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An image is assumed to have a spectrum zero outside of a defined support. To avoid aliasing, the replicated
support due to sampling cannot overlap. The minimum sampling density corresponding to nonoverlapping
supports is the Nyquist density. Replication often necessitate gaps. Support shapes that fill the frequency plane
without gaps are tiles. We offer a strategy for achieving minimum sampling density when the spectrum is confined
to a subtile. Cookie cutter versions of the subtile shape, when rotated, translated, and/or flipped, result in a tile.
The composite signal can have symmetric redundancies that allow reduction of the sampling density to the area of
the subtile. We analyze the cases for tiles with twofold point symmetry and mirror symmetry. Two subtiles are
required to construct a tile. Threefold, fourfold, and sixfold symmetry is also considered. In the cases considered,
the overall sampling density in terms of the samples’ required storage is reduced to the area of the support of the
subtile. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.001322

1. INTRODUCTION

Shown in Fig. 1 on the left is an image x�~t � � x�t1, t2�.
We will call this image Ed & Ray. On the right is the average
of this image with its 180° rotation of the Ed & Ray image:
y�t1, t2� � 1

2 �x�t1, t2� � x�−t1, − t2��. Can we regain the
Ed & Ray image exactly by sampling the averaged image on
the right at half the sampling density of the original image
on the left? The surprising answer is yes if the support of
the Fourier transform of the image, e.g., the support of the
coherent or optical transfer function, conforms to certain prop-
erties [1]. The reason is that if samples of the combined images
are taken at the same density, only half the samples of the
composite image are required. Because of the symmetry of the
combined signals, samples taken of the right-hand plane of
the averaged image in Fig. 1 are the same as those taken on
the left-hand side of the averaged image.

Indeed, adding various rotations of images can decrease the
sampling densities by factors of 2, 3, 4, and 6. Exploring the
special cases where this applies is the topic of this paper.

2. FOUNDATION

To avoid aliasing in two-dimensional images, sampling must be
performed so there is no overlap in the replicated spectra in the
Fourier domain. Overlap results in aliasing upon sample inter-
polation [3]. A tile is defined as a shape that, when replicated,
fills the plane without spaces. Example tiles are rectangles,

parallelograms, and equilateral hexagons. A commonly used
shape that does not fill the plane is the circle. Unless the
support of the spectrum is a tile, there are undesired gaps in
the uniform replications. The Papoulis–Marks–Cheung
(PMC) approach [4] to sampling shows that by using a di-
vide-and-conquer approach, the sampling density can always
be reduced to the area of the support of the spectrum.

We propose an alternate approach applicable to some
cases where the support of the spectrum is on a subtile. Subtile
shapes, copies of which when appropriately replicated, rotated,
and transposed, form a larger tile that can fill the frequency
plane without gaps. The act of superimposing the subtile shapes
can result in a two-dimensional signal with redundancies in the
samples. Because of this redundancy, only a fraction of the
samples needs to be stored. Doing so can reduce the overall
sampling density to the area of the subtile.

We consider subtiles with twofold, threefold, fourfold, and
sixfold symmetry. The twofold symmetries considered are point
reflection symmetry and mirror symmetry. In all cases, the sam-
pling density can be reduced to the area of the subtile.

3. PRELIMINARIES

Using standard notation [5–7], the two-dimensional Fourier
transform of a two-dimensional image x�~t� � x�t1, t2� is

X �~u� �
Z
~t
x�~t�e−j2π~uT~td~t,
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where T denotes vector transposition, ~t � �t1, t2�T , ~u �
�u1, u2�T , d~t � d t1dt2, andZ

~t
�

Z
t1

Z
t2
:

A Fourier transform pair can be written as

x�~t� ↔ X �~u�:
The inverse Fourier transform is

x�~t� �
Z
~u
X �~u�ej2π~uT~td~u:

The image x�~t� is real if its spectrum is conjugately symmetric:

X ��−~u� � X �~u�: (1)

When a complex signal is sampled, two real numbers are
required to specify a single sample.

When rotated counterclockwise about the origin by an angle
of θ, the function X �~u� becomes X �Rθ~u�, where the rotation
matrix is

Rθ �
�

cos�θ� sin�θ�
− sin�θ� cos�θ�

�
: (2)

Rotating a function on the ~t plane results in its Fourier trans-
form also being rotated by the same angle:

x�Rθ~t� ↔ X �Rθ~u�: (3)

The Poisson sum formula that couples the replication of spectra
in ~u to sampling in ~t is [6]X

~n

X �~u − P~n� � j det Q j
X
~n

x�Q ~n�ej2π~uTQ ~n, (4)

where Q and P are related by an inverse transpose:

Q � P−T : (5)

A. Periodicity and Sampling Matrices

Let P denote a 2 × 2 periodicity matrix with periodicity vectors ~p1
and ~p2:

P � � ~p1 ~p2�:
An example of periodicity vectors for hexagonal replication is
shown in Fig. 2. If the hexagon apothem is W , then

~p1 � W
� ffiffiffi

3
p
1

�
and ~p2 � W

�
−

ffiffiffi
3

p
1

�
,

so the periodicity matrix is

P � W
� ffiffiffi

3
p

−
ffiffiffi
3

p
1 1

�
: (6)

The area of a tile is the sampling density. In this case the sam-
pling density is j det Pj � 2

ffiffiffi
3

p
W 2 samples per unit area.

The sampling matrix Q specifies the location of the samples
in the ~t plane and is related to the periodicity matrix by the
inverse transpose in Eq. (5). For the periodicity matrix in
Eq. (6), the sampling matrix is

Q � 1

2W

�
1ffiffi
3

p − 1ffiffi
3

p
1 1

�
: (7)

The sampling matrix can be interpreted in terms of sampling
vectors ~q1 and ~q2:

Q � �~q1 ~q2�:
For the sampling matrix in Eq. (7), the sampling vectors are

~q1 �
1

2W

� 1ffiffi
3

p

1

�
and ~q2 �

1

2W

�
− 1ffiffi

3
p

1

�
: (8)

These vectors, shown in Fig. 3, dictate locations of samples on
the ~t plane. Every sample location, shown as dots in Fig. 3, can

Fig. 1. Ed & Ray image, x�~t�, is shown on the left. On the right is
the average of the image and its 180° rotation [2]. Photo used with the
permission of the author. Fig. 2. Unshaded hexagon is replicated. The resulting periodicity

vectors are ~p1 and ~p2.

Fig. 3. Sampling vectors ~q1 and ~q2.
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be represented as integer weighted sums of the sampling vectors
m1~q1 � m2~q2 given by

Q ~m � m1~q1 � m2~q2,

where m1 and m2 are integers and

~m �
�
m1

m2

�
:

For a signal x�~t �, the samples corresponding to a sampling
matrix ofQ are x�Q ~m�. The integer assignments for each sam-
ple corresponding to the sampling matrix in Eq. (8) are shown
in Fig. 3. The integer pair �3, − 1�, for example, shows the
location of the sample at 3~q1 − ~q2.

The hexagonal sampling on the ~t plane in Fig. 3 corresponds
to the hexagonal spectral replication in the frequency domain in
Fig. 2. Note that, on the ~u plane, the flat side of the hexagon is
on the top and bottom, while in the ~t plane, the flat sides are on
the left and the right.

B. Sampling Theorem

A tile can be replicated over the entire ~u plane with no gaps. If
Y �~u� resides in one of the tiles, Fourier transforming the
Poisson sum formula in Eq. (4) gives

s�~t� :�
X
~n

y�Q ~n�δ�~t −Q ~n� ↔ j det Pj
X
~n

Y �~u − P~n�,

where j det Pj � 1∕j det Q j, δ�~t� � δ�t1�δ�t2�, where δ�t� is
the Dirac delta, and s�~t� is the image of samples. In the Fourier
domain, the sum

P
~nY �~u − P~n� is the unaliased replication

over the entire ~u plane. Multiply the Fourier transform of
the image of samples in the frequency domain by the mask
F C�~u� � j det Q j inside the tile and zero outside. The corre-
sponding convolution in the ~t domain gives the sampling theo-
rem expression for regaining the image from its samples [6]:

y�~t� �
X
~n

y�Q ~n�f C�~t −Q ~n�, (9)

where

f C�~t� ↔ F C�~u�:
The interpolation function perfectly interpolates, since for any
pair of integers k1 and k2 in a vector ~k,

f C�Q~k� �
�
1 ; k1 � k2 � 0
0 ; otherwise

:

This relation reduces Eq. (9) to an identity when ~t � Q ~m. We
see this interpolation function property in one dimension
where the sampling theorem is

x�t� �
X∞
n�−∞

x
�

n
2B

�
sinc�2Bt − n�,

where sinc�t� � sin�πt�∕�πt� and the spectrum of x�t� is zero
outside of the bandwidth support −B < u < B. Akin to
Eq. (10), the sinc is a perfect interpolation function, because
for integer k we have sinc�k� � 1 for k � 0 and is otherwise 0.

We can also pass the image of samples through a mask cor-
responding to a subtile, S. Define FS�~u� � j det Q j inside a
subtile and zero outside. If, inside the subtile, Y �~u� � X �~u�,
then

x�~t � �
X
~n

y�Q ~n�fS� ~t −Q ~n�, (10)

where

fS�~t� ↔ FS�~u� (11)

is the interpolation function. In the ~u plane,

FS�~u� �
� j det Q j ; ~u ∈ S
0 ; otherwise:

:

Thus,

fS�~t � � j det Q j
Z
~u∈S

e−j2π~uT~td~u: (12)

The function fS�~t � is not a perfect interpolation function. The
sample at one point can contribute to the interpolation at other
sample locations.

C. Aliasing

Aliasing can occur when undersampling [8–10] below the
Nyquist density. To avoid aliasing, classic sampling theory re-
quires choice of a periodicity matrix P that replicates a support
region so there is in no overlap among the replicated spectra.
When a support region is a tile, the minimum sampling density
occurs when there is maximal packing of the spectral support
with no gaps.

As already noted, a circle is not a tile. Maximally packed
nonoverlapping circles form a hexagonal pattern that contain
gaps. Another gap example is a spectrum confined to an equi-
lateral triangle. Each side of the triangle is of length 2 W. A
replication is shown in Fig. 4. No matter what the chosen
method of replication, there are significant gaps when overlap-
ping is prohibited. If the triangle is of width 2 W on all three
sides, the hexagonal periodicity matrix for the replication in
Fig. 4 is

P � W
2

�
3 −3ffiffiffi
3

p ffiffiffi
3

p
�
: (13)

The corresponding hexagonal sampling density on the ~t plane
in samples per unit area is therefore

Fig. 4. Spectrum of a two-dimensional signal is zero outside an
equilateral triangle. For unaliased sampling, the spectrum must be
replicated so there is no overlap. There exists no technique for such
replication without gaps.
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j det Pj � 3
ffiffiffi
3

p
W 2

2
: (14)

The PMC approach [4] shows that nonuniform sampling can
reduce the overall sampling density to the area of the support of
the image spectra. Thus, if the support of an image’s spectrum
is identically zero outside a circle of radius W , then a sampling
density of the corresponding image can be reduced arbitrarily
close to πW 2 samples per unit area [11–13]. The PMC ap-
proach exploits the required spectral gaps that occur when sam-
pling multidimensional signals. The spectrum is sliced into
narrow bands. Each slice is sampled separately. Some bands
are zero and do not need to be sampled. By discarding these
empty bands, the overall sampling density is reduced ultimately
to the area of the support of the spectrum [14]. The PMC
approach can be used to reduce the sampling rate for equilateral
triangle support to its area

ffiffiffi
3

p
W 2. This is two-thirds of the

uniform sampling density in Eq. (14).

4. SAMPLE OVERLAP IN FUNCTIONAL
ROTATION

An alternate approach to the PMC approach can apply when
the image spectral support is a subtile. A subtile is a shape whose
multiple copies can be rotated, shifted, and transposed into a
tile. These versions of the original image are correspondingly
added and sampled. Redundancy of samples of the summed
images allows sample decimation. The original subtile image
can be reconstructed from the samples remaining.

The subtiles must be such that the samples of the rotated
signal lie on top of the samples of the unrotated signal.
Consider the signal x�~t�. The samples are at x�Q ~m�. We
now rotate the function to x�Rθ~u� and sample using the same
sampling matrix Q . The result is x�RθQ~k�, where ~k contains
only integers. The samples of the rotated signal and the original
signal are required to coincide. This happens when

Q ~m � RθQ~k

and both ~m and ~k consist of only integers. Equivalently,

~m � Q −1RθQ~k: (15)

If ~k contains only integers, a necessary condition for ~m to con-
tain only integers is that the matrix

M � Q −1RθQ (16)

contains only integers.
Often the coinciding of signal samples and the samples of

the signal rotations is geometrically obvious. For example,
rotating a regular hexagon 60° results in an identical hexagon.

5. TWOFOLD SUBTILES WITH POINT
REFLECTION SYMMETRY

Examples of tiles with point reflection symmetry are shown in
Fig. 5. Subtiles are shaded. Rotating the subtile 180° about the
origin completes the tile.

The equilateral triangle is an example of a subtile of a par-
allelogram. An equilateral triangle, shown shaded in Fig. 6,
is marked t on top and l and r on the left and the right.

The triangle is a subtile since it can be flipped to form the par-
allelogram tile outlined with a bold line. If the image spectrum
inside of the shaded triangle is X �~u�, then the rotated triangle
can be written as X �R180°~u� where the 180° rotation matrix is

R180° �
�
−1 0
0 −1

�
� −I: (17)

As is the case with any of the point reflection tiles, a tile support
is formed by a 180° rotation of the subtile. The image spectrum
inside the tile is then

Y �~u� � X �~u� � X �R180°~u� � X �~u� � X �−~u�: (18)

Outside the tile Y �~u� � 0.

A. Sample Redundancy

To reduce the sampling density, advantage is taken of the
redundancy of the samples of y. Since

x�−~t� ↔ X �−~u�,
the inverse transform of Eq. (18) is

y�~t� � x�~t� � x�−~t�: (19)

The y image is therefore formed by rotating x by 180° and
adding the images. This is illustrated in Fig. 1. The sum is
redundant since

y�~n� � y�−~n�: (20)

In the example in Fig. 1, the redundancy in the composite im-
age is obvious. Only half the sample needs to be taken. Because
of the symmetry of the composite image y, only half the sam-
ples are therefore required to define y�~t� and therefore x�~t�.

Fig. 5. Tiles with point reflection symmetry: hexagon, parallelo-
gram, and rectangle. Subtiles are shown shaded.

Fig. 6. Triangle support replication.
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B. Equilateral Triangle Example

For the equilateral triangle subtile shown shaded in Fig. 6, the
completed spectrum tile has the support of a parallelogram with
periodicity matrix

P �
�

1 −1ffiffiffi
3

p ffiffiffi
3

p
�
W : (21)

The corresponding sampling matrix is

Q � P−T � 1

2W

�
1 −1
1ffiffi
3

p 1ffiffi
3

p

�
: (22)

Because of the symmetry of the samples in Eq. (20), only half
the samples y�Q ~n� need be stored. Two obvious sampling
geometries are shown in Fig. 7. An additional four sampling
geometries are in Fig. 8. In all cases, the entire plane is filled

when the array of samples is rotated 180° and added to the
original array.

Since only half the samples are used in the composite image,
the sampling density is reduced by a factor of a half to

ffiffiffi
3

p
W 2,

which is the area of shaded triangle in Fig. 6.
To find the interpolation function to reconstruct x�~t� from

the samples y�Q ~n�, define the subtile S on the ~u plane as the
shaded equilateral triangle mask in Fig. 6. The interpolation
function is then Eq. (12). Then the series in Eq. (10) can
be used to regain the function x�~t� from its samples.

C. Summary

Here is a summary. Given an image x�~t� whose spectrum is zero
outside the equilateral triangle, the sampling steps are as
follows.

1) Add the original image to a 180° version of the
same image.

• This forms y�~t� from x�~t� in Eq. (19), as illustrated
in Fig. 1.

• The composite image, y�~t�, is redundant in that half
of the averaged image can be used to reconstruct the other half.

2) Sample the image. Only half the samples need to be
stored because of the image’s redundancy.

• Use the sampling matrixQ in Eq. (22) corresponding
to the parallelogram tile shown in Fig. 6.

• As illustrated in Fig. 1, only half of the samples are
needed to define the whole image.

• Although sampling is performed at high density, only
half of the samples need to be stored. The overall sampling den-
sity is therefore reduced by a factor of 2.

For restoration:

1) Using the redundancy of the composite image, use the
known stored samples to fill in those not stored.

2) Pass all the samples through a mask (filter) shaped like
the equilateral triangle in Fig. 6.

• The mask is equal to j det Q j in the equilateral tri-
angle and zero otherwise.

• In the ~t plane, samples are interpolated using the con-
volution in Eq. (10).

• The interpolation function, given in Eq. (12), is
weighted by each sample and the results summed. In the tradi-
tional 1D sampling theorem, the interpolation function is a
sinc [15,16].

3) The result is the original image x�~t�.
4) The sampling density required to restore the image is

the area of support, e.g., the area of the triangle.

For the examples to follow, a similar procedure is followed.

D. Relation to Frequency Multiplexing

There is a relationship between subtile sampling and frequency
domain multiplexing. Consider the left two images in Fig. 9.
The leftmost image is Ed & Ray. The image Toes is in the
middle. Assume Ed & Ray’s image spectrum is zero outside
the shaded equilateral triangle in Fig. 6 and the Toes image
is zero outside the unshaded inverted equilateral triangle that

Fig. 7. Two obvious sampling geometries when y�Q ~n� � y�−Q ~n�,
where Q is given in Eq. (22). Left: half plane sampling. Right: vertical
sampling. Here and in similar subsequent figures, samples are taken in
the middle of each small shaded shape, in this case a hexagon. The
origin is colored solid black. The t1 axis goes to the right and the
t2 axis up.

Fig. 8. Six additional sampling geometries when y�Q ~n� �
y�−Q ~n�, where Q is given in Eq. (22). Clockwise from upper left:
diagonal, spiral, pie slice, flowers, triple spiral, X geometry.
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completes the parallelogram in Fig. 6 [17]. The two images are
therefore block orthogonal in the Fourier domain. This allows
sampling of the averaged image shown on the right of Fig. 9 at
the Nyquist density dictated by the parallelogram tile support
in Fig. 6. From the stored samples, both Ed & Ray and Toes
can be individually restored from the samples of the averaged
images. The Ed & Ray image is regained by processing all of the
samples through the shaded equilateral triangle in Fig. 6. The
Toes image results from using the inverted equilateral tri-
angle mask.

In the same sense, for subtile sampling using the 180°
rotation, both the original and inverted image can be individu-
ally constructed using all of the image samples. Fortuitously, the
image samples of the averaged image overlap in such a manner
that only half the samples are required.

E. Conjugate Subtile Sampling

A signal whose spectral support is the equilateral triangle in
Fig. 6 is necessarily complex. The signal does not comply with
the necessary conjugate symmetric requirement in Eq. (1). The
composite signal Y �~u� in Eq. (18) is also not conjugately sym-
metric. The signal y�~t� is therefore also complex.

We can redo the same problem so that the composite image
is real and only one number per sample is required. We now
show that doing so results in the requirement of the same num-
ber of samples per unit area.

Consider again the same equilateral triangle example where,
instead of Eq. (18), the conjugate of the subtile signal is rotated.
In lieu of Eq. (18), define

Z �~u� � X �~u� � X ��−~u�: (23)

The function Z is now conjugately symmetric:

Z �~u� � Z ��−~u�:
Consequently, z�~t� is real [6]. Since

x��t� ↔ X ��−~u�, (24)

the inverse Fourier transform of Eq. (23) is

z�~t� � x�~t� � x��~t� � 2xR�~t�, (25)

where xR�~t� is the real part of x�~t�. There is no longer redun-
dancy in samples of z�~t�. All samples are now needed to recon-
struct x�~t�.

We note, though, that the nonconjugated rotation
samples in the previous example were complex. Therefore, each
sample required two numbers, i.e., the real and imaginary

components. In the current example, real samples are taken
using the sampling matrix Q in Eq. (22) and every sample
is required. But since only a single number is required for each
real sample, the sampling densities for the two equilateral
triangle sampling examples are the same [18].

The original image x�~t� is regained from samples of z�~t�
using

x�~t� �
X
~n

z�Q ~n�f S�~t −Q ~n� � 2
X
~n

xR�Q ~n�f S�~t −Q ~n�,

where the interpolation function f S�~t� is given in Eq. (12).
The support S is the yellow shaded equilateral triangle
in Fig. 6.

6. TWOFOLD SUBTILES WITH MIRROR
SYMMETRY

Another class of tiles includes those that display mirror sym-
metry. Examples of tiles with mirror symmetry are shown in
Fig. 10. If the spectrum X �~u� is totally contained in the subtile
where the u2 axis acts as the mirror, the completed tile is

Y �~u� � X �u1, u2� � X �−u1, u2�:
The inverse Fourier transform is

y�t1, t2� � x�t1, t2� � x�−t1, t2�:
Note the symmetry

y�t1, t2� � y�−t1, t2�:
A sample of y taken from the right half plane is identical to the
mirror sample in the left half plane. Because of the redundancy,

Fig. 9. On the left is the image of Ed & Ray [2]. This is averaged with the middle image, Toes, to form the averaged image shown on the right.
Photo credit for Toes: the author Robert J. Marks II.

Fig. 10. Four example tiles with mirror symmetry. The subtile for
each is shaded.

Research Article Vol. 36, No. 8 / August 2019 / Journal of the Optical Society of America A 1327



only one of the samples needs to be stored. Some possible sam-
pling geometries are shown in Fig. 11.

The interpolation function in Eq. (10) is applicable here for
the case of the equilateral triangle.

7. FOURFOLD SYMMETRY SUBTILES

The puzzle piece shown shaded in the first quadrant of Fig. 12
is a fourfold symmetric subtile of a square tile. Call the function
within this puzzle subtile X �~u�. A square tile is formed by add-
ing four versions of the puzzle piece to form

Y �~u� � X �~u� � X �R2~u� � X �R3~u� � X �R4~u�: (26)

The rotation matrices, subscripted by quadrants, are

R2 �
�
0 1
−1 0

�
; R3 �

�
−1 0
0 −1

�
; R4 �

�
0 −1
1 0

�
:

(27)

Using the notation in Eq. (2),

R2 � R90°, R3 � R180°, R4 � R270°:

The periodicity matrix for the square tile in Fig. 12 is
rectangular,

P � 2W
�
1 0
0 1

�
,

and the sampling matrix is

Q � 1

2W

�
1 0
0 1

�
: (28)

We note that the M matrix in Eq. (16) contains all integers
for R2, R3, and R4. The samples of all rotated versions of
the signal thus coincide. This is trivially obvious from the
square sampling geometry. Rotate a square once, twice, or three
times and you get a square.

Equivalently, we can write Eq. (26) as

Y �u1, u2� � X �u1, u2� � X �u2, − u1�
� X �−u1, − u2� � X �−u2, u1�: (29)

There is fourfold symmetry in Y :

Y �u1, u2� � Y �−u1, u2� � Y �u1, − u2� � Y �−u1, − u2�:
The corresponding inverse transform of Eq. (29) preserves this
symmetry:

y�t1, t2� � x�t1, t2� � x�t2, − t1� � x�−t1, − t2� � x�−t2, t1�:

Specifically,

y�t1, t2� � y�−t1, t2� � y�t1, − t2� � y�−t1, − t2�:
Only a fourth of the samples of y are therefore needed.
Sampling in a single quadrant is an obvious solution. Sampling
geometries are shown in Fig. 13. Only samples in the darker
regions are needed. The origin in each case is a black square.
The stored samples, when rotated 90°, 180°, and 270° will
supply sample values at all points in the plane.

A. Puzzle Piece Conjugate Subtile

Reconsider the same puzzle piece problem in Fig. 12, except
conjugation is used to assure conjugate symmetry and therefore
a real image. The sampling density can be reduced, but not as
much as in the previous example.

In lieu of Eq. (26), define

Z �~u� � X �~u� � X �R2~u� � X ��R3~u� � X ��R4~u�, (30)

where the rotation matrices are given in Eq. (27). We can
rewrite Eq. (30) as

Z �u1, u2� � X �u1, u2� � X �u2, − u1�
� X ��−u1, − u2� � X ��−u2, u1�: (31)

Note that

Z �~u� � Z ��−~u�,
so that z�~t� is real. Since

x�t2, − t1� ↔ X �u2, − u1�,
we see that

2xR�t2, − t1� ↔ X �u2, − u1� � X ��−u2, u1�,
so that the inverse Fourier transform of Eq. (31) is

z�t1, t2� � 2xR�t1, t2� � 2xR�t2, − t1�: (32)

There is no directly useful symmetry as before, but note that
Eq. (32) can recursively be written as

Fig. 11. Four sampling sceneries for twofold mirror symmetry. The
bottom right best illustrates the mirroring nature of the sampling
geometry.

Fig. 12. Four puzzle pieces form a fourfold symmetry.
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2
664

z�t1, t2�
z�t2, − t1�
z�−t1, − t2�
z�−t2, t1�

3
775 � 2

2
664
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

3
775
2
664

xR�t1, t2�
xR�t2, − t1�
xR�−t1, − t2�
xR�−t2, t1�

3
775:

The matrix of 1s and 0s is singular with rank three. We there-
fore have a redundancy. For example,

z�−t2, t1� � z�t1, t2� − z�t2, − t1� � z�−t1, − t2�:

Any given sample can then be found from a linear combination
of three other samples. One possible sampling geometry is
shown in Fig. 14. Samples in the lighter yellow region can
be calculated by samples in the darker green region and there-
fore need not be stored.

The sampling density for the rectangular grid is SD �
1∕�2W �2. The sampling geometry for the conjugate puzzle
as exemplified in Fig. 14 reduces the sampling density
3SD∕4 real numbers per unit area. For the nonconjugated ex-
ample, each sample is complex and the sampling density is 2SD
real numbers per unit interval. Sampling schemes of the type
illustrated in Fig. 13 reduce the number of samples by a factor

of 1/4. The overall density is therefore SD/2 real numbers per
unit interval. This is a lower density than the conjugate case.

8. THREEFOLD SYMMETRY SUBTILES

Threefold symmetric subtile periodicity is illustrated in the art
of M. C. Escher, as shown in Fig. 15. Here we curiously can
apply wordplay that Escher’s reptiles are subtiles. Three iden-
tical reptile subtile shapes related by 	120° form a strangely
shaped tile able to periodically fill the plane without gaps.

Another example of threefold symmetry is illustrated in
Fig. 16. Shown is a hexagon with an apothem ofW . As shown,
the hexagon is divided into three subtiles. The signal X �~u� is
confined to the lightly shaded irregular hexagon on top. The
origin is in the centroid of the hexagon. The spectrum X �~u�
is rotated twice, once by −120° and then by �120°, to form
the two spectra X �R	120°�, where the rotation matrices are

R	120° �
�

cos 120° 	 sin 120°

 sin 120° cos 120°

�
� 1

2

�
−1 	 ffiffiffi

3
p


 ffiffiffi
3

p
−1

�
:

The composite spectra shown in Fig. 16 fill the hexagon and
can be written as

Y �~u� � X �~u� � X �R−120°~u� � X �R120°~u�:
Because of the threefold symmetry, only a third of the samples
corresponding to Q need to be stored. Example sampling
geometries are shown in Figs. 17 and 18. Samples are taken

Fig. 14. Samples in the light yellow region can be found from a
linear combination of three other samples. The three red boxes show
four samples. The sample in any one of the red boxes can be found
from a linear combination of the other three.

Fig. 15. Threefold subtile symmetry in the art of M. C. Escher
[19]. To characterize only using rotation, the origin can be chosen
at the point where the three left rear legs meet at the rightmost tip
of the right toe.

Fig. 13. Some sampling sceneries for the puzzle piece subtile prob-
lem in Fig. 12. Samples are taken in the center of the darker or shaded
square areas. The origin is shown as a black square. The upper left
shows a sampling geometry. The upper right shows the corresponding
geometry color coded. The bottom left shows a piecewise linear sam-
pling approach, and the bottom right is a spiral sampling pattern. The
sampling matrix for these geometries used the sampling matrix Q in
Eq. (28).

Fig. 16. Hexagon divided into three subtiles. The spectrum X �~u� is
constrained to be in the top subtile. The spectrum X �~u� is rotated by
	120° to fill out the hexagonal support.
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at the center of each hexagon, and the black hexagon denotes
the origin. To obtain all the samples of y, the values of these
samples are rotated 	120° to determine every sample in
the plane.

The periodicity matrix for the regular hexagon is given in
Eq. (6). The overlapping of sample locations on the hexagonal
grid is geometrically obvious but can be confirmed using
Eq. (16). Use the sampling matrix in Eq. (7) and the periodic
matrix in Eq. (6). The sample locations overlap because the
matrices

M120° � PTR120°Q �
�
0 1
−1 −1

�

and

M−120° � PTR−120°Q �
�
−1 −1
1 0

�

contain only integers.
Define the region S as the irregular hexagon subtile in

Fig. 16 where X �~u� resides. Interpolation then follows from
Eq. (10) where the interpolation function is given by Eq. (12).
Since the periodicity matrix P for the regular hexagon is given
in Eq. (6), we use

j det Q j � 1

j det Pj �
1

2
ffiffiffi
3

p
W 2

: (33)

9. SIXFOLD SYMMETRY

Six copies of the kite-shaped subtile in Fig. 19 form a hexagon.
The subtiles are rotated 	60°, 	120°, and 180°. The 	60°
rotation matrices are

R	60° �
1

2

�
1 	 ffiffiffi

3
p


 ffiffiffi
3

p
1

�
:

The 180° rotation matrix is the negative of the identity matrix.
All of these rotations give anMmatrix of integers. For example,

M60° � PTR60°Q �
�
1 1
−1 0

�

and

M−60° � PTR−60°Q �
�
0 −1
1 1

�
:

The samples of all the rotated subtiles therefore will overlap.

A. Rotation

The combined rotations have a spectrum inside the hexagon of

Y �~u� � X �~u� � X �R60°~u� � X �R−60°~u�
� X �R120°~u� � X �R−120°~u� � X �−~u�: (34)

The signal y�~t� containing superposition of six rotations of x�~t�
therefore has the sixfold symmetry:

y�~t� � y�R60°~t� � y�R−60°~t� � y�R120°~t�
� y�R−120°~t� � y�−~t�:

Only one-sixth of the samples are required. Two possible sam-
pling geometries are shown in Fig. 20.

Fig. 17. Possible sampling geometries for the threefold symmetry of
the spectrum shown in Fig. 16. Samples are taken at the center of each
hexagon. Only samples in the red region are needed. Other samples are
obtained by 	120° rotations.

Fig. 18. More examples of sample locations for threefold symmetry.
Any set of samples in any shaded area suffices to characterize the sam-
ples of the entire plane.

Fig. 19. Six kite-shaped subtiles form a hexagon.

Fig. 20. Two possible sampling geometries for sixfold symmetry.
The left shows a broken pie slice. On the right is a broken spiral.
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B. Conjugation

The samples taken in the case above are complex. The same
sampling density can be achieved with real samples if the
rotations are appropriately conjugated to give a composite real
image. In lieu of Eq. (34), let

Z �~u� � �X �~u� � X ��−~u�� � �X �R120°~u� � X ��R−60°~u��
� �X �R−120°~u� � X ��R60°~u��: (35)

The six spectrum components are shown here as three brack-
eted doublet terms. The terms are paired so that a kite is
accompanied by the conjugate of its point symmetric reflection.
Since there is conjugate symmetry,

Z �~u� � Z ��−~u�,
we are assured that z�~t� is real. Using Eq. (24) and Eq. (3),

z�~t� � 2�xR�~t� � xR�R120°~t� � xR�R−120°~t��:
The signal z�~t� has threefold symmetry:

zR�~t� � zR�R120°~t� � zR�R−120°~t�:
Thus only a third of the (real) samples need be taken. The sam-
pling geometries in Figs. 17 and 18 are examples of sampling
strategies applicable for this case.

C. Interpolation

The sampled images in Sections 9.A and 9.B are both regained
by restoring values to the empty sample locations and using the
formula in Eq. (10), where S is the kite-shaped region labeled
X �~u� in Fig. 19. The value of j det Q j is in Eq. (33).

10. CONCLUSIONS

Images with support contained in subtiles can be used to reduce
the density of stored samples required to characterize an image.
We have analyzed twofold subtile symmetry for the cases of
point reflection symmetry and mirror symmetry. The overall
sampling density is shown to be reduced to the area of the
subtile, which is half of conventional Nyquist sampling density.
Threefold, fourfold, and sixfold subtile symmetry were simi-
larly shown to reduce the sampling density by a third, a fourth,
and a sixth.

A. Notes

Here are some takeaways.
As illustrated in Eq. (25), subtile sampling can allow real

samples to represent complex images.
When analyzing the support of an image’s spectrum, con-

ventional analysis, by default, goes to the best fitting tile when
considering sampling options. Such an approach gives rise to
oversampling replications, as illustrated in Fig. 4. With the
methodology presented, fitting the best subtile rather than
the best tile to the image spectral support is now an option.

Subtile sampling theory is not as general as the PMC
approach, but is more easily applied when applicable.

We also note that so-called compressed sampling, claiming
effective sampling techniques below the Nyquist density, have
been proposed but questioned [20].

B. Generalization

The analysis of subtile sampling we present is far from com-
plete. We have presented no overarching theory but have only
demonstrated application to specific cases. Even the cases
discussed are not exhaustively examined. What happens in
Fig. 19 when the kite immediately to the right of the kite la-
beled X �~u� � X �u1, u2� is characterized by the transposition
X �−u1, u2� rather than a rotation X �R−60°~u�? And what if this
transposition were conjugated? Likewise, we have considered
only the case of subtile rotation. The approach can be extended
to cases where there is both subtile rotation and translation.

The rotations considered herein are constrained to cases
where subtile rotation corresponds to sample location rotation
where the original and rotated samples coincide. Is there a gen-
eralization where the samples need not coincide? Of math-
ematical interest is pentagon tiling in response to Hilbert’s
18th problem [21]. Reinhardt, in 1918, discovered five classes
of pentagons that tile the plane [22]. Kershner found three
more in 1968 [23]. Richard James found another in 1975
[24]. Amateur mathematician Marjorie Rice added another
[25,26]. Using a computer search, Mann et al. recently discov-
ered the 15th pentagon tiling solution [27,28]. Their tiling is
shown in Fig. 21, where a tile is composed of 24 identically
shaped subtiles. Rotations and translations of subtiles in such
cases do not produce sample locations that coincide. Is there a
generalization of the proposed subtile sampling applicable here?
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