 188-205, 213, 217, 230, 243, 249,
287

Evita, 207

Evolnfo.org, 151-152, 185, 200, 219, 221,
223

evolution, 1, 2, 4, 27, 45

evolution of evolvability, 100

evolutionary algorithm, 134, 204-205

evolutionary computation, 43

evolutionary computing, 121, 155, 163,
247

evolutionary informatics, 1, 5, 47

Evolutionary Informatics Lab, 151

evolutionary process, 2, 4, 67, 87, 94, 100,
112, 155, 161, 187-188, 231, 233-234,
236, 240, 282

evolutionary program, 32, 41, 55, 58,
62, 67,90, 94, 109, 117, 135, 156,
160-161, 195, 199, 201, 204, 207,
209, 221, 287

evolutionary search, 29, 39-41, 43-45,
54-56, 59, 86-87, 109, 121, 135, 151,
153-156, 159, 180, 188, 195, 198-200,
203-204, 217, 219, 221, 245

evolutionary strategy, 58, 151, 199

Ewens, W.J., 242-243, 250

Ewert’s FOOHOA, 149-154, 236

Ewert, Winston, 97-98, 101-102,
149-150, 183-186, 229, 243, 249-250,
279-280, 289

exclusive or, 117, 292

exhaustive search, 58, 114, 235-236

exogenous information, 141, 148, 197, 293

expertise, 31

explanation, 284

extrapolation, 3, 6

eyelid, 8

Index

F

facilities, 285

fair coin, 11, 15, 20, 88, 122, 126, 138,
197-198

false alarm probability, 53

false negatives, 53

false positives, 53

features, 5, 41, 59, 113, 118, 217, 243,
246

fetal development, 52

Feynman, Richard, 97

Fibonacci search, 58, 64

financial engineering, 119, 183-184

firefly algorithm, 58

fitness landscape, 34-36, 42, 48, 56-58,
100, 156-158, 160, 234

fixed point, 68, 87, 90, 92-93, 205, 243

flagellum, 99

flash of genius, 27, 285-286

Fletcher—Powell method, 58

flora bacteria, 52

FOO Hamming oracle algorithm (see also
FOOHOA), 149, 291

football field, 68

Formula 409, 30, 60, 190

free will, 285, 289

frequency of occurrence (see also FOO),
149, 164, 258-261, 279, 291

frog, 66-67

functional information, 9

functional viability (see also transitional
functional viability), 68, 161-163, 213,
229

G

Godel, Kurt, 29, 231, 248, 283
Godel’s Theorem, 285
Godelian, 283, 285

Galapagos Islands, 3

Game of Life, 265-266, 268-271,
273-274, 276, 278, 280

garbage-in-garbage-out, 32

Gauss, Friedrich, 286

Index

Gaussian, 197, 286

generation, 198

Genesis, 21, 28, 69, 105

genetic algorithm, 58, 60, 64, 184,
241-242, 250

genome, 185, 188, 194, 201, 225

geology, 3

Gettysburg Address, 124

Gitt, Werner, 9, 26-27

glider, 268-270, 272-273, 275, 278

glider gun, 268-270, 275

global maximum, 56

glowworm swarm optimization, 58

God, 21, 23-24, 51

Goldberg, Rube, 188-189, 192, 194,
205

golden section search, 58

Goldilocks condition, 181, 230

Gould, Stephen Jay, 281

gradient descent, 58, 158

Gray, Sir James, 251

great deluge algorithm, 58

Grover’s algorithm, 48

grubs, 48

GUI, 151, 200, 291

Guinness Book of World Records, 286

guppy, 67

H

Hadamard, Jaques, 285-286, 289

Hadamard transform, 285

Hall, Monty, 140

halting oracle, 232-236, 238-239

halting problem, 232

Hamming distance, 146-149, 189-191,
194-195, 198-199

Hamming oracle, 145-152, 154, 185,
188-189, 191, 194, 198-199, 202, 220,
235-236, 249, 291

harmony search, 58

Hartleys, 20

Hawking, Stephen, 100, 281, 283, 288

hedgehog, 260

Heroes, 156

Holy Rollers, 73, 101

299

human intelligence, 281-282
Hume, David, 278, 280

IEEE, 6, 8, 27-28, 60-66, 101, 118,
181-186, 244-246, 249, 279-280, 289,
291

ill-conditioned, 3, 72

ill-posed, 3

image compression, 10

immune system, 52, 63

imperialist competitive algorithm, 58

implicit target information, 48

implicit teleology, 48

importance sampling, 90-91, 101

inductive, 3, 106

inductive inference, 3

inference, 3

inference to the best explanation, 3

information theory, 9
pragmatic information theory, 9

initialization, 43, 57, 69, 99, 120, 130,
138-140, 147, 155, 159-161, 173, 190,
205, 230, 270

insecticide, 167, 169

intelligent design, 2, 6, 50-51, 59, 62, 102,
119-120, 181, 206-207, 218, 235-236,
239, 249, 281, 288, 291

intelligent designer, 4, 51, 243

intelligent water drop optimization, 58

Internet, 2

interval halving, 19, 21-22, 23, 26, 33,
126, 238-240

intrinsic information, 255, 258, 261,
263-264

irreducible complexity, 9, 161, 167, 241

Island of Hising, 77

J

Jeopardy, 282

Jones, Judge John E., 206
JPG, 10-11, 291

jpg image compression, 10
Jupiter, 123

300

K

Karhunen-Loéve expansion, 105
Karmarkar’s algorithm, 58
Kasparov, Garry, 282
Keynes, John Maynard, 78-81, 101
Keynesian economics, 78
King James, 254
King James Bible (see also KJV),
260-261
Kirk, James T., 72
Knight, Nancy, 263
Kobayashi Maru, 72
Kolmogorov, Andrey Nikolaevich, 231
Kolmogorov complexity, 28
Kolmogorov—-Chaitin—-Solomonoff (see
also KCS), 10-15, 17-18, 26,
105, 251-258, 260-265, 270,
277, 291, 293
Kolmogorov sufficient statistics, 9
Kraft inequality, 15-18, 236-237, 257

L

Lake Superior, 123

Laplace noise, 62

Laplace, Pierre-Simon, 71

Laplace—Demoivre Theorem, 197

Larsen, Norman B., 30

law of large numbers, 73, 88-90, 99,
136-137

layered perceptron, 284

leaves, 13-17, 236-237

Leibnitz, Gottfried Wilhelm, 105

Lennon, John, 67, 100, 286

Lenski, Richard, 5, 59, 99, 103, 231,
243-244

Let’s Make a Deal, 140

Levenberg—Marquardt, 58, 173

Levinson coding, 276-277

Libbrecht, Kenneth, 263

limit cycles, 92-93

Lincoln, Abraham, 9, 124, 184

Linear, Quadratic, Integer and Convex
Programming, 58

Little League, 254

lizards, 52

Index

LMC information, 9

local maximum, 56-57

local minimum, 87, 206

loss of function, 52, 97-98, 103
lossless, 10-11, 18

lottery, 71, 73, 83, 86

Lovelace test, 181, 284-289
Lovelace, Lady, 105-106, 282, 284

M

M-theory, 70

MacReady, William G., 106-107,
180-183, 186

malaria, 98

man-in-the-loop, 55, 117-120, 190,
229-230

Mandarin, 7

Markov processes, 93

Marks, Robert, J. Il, 6, 26, 60, 62, 64-65,
93-94, 100-102, 118, 159, 181-186,
243, 248-250, 279-280, 288-289

Mars, 8-9

Marshall, John F.,, 119, 183-184

master tasters, 32

maximum entropy, 69

maximum uncertainty, 69

Maxwell’s equations, 286

maze, 68

McCabe, Joseph, 52, 61

McCartney, Paul, 286

mean, 82, 88-91, 136-137, 197, 219,
292-293

mean square convergence, 88

meaningful information, 2, 9, 252, 278

memory, 40, 43, 247

metabiology, 231, 234-236, 239-241,
243, 248

metallurgy, 87

meteor, 99

Meyer, Stephen C., 95-96, 102

Middle Ages, 77

Milky Way, 122-123

Minivida, 221-226, 228-229

Minsky, Marvin, 109, 117, 183

Mitchell, T.M., 106, 112, 180, 182, 186

Index

moldy pumpernickel, 37

monkey, 67, 121

Monty Hall problem, 140-141

Moore’s law, 47, 59

Morse code, 259

Mount Fuji, 2

Mount Improbable, 160-161, 167, 185

Mount Rushmore, 2, 9, 27

multi-objective design, 54, 60

multi-objective optimization, 54

multiagent search, 56-59

multiverse, 1, 5, 124

Murray, Bill, 160

mutation, 3, 29, 41, 43, 67, 87, 94, 98-99,
103, 152, 155-156, 158, 188, 199-200,
205, 220, 230, 238, 242-243, 245, 248
mutation distance, 163

mutually exclusive, 17, 85

N

NAND gate, 207-209, 210-213, 215-217,
222-224, 227

NAND logic, 101, 205, 209-213,
216-217, 243

NASA, 8, 27, 44-45, 60, 135, 145, 184,
291

National Science Foundation (NSF), 231

nats, 20, 174, 179

needle-in-a-haystack oracle, 147, 154

Nelder—-Mead method, 58

neural network, 62, 64-65, 101, 118-119,
183, 284, 289

Newton’s law of motion, 3

Newton, Isaac, 105, 285

Newton—-Raphson method, 58

Neyman-Pearson optimal detector, 53

No Free Lunch Theorem (NFLT), 105,
170, 180-182, 291

Nobel prizes, 1

noise, 6-9, 26, 86-87, 251-252, 286

non-algorithmic, 288

normal curve, 197

Norway, 77-79

NOT gate, 209-210, 213

nucleotide, 127, 189-200, 205

301

number, 236

number cruncher, 189, 193-199

Numerical Electromagnetics Code (NEC),
45, 61, 102, 135, 184, 291

(0]

Obama, Barack, 50, 286

Ofria, Charles, 5, 59, 231, 243-248

Olaf, 78-79

Olaf’s principle, 78-79

Olaf, King, 78

Olympic Swimming Pool, 123

on Turing machines, 231

one-at-a-time search, 58

optimization
multi-objective, 52

oracle, 22, 33, 38-41, 44-45, 145-146,
149-150, 157, 164, 185, 187, 195,
220-221, 223, 226, 234-236, 243

oscillator, 266-267, 269-270, 271-274,
277, 279

oxymoron, 69

P

panspermia, 206

Papoulis—Gerchberg algorithm, 105

parallel computers, 40

parallel universes, 70, 121, 124

parameters, 32

Pareto design, 54

Pareto front, 54

Pareto optimization, 51-52

Particle Swarm, 65, 173

particle swarm optimization, 58

partitioned search oracles, 243

pattern search, 58

penalty function artists, 167

Pennock, Robert, 5, 59, 207, 243, 245, 247

Penrose, Roger, 283-287, 289

Penrose—Hawking Singularity Theorem,
283

perpetual motion machine, 106

pinball, 68, 205-206

pink slip, 3

Pirate, 110-112

302

Planck time, 124

Planck volume, 124, 126

POCS, 58

Poker, 107, 261-262

Popper, Karl, 281

Portable network graphic (see also PNG),
10-11, 291

prefix free, 13-16, 234, 236-237, 259, 277

Presidential Medal of Freedom, 286

Principle of Indifference, 78

probability distribution, 76, 173, 177-178

probability mass function, 17, 81, 175

proportional betting, 73-77

protein-coding sequences, 52

Proximity Reward Search, 151

Proximity Reward Search (evolutionary)
algorithm, 152

puffer-type breeder, 269-270, 275

Pulitzer Prize, 286

punctuated equilibrium, 188, 202

Q

quantum computers, 47, 284
quantum computing, 47, 59, 283
quantum mechanics, 47, 87, 283
quantum tunneling, 5

quinine, 98

quizmaster, 19, 22-23, 38

R

random variable, 81-82, 87-88, 100, 136,
147, 161, 165-166, 219, 293

Ratchet Search, 147-148, 150, 154, 204,
221-222, 235-236

Ray, Thomas, 95-96, 98, 102

razor search, 58

Riemann hypothesis, 233, 285

righteous people, 21, 23-24

Robertson, Douglas S., 285, 289

rock-paper-scissors, 112

rockets, 52

Romney, Mitt, 50

Rosenbrock methods, 58

Rosetta stone, 7

Roulette, 71, 73-74

Index

Royal Flush, 262
Rubik’s cube, 157-158

S

salamander, 52, 98-99

Sanford, John C., 26, 102, 156, 185

Schaffer, Cullen, 106, 108, 112, 180, 182,
186

Schneider, Thomas, 5, 59, 188

Schrédinger’s equation, 87

search algorithm, 38, 43, 45-46, 56-59,
65, 77, 107-109, 111-112, 117-121,
134-136, 150-151, 153, 155, 157-158,
167, 172-173, 180, 187, 195, 199, 205,
220, 238

search-for-a-search (see also S4S), 55,
150-151, 171-174, 176-180, 219, 227,
291

search space, 36, 38, 40, 46, 49, 56-57,
70, 76-77, 80, 87, 107, 120-121,
125-128, 131, 138, 141, 144, 151, 155,
157-158, 160, 173, 175, 177-178, 293

self-information, 20, 255-256, 261, 276,
292

sequential unconstrained minimization
technique, 58

SETI, 2,292

Shakespeare, 121, 278, 280

Shannon, Claude, 8, 18, 20, 26, 28, 73-74,
101, 181, 188, 205, 251
Shannon entropy, 76, 292
Shannon information, 8-10, 18, 22,

26-27, 73, 81, 122, 252, 264

Shermer, Michael, 51, 61

Shor’s algorithm, 47

shuffled frog-leaping algorithm, 58

sickle-cell anemia, 98

simplex, 58, 65-66, 178

Simpson, George Gaylord, 187

simulated annealing, 58, 87, 101

Smorgashord, 56

smoking gun, 120

snake eyes, 229

snowflake, 262-265, 279

social cognitive optimization, 58

Index

Sodom, 21, 23

Solomonov, Ray, 231

solution concept(s), 169, 186

sophistication, 9

spaceships, 269-270

specified complexity, 9, 252

sorting networks, 167

source of knowledge, 4, 22, 41, 86, 109,
134,181, 199, 232, 241, 243

Spaceship, 267

specified complexity, 9, 27, 99-100, 253,
278

stairstep information, 160, 205, 163, 209,
216, 218

stairstep oracle, 220, 223, 225-226

Star Trek, 72

Starfleet Academy, 72

Starship Enterprise, 72

steepest descent, 63, 86

steiner tree, 184, 241-242

still life, 266-267, 269, 271-273, 278

stochastic hill climbing, 56-58, 147, 199,
201, 204-205, 220, 235, 240

Stone, W.C., 253

stop criterion, 43, 234

strange attractors, 92-93, 101

string theory, 1
string theorists, 5

subjacent query, 168-171

sumo wrestlers, 112-113, 115-118

sun, 8, 19, 123

sunset, 251

super powers, 156

Supply Side Academics, 230

Supreme Court, 286

survival of the fittest, 3, 41, 155-156, 180

SUV, 53-54

Sweden, 77-78

sweepstakes, 78, 83-86

T

Tabu Search, 58, 66
tautology, 69

telegraphy, 259

teleological, 4, 29, 33, 48, 187

303

teleological evolutionary process, 181

Tesla, Nikola, 30-31

test data, 118-119

Tetherball, 92-93, 243

Texas, 49-50, 100, 185, 249

thermodynamics, 3

Thomas, David, 6, 60, 119-120, 184, 241,
249

Thorp, 73-74

Tierra, 95-98, 102, 287

Titus, 70

toad, 267, 272

topology, 94

toy problem, 161

training data, 118-119

transitive property, 111

Tree Search, 58

truth table, 208-209, 212

trits, 20

Turing, Alan, 231-232, 248, 282,
288-289
Turing machine, 233-234, 240,

282-283, 285, 287-288

Turing test, 181, 282-284, 289

Twain, Mark, 84

Twilight Zone, 278, 280

Type | error, 53

Type Il error, 53

U

U.S. Patent Office, 286

unassisted search, 133-134, 164, 166

uniform distribution, 72, 76, 81, 86, 175

United States, 2, 60, 103, 206, 289

universe, 1, 3, 5, 69-70, 121, 123-124,
126, 234, 249, 285

universal information, 9

unknowable, 3, 17, 248, 254, 287-289

unknown, 7

V

validation data, 118
variance, 73, 197
\elcro, 8

Vietnam, 260

304

Viking 1 mission, 8
Vivisection, 192, 249

\W

walkie-talkies, 40
Washington, George, 9, 51
waterbed, 108-109, 133, 140
Watson, 282
WD-40, 30-31, 60, 292
wearable computer, 73, 101
Weasel ware, 151-152
Weasels, 6
Weiner, Norbert, 8
Whittaker—Kotelnikov—Shannon sampling
theorem, 105

Index

Wilf, H.S., 242-243, 250

windshield wiper, 8

Wolpert, David H., 106-107, 180-183,
186

X

X-band, 44, 60, 145
X-band antenna, 184
X-Men, 156

Xu, 260

z

Zamboni, 41
Zionts—Wallenius method, 58

	b2390-ch01
	b2390-ch02
	b2390-ch03
	b2390-ch04
	b2390-ch05
	b2390-ch06
	b2390-ch07
	b2390-ch08
	b2390-ch09
	b2390-index

