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Abstract
Continually expanding periodically translated kernels
on the two dimensional grid can yield interesting, beau-
tiful and even familiar patterns. For example, expand-
ing circular pillbox shaped kernels on a hexagonal grid,
adding when there is overlap, yields patterns includ-
ing maximally packed circles and a triquetra-type three
petal structure used to represent the trinity in Chris-
tianity. Continued expansion yields the flower-of-life
used extensively in art and architecture. Additional
expansion yields an even more interesting emerging ef-
florescence of periodic functions. Example images are
given for the case of circular pillbox and circular cone
shaped kernels. Using Fourier analysis, fundamental
properties of these patterns are analyzed. As a func-
tion of expansion, some effloresced functions asymp-
totically approach fixed points or limit cycles. Most
interesting is the case where the efflorescence never
repeats. Video links are provided for viewing efflores-
cence in real time.
Keywords: tiling, emergence, periodicity, flower-of-life,
efflorescence, triquetra

1 Introduction

Expanding kernels on a periodic array can generate beautiful
and sometimes familiar patterns.

To visualize how an expanding circular kernel might physically
occur, imagine point sources of light that emit perfectly cir-
cular cones that expand with distance. This is illustrated in
Figure 1. Assume a large number of these light sources are
spaced in a hexagonal grid. A viewing screen placed parallel
and close to the array of lights will display a set of circles as in
Figure 2(a) because the cones have not yet overlapped. There
will be a point where the cones first touch. This is illustrated
in Figure 1 where a single hexagon of seven point elements
sources are denoted by the small circles on top. The touching
cones here correspond to the closely spaced nonoverlapping

circles in Figure 2(b) and the maximally packed pennies in
Figure 4. Beyond this point, the circles intersect. This visual-
ization illustrates the dynamics in Figure 2 where the number
of periodically spaced light sources on the plane is infinite.
The further we go from the lights, the more circles overlap
and the more interesting and beautiful patterns emerge.1

Figure 1: Illustration of the expanding kernels shown in
Figure 2. Light sources give forth cone-shaped beams
which overlap more and more as the distance is in-
creased from the light source plane. Shown here is the
point where the cones first touch. This corresponds
to the circles in Figure 2(b).

From a first order approximation, expanding circles emerge
from single x-rays in cone-beam tomography (Feldkamp,
Davis, and Kress, 1984; Scarfe, 2018) generate the expand-
ing circles in Figure 1. Expanding patterns other than cones
naturally occur in electromagnetics. Periodically spaced an-
tenna (Filipovic, Volakis, and Andersen, 1999; Ishimaru et al.,
1985; Markov and Chaplin, 1983) and sensor arrays (Gous-
setis, Feresidis, and Vardaxoglou, 2006; Sung et al., 2008)
generating identical expanding signals can display diverse and
complex patterns depending on source excitation and range of
observation.

The tile in this expanding circle example is a equalsided
hexagons as used by bees in honey combs. The hexagonal
tile for maximally packed circles is shown in Figure 5 where
identical hexagonal tiles each containing an inscribed circle.
Rectangles and parallelograms are other examples of possible

1As the cone expands, the light will grow dimmer. The analogy breaks
down here. We assume the light in the plane always correspond to a
brightness value of one no matter how far we are from the point sources.
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Figure 2: Expanding circular pillboxes on a hexagonal
grid. Heat map (Wikipedia, 2020a) colours denote
regions equal to a constant and are used only for dif-
ferentiating among the different regions of the figure.
Figure (b) represents maximally packed circles. Figure
(c) is a three petal pattern. Slightly more expansion
will result in the triquetra in Figure 7. Figure (e) is
the flower-of-life. (Continued in Figure 3.)
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Figure 3: Heat map plots of expanding circular pillbox
efflorescent function beyond that in Figure 2. As the
circles expand, the patterns have more texture because
higher and higher spatial frequencies are introduced.
(Continued from Figure 2.)
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Figure 4: Maximally packed pennies (Wikipedia,
2020b). In this example, the kernel is the grey level
map of a single penny and the periodicity is hexagonal.

tile shapes. Circles and octagons are not tiles since any tiling
attempts will result in gaps of coverage.2

All the patterns in Figure 2 can be achieved with identically
shaped hexagon tiles containing an appropriate pattern.

More generally, identical versions of a two dimensional (2D)
function3 are translated in accordance to a 2D periodic geom-
etry specified by the two periodicity vectors. The translations
are added to form a periodic function. We call the original 2D
function the kernel. With the tiling geometry kept constant,
each of these kernels is magnified or, equivalently, expanded.
The expanding kernels will soon overlap onto other tiles. When
kernels overlap, the expanded kernels are added. When view-
ing the emergent patterns as expansion continues, fascinating
patterns can begin to flower. Since efflorescence in French
means “to flower out,” we refer to the emergence as efflores-
cent functions. No matter how much the kernels expand, the
efflorescent function is a periodic function with a period fixed
by the tile.

An alternate explanation of expanding kernels is illustrated in
Figure 1 where the circular kernel is illustrated as an expanding
circular pill box.

Independent of the degree of kernel expansion, the resulting

2Triangles are not considered tiles in our treatment. Two identical
triangles can be be configured into a parallelogram tile, but we we only
consider tiling that uses translation. No rotation or flipping is allowed.
Nevertheless, rotation and flipping of so-called subtiles can be used in
definition multidimensional periodicity (Marks II, 2019). This is not con-
sidered in our treatment.

3i.e. a scalar function of two variables.

Figure 5: Maximally packed circles and the corre-
sponding hexagonal tile.

Figure 6: An expanding circular pillbox as a 2D func-
tion. The circular pillbox shape expands to the larger
pillbox is a smooth continuous manner.
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Figure 7: An illustration of a specific instance of ex-
panded overlapping when the kernel is an annulus (cir-
cular ring) replicated hexagonally. Left: The trique-
tra (Wikipedia, 2020c). Right: Periodic replication
of the triquetra reveals emergence from overlapping
rings. (Note: The summation of the overlaps is not
shown. Only the ring overlap is shown.)

2D function formed by the sum of possibly overlapping kernels
is periodic with the same hexagonal replication geometry. The
single hexagonal tile shown in Figure 5can be copied and, if
you will, used to tile a kitchen floor without gaps. In this sense,
a periodic tiling geometry is conserved during the expansion.4

Expanding circles generate familiar flowering instances includ-
ing:

• packed circles in Figure 2(b) can be visualized by placing
pennies on a table surface as close as possible. This is
illustrated in Figure 4,

• as seen in Figure 7, a triquetra-type (Wikipedia, 2020c)
three petal pattern used to represent the trinity in early
Christianity. This pattern is seen in Figure 2(c), and

• the flower-of-life (Melchizedek, 1999) in Figure 2(e)5

Properties of efflorescent functions can be derived using two
dimensional Fourier series analysis. Some efflorescent func-
tions approach fixed points or limit cycles as a function of
expansion. Most interesting are efflorescent functions that
never repeat. Describing mathematics is limited to Section 4
and the Appendix. The content of the paper is thereby acces-
sible without reference to the detail sought by mathematicians
for deeper insight.

4For a given replication, there is more than one choice for a tile.
Hexagonal tiles can be used for any of the patterns shown in Figure 2
but a parallelogram tile can be used to represent the same periodicity
structure. Although tiles can differ geometrically, all viable tiles will have
the same two-dimensional area (Marks II, 2009).

5The flower-of-life is easily constructed using only a compass. Draw
a circle. Then place the point of the compass at any point on the circle.
Draw another circle. Place the compass point at one of the two points
where the circles intersect and draw another circle with the same radius.
Continue placing the compass point at intersections of circles with the
original circle and the flower-of-life will result.

Figure 8: Left: The flower-of-life. Right: Periodic
replication of the flower-of-life reveals emergence from
overlapping circles.

1.1 The Flower-of-Life in Art History

The flower-of-life tiling has a rich history in art and archi-
tecture. The flower-of-life appears in the Osiris Temple in
ancient Egypt (Flowers, 2006) and as a floor decoration from
the palace of King Ashurbanipal. Ashurbanipal was king of
the Neo-Assyrian Empire from 668 BC to c. 627 BC (Man-
ninen, 2011). The flower-of-life even appears in crop circles
(National Geographic, 2010) .

Here are some other examples.

1. As shown in Figure 10, the flower-of-life appeared in the
art of Leonardo da Vinci (Mic, 2012).

2. Figure 10 shows the flower-of-life from Turkey.

3. In Figure 11, we see a cup fragment from Idalion, Cyprus
that dates to circa 700 to 600 BC. The art shows “mytho-
logical scenes, a sphinx frieze and the representation of a
king vanquishing his enemies. The center contains a ver-
sion of the ‘Flower of life’ geometrical pattern” (Nguyen,
2007).

4. A ball “held by the male Imperial Guardian Lion at
the Gate of Supreme Harmony, Forbidden City, Beijing.
China” is covered by replications of the flower-of-life.
This is shown in Figure 12.

1.2 Further Circle Expansion

What happens when the circles are expanded further than
shown in Figure 2? Results is shown in Figure 3 starting with
the flower-of-life in the upper left. Assume the original radius
of the circles in the flower-of-life is 𝑅 = 1. Shown are hexago-
nal tilings corresponding to the circle radiuses of 5, 10, 25, 50
and 100.
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Figure 9: Flower of life from sketches from Leonardo
da Vinci. (This is a faithful photographic reproduction
of a two-dimensional, public domain work of art (da
Vinci, 1478).)
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Figure 10: Flower of life “ephesos square” from Eph-
esus, Turkey. (Image credit: Wikipedia Creative
Commons Attribution-Share Alike 4.0 International
(Miryam, 2015).)
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Figure 11: An ancient cup inscibed with the flower-of-
life. (Image credit: This work is in the public domain
in its country of origin and other countries and areas
where the copyright term is the author’s life plus 100
years or fewer (Nguyen, 2007).)
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Figure 12: The flower-of-life is on a ball at the Gate
of Supreme Harmony, Forbidden City, Beijing. China.
(Photo credit: Wikimedia Commons (Adamantios,
2013).)
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Videos of beautiful emergent behavior from real-time expand-
ing circular kernels are available online (Nybal, 2014d; Nybal,
2014c).

2 Other Expanding Kernels

Other kernels can be expanded and arrays other than hexag-
onal can be used. An expanding circular cone kernel6 is illus-
trated in Figure 13. (Compare to the expanding pillbox circle
in Figure 6.) A heat map plot of a hexagonal array of small
nonoverlapping circular cones is shown in Figure 14(a). The
overlapping expanding kernels are then shown for circle radii of
200, 500, 1000, 1500, and 1750. As is the case with the circles,
the patterns generally become more complex as the expansion
becomes larger and more and more cones intersect.

Figure 13: A single expanding circular cone shaped
kernel as a two dimensional function.

3 Properties of Expanding Kernels of
Varying Periodicity

3.1 Detrending and Heat Maps

As more and more kernels overlap, the number of kernels inter-
secting a tile generally gets larger and larger.7 If 1000 circular
pillboxes overlap and the height of a pillbox is one, the value
of the 2D function is 1000 in the area of overlap. Detrend-
ing clears this tower by removing the buildup and looking only

6Disambiguation: The term cone-kernel is also used in reference to
2D time-frequency representations (Oh and Marks II, 1992; Oh, Marks
II, and Atlas, 1994; Zhao, Atlas, and Marks II, 1990) and is not related
to the usage of the term here.

7An exception would be a gaussian shaped kernel where all tiles are
effected by all other tiles at all times. The contribution of shifted kernels
far removed will become more and more significant as the kernel expands.

at fluctuations on top of the tower after removing the tower
height.

In Fourier series, the zeroth order Fourier series coefficient
denotes the average value of the periodic function. By setting
the zeroth order coefficient to zero, the tower is removed and
only the fluctuations remain. We define setting the zeroth
order Fourier series coefficient to zero as detrending (Hill and
Gauch, 1980; Kantelhardt et al., 2002). The heat map plots
in Figures 2,3,14 and 15 do this automatically by plotting only
within the dynamic range of the fluctuations.

3.2 Summary of Fourier Analysis Results

Depending on the kernel and periodicity, display of detrended
patterns show different behaviour. In Section 4, we examine
whether continuous expansion of kernels asymptotically ap-
proaches either:

1. zero everywhere,

2. a fixed periodic function of the ®𝑡 plane that does not
change with respect to additional expansion, or

3. oscillation in a limit cycle as function of the expansion
variable. In other words, as expansion continues, the ef-
florescent function displays a repeated pattern.

As we go down the list, each entry is seen to be a subset of
the other. A value of (1) zero is a degenerate case of (2) a
fixed periodic function that does not change with expansion.
Likewise (2), a fixed periodic function, is a special static case
of (3): oscillation on a limit cycle as a function of expansion.

The most interesting cases, not on the list, are those where
the efflorescent function never repeats and results in a never
repeating series of patterns. The expanding circular pillbox
and circular cone are examples.

4 Analysis

The mathematical analysis of efflorescent functions is solely
relegated to this section and the Appendix.

Using standard notation (Dudgeon and Mersereau, 1984;
Marks II, 1991; Marks II, 2009), the two dimensional Fourier
transform of a two dimensional function 𝑥(®𝑡 ) = 𝑥(𝑡1, 𝑡2) is8

𝑋 ( ®𝑢) =
∫
®𝑡
𝑥(®𝑡 )𝑒−𝑖2𝜋 ®𝑢𝑇 ®𝑡𝑑®𝑡 (1)

8𝑖 =
√
−1.
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Figure 14: Heat map plots of the expanding circular
cone efflorescent function. The nonoverlapping small
cones are seen in (a). (Continued in Figure 15.)
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Figure 15: Heat map plots of the expanding circu-
lar cone efflorescent function. (Continued from Fig-
ure 14.)
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Figure 16: Left: A 2D plot of nonoverlapping repli-
cated circular cones. A perspective projection of the
heat map is shown on top. Right: A similar plot made
after the expanding circular cones intersect.



26 Tiling Efflorescence of Expanding Kernels in a Fixed Periodic Array: Generalizing the Flower-Of-Life

where 𝑇 denotes vector transposition, ®𝑡 = [𝑡1, 𝑡2]𝑇 , ®𝑢 =
[𝑢1, 𝑢2]𝑇 , 𝑑®𝑡 = 𝑑𝑡1𝑑𝑡2 and∫

®𝑡
=

∫
𝑡1

∫
𝑡2

.

The signal integral property (Marks II, 2009) follows immedi-
ately from (1) by setting ®𝑢 = ®0.

𝑋 (®0) =
∫
®𝑡
𝑥(®𝑡 )𝑑®𝑡. (2)

The inverse Fourier transform is

𝑥(®𝑡) =
∫
®𝑢
𝑋 ( ®𝑢)𝑒𝑖2𝜋 ®𝑢𝑇 ®𝑡𝑑 ®𝑢.

To supply foundation and to establish notation, a concise re-
view of multidimensional Fourier series is appropriate (Dud-
geon and Mersereau, 1984; Marks II, 1991; Marks II, 2009).
The Fourier series has the following properties (Marks II,
2009):

• Convergence is in the mean if a period of the periodic
function satisfies Dirichlet conditions criteria.

• Convergence is uniform if the periodically replicated ker-
nel is continuous.

• When there are discontinuities in the kernel, the Fourier
series converges to the arithmetic midpoint of the discon-
tinuity.

The examples in this paper are for one and two dimensional
periodic functions although the theory can be developed for
an arbitrary dimension.

Two dimensional periodicity is dictated by a 2× 2 nonsingular
periodicity matrix Q given as

Q = [ ®𝑞1 ®𝑞2]

where ®𝑞1 and ®𝑞2 are periodicity vectors. In one dimension,
the period of a periodic function is defined by a single scalar
which can be viewed as a 1×1 matrix. The scalar entry in the
matrix is the one dimensional period, 𝑇 . In two dimensions,
a pair of 2D vectors is required to define periodicity. In 𝑀
dimensions, 𝑀 periodicity vectors are required. Each vector is
of length 𝑀 (Dudgeon and Mersereau, 1984; Marks II, 1991;
Marks II, 2009),

A 2D example is shown in Figure 17 where maximally packed
circles of radius 𝑅 generate periodicity vectors

®𝑞1 =


𝑅
2

𝑅
2
√

3

 ; ®𝑞2 =


−𝑅

2

𝑅
2
√

3

 .

where 𝑅 is the circle’s radius. The corresponding periodicity
matrix follows as

Q =
𝑅

2

[
1 −1√
3

√
3

]
. (3)

Figure 17: Hexagonal periodicity vectors illustrated for
maximally packed circles.

A tile isolates a single period of the periodic function and,
when replicated according to the periodicity matrix, fills the
space without gaps. For hexagonal periodicity, a correspond-
ing hexagonal tile is shown in Figure 5. For a given periodicity
structure, neither Q or the tile shape is unique. This is illus-
trated Figure 18 where hexagon and a parallelogram tiles both
have the same periodicity vectors.

A tile centered at the origin will be replicated on the (𝑡1, 𝑡2)
plane at the vectors ®𝑞1 and ®𝑞2. The tile will also be replicated
at any integer multiple of the periodicity vectors, for example
at ®𝑞1 + ®𝑞2 and 4®𝑞1 − 3®𝑞2. Any tile replication on the (𝑡1, 𝑡2)
plane can be represented by the combination 𝑚1 ®𝑞1 + 𝑚2 ®𝑞2
where 𝑚1 and 𝑚2 are integers. A more concise expression is

𝑚1 ®𝑞1 + 𝑚2 ®𝑞2 = Q ®𝑚

where ®𝑚 is a two dimensional vector of integers.

®𝑚 =

[
𝑚1
𝑚2

]
.

The hexagonally shaped tile in Figure 5 has an area of

| det Q| =
√

3 𝑅2

2
. (4)
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Figure 18: For a given set of periodicity vectors, the
choice of tiles is not unique. The periodicity vectors
illustrated at the bottom of Figure 17 can also describe
the parallelogram tile shown here. (Only two columns
of the parallelogram tile are shown here.) In both
cases, the area of the tile, | det𝑄 |, is the same (Marks
II, 2009).

For a given periodicity structure defined by the periodicity ma-
trix Q, a periodic function with a kernel of 𝑔

(®𝑡 ) can be written
in a space with coordinates ®𝑡 as (Marks II, 2009)

𝑧
(®𝑡 ) = ∑

®𝑚
𝑔

(®𝑡 − Q ®𝑚
)

(5)

where the sum is over the set of all integer pairs.∑
®𝑚

=
∞∑

𝑚1=−∞

∞∑
𝑚2=−∞

.

Note that

• the kernel is not constrained to be zero outside of a tile
and can even extend over the entire ®𝑡 plane, and

• many kernels can generate the same periodic function,
𝑧
(®𝑡 ).

The corresponding multidimensional Fourier series of the pe-
riodic function in (5) is the Fourier series (Marks II, 2009;
Papoulis, 1978)9

𝑧
(®𝑡 ) = | det P|

∑
®𝑚
𝐺 (P ®𝑚) exp

(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
(6)

9To see the periodicity, consider shift of (6) from 𝑧
(®𝑡 ) to 𝑧

(
®𝑡 − Q®𝑘

)
where ®𝑘 is an arbitrary vector of integers. If 𝑧

(
®𝑡 − Q®𝑘

)
= 𝑧

(®𝑡 ) for all such
shifts. 𝑧

(®𝑡 ) is periodic with periodicity matrix Q. From (6),

𝑧
(
®𝑡 − Q®𝑘

)
= | det P |

∑
®𝑚
𝐺 (P ®𝑚) exp

(
𝑖2𝜋

(
®𝑡 − Q®𝑘

)𝑇
P ®𝑚

)
.

where P and Q are related by an inverse transpose

P = Q−𝑇 , (7)

The equivalence of (5) and (6) stems from the Fourier dual
of the Poisson sum formula (Marks II, 2009; Papoulis, 1978;
Papoulis and Pillai, 2002).

∑
®𝑛
𝑋 ( ®𝑢 − P®𝑛) = | det Q|

∑
®𝑛
𝑥 (Q®𝑛) 𝑒𝑖2𝜋 ®𝑢𝑇 Q®𝑛

4.1 Expanding Kernels

We are able to now describe the expanding kernel periodic
function for arbitrary periodicity matrix Q and kernel 𝑔

(®𝑡).
Definition 4.1. The expanding kernel periodic function,
𝑥𝜎

(®𝑡 ), generated by a kernel 𝑔
(®𝑡 ) is

𝑥𝜎
(®𝑡 ) = ∑

®𝑚
𝑔

( ®𝑡 − Q ®𝑚
𝜎

)
(8)

As 𝜎 increases, the kernel expand.

In both the expanding circular pillbox and expanding circular
cone examples, 𝜎𝑅 is the radius of the circle.

From (6), the corresponding Fourier series of the expanding
kernel is

𝑥𝜎
(®𝑡 ) = | det P|𝜎2

∑
®𝑚
𝐺 (𝜎P ®𝑚) exp

(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
. (9)

The overlapping expanding kernels can be detrended by eval-
uating the mean value of the periodic function. The mean
value in a Fourier series expansion is the zeroth order Fourier
series coefficient. This can be evaluating by integrating over
a single tile followed by division by the area of the tile.

The theorem to follow uses the arbitrariness of the choice of
tiles when integrating. In one dimension, the period of a pe-
riodic function, say 𝑇 , is arbitrary. We can choose the period
to be on the interval 0 ≤ 𝑡 < 𝑇 or −𝑇/2 ≤ 𝑡 < 𝑇/2. There is a

The exponential term here becomes

exp
(
𝑗2𝜋

(
®𝑡 − Q®𝑘

)𝑇
P ®𝑚

)
= exp

(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
exp

(
−𝑖2𝜋

(
Q®𝑘

)𝑇
P ®𝑚

)
.

Using (7),

exp
(
−𝑖2𝜋

(
®𝑘𝑇 Q𝑇 P ®𝑚

))
= exp

(
−𝑖2𝜋

(
®𝑘𝑇 ®𝑚

))
= 1

so that 𝑧
(
®𝑡 − Q®𝑘

)
= 𝑧

(®𝑡 ).
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similar arbitrariness in the choice of a tile. To illustrate, con-
sider a 2D function with hexagonal replication across a plane.
Choosing a tile in this function is like choosing a cookie cutter.
As illustrated in Figure 18, a hexagonal cookie cutter can be
used. But a hexagon is not the only possible tile. As shown in
the figure, a cookie cutter shaped like a parallelogram can also
be used as can any cookie cutter that satisfies the periodicity
constraints.

Notationally, integrating over area C in the following theorem
means integration over any single tile. For additional details,
see Marks (Marks II, 2009).

Theorem 4.2. The mean value of the expanding kernel func-
tion, 𝑥𝜎

(®𝑡 ), is

〈𝑥𝜎〉 := 1
| det Q|

∫
®𝑡 ∈C

𝑥𝜎
(®𝑡 ) 𝑑®𝑡

= 𝜎2 | det P|
∫
®𝑡
𝑔

(®𝑡 ) 𝑑®𝑡 (10)

= 𝜎2 | det P|𝐺 (®0) (11)

The region C is any region in the ®𝑡 space covering a tile.

As 𝜎 increases, the detrended sum of the expanding kernels in
the ®𝑡 plane approaches a without any interesting structure.

Proof. The expression in (10) for the mean of 𝑥𝜎
(®𝑡 ) follows

from the ®𝑚 = ®0 term in the Fourier series in (9). Equation
(11) follows from the integral property (2). □

We can now define the detrended periodic function.

Definition 4.3. The periodic efflorescent function, 𝜁𝜎
(®𝑡 ), is

the detrended expanding kernel function, i.e. 𝑥𝜎
(®𝑡 ) minus its

mean.
𝜁𝜎

(®𝑡 ) = 𝑥𝜎 (®𝑡 ) − 〈𝑥𝜎〉 .

The corresponding Fourier series of 𝜁𝜎
(®𝑡 ) is simply the Fourier

series of 𝑥𝜎
(®𝑡 ) in (9) with the zeroth order Fourier series

coefficient ®𝑚 = ®0 term removed.10

𝜁𝜎
(®𝑡 ) = | det P|𝜎2

∑
®𝑚≠®0

𝐺 (𝜎P ®𝑚) exp
(
𝑖2𝜋®𝑡𝑇 P ®𝑚

)
. (12)

From this expression, we see the Fourier series coefficients for
the efflorescent function are

𝑐𝜎 [ ®𝑚] =
{

| det P|𝜎2𝐺 (𝜎P ®𝑚) ; ®𝑚 ≠ ®0
0 ; ®𝑚 ≠ ®0 (13)

10By ®0, we mean a vector whose only elements are zero.

4.2 Convergence

The periodic efflorescent function can most interestingly gen-
erate a never repeating pattern of fascinating shapes. This
does not happen when, as a function of expansion, the efflo-
rescent function reaches a limit cycle or fixed point. We now
examine when this happens.

Asymptotic Convergence of the Efflorescent Function
to Zero

We first establish when the efflorescent function expanding
kernel approaches zero.

First define the Kronecker delta as

𝛿[ ®𝑚] :=
{

1 ; ®𝑚 = ®0
0 ; ®𝑚 ≠ ®0

Theorem 4.4. Sufficient condition for converging to the
mean. Let 𝑀 = 2.11 If

𝜎𝑀𝐺 (𝜎P ®𝑚) −→
𝜎→∞

𝜎𝑀𝐺 (®0)𝛿[ ®𝑚] (14)

then 𝑥𝜎
(®𝑡 ) converges to its mean.

𝑥𝜎
(®𝑡 ) −→

𝜎→∞
〈𝑥𝜎〉 .

As a consequence
𝜁𝜎

(®𝑡 ) −→
𝜎→∞

0.

In other words, as the kernels continue to expand, the efflores-
cent function approaches the very uninteresting result of zero
over the entire (𝑡1, 𝑡2) plane.

Proof. As 𝜎 → ∞, all terms 𝜎𝑀𝐺 (𝜎P ®𝑚) in (9) tend to zero
when (14) is true except when ®𝑚 = ®0. Then (9) becomes

𝑥𝜎
(®𝑡 ) −→

𝜎→∞
𝜎𝑀 | det P|𝐺 (®0) = 〈𝑥𝜎〉

□

A sufficient smoothness criterion Convergence of an ex-
panding efflorescent function to zero is assured when the kernel
adheres to smoothness and integrability properties.

11The theorems given are applicable in any dimension 𝑀 . We have
concentrated on 2D so will set 𝑀 = 2 to avoid confusion. This also
applies to Theorem 4.5.
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Theorem 4.5. Convergence to the mean: The following
theorem applies to 𝑀 dimensions. For the examples herein,
𝑀 = 2. The 𝑀 dimensional function, 𝑥𝜎

(®𝑡 ), converges to its
mean if its kernel, 𝑔

(®𝑡 ), obeys the following property.12∫
®𝑡

�����
(
𝑀∏
𝑘=1

𝜕𝑖𝑘

𝜕𝑡𝑖𝑘𝑘

)
𝑔

(®𝑡 ) ����� 𝑑®𝑡 = 𝐴 < ∞ (15)

where the nonnegative integers {𝑖𝑘 |1 ≤ 𝑘 ≤ 𝑀} obey

𝑀∑
𝑘=1

𝑖𝑘 > 𝑀 (16)

The choice of ®𝑖 = [𝑖1 𝑖2 𝑖3 · · · 𝑖𝑀 ]𝑇 is arbitrary so long as
(15) and (16) are satisfied.

The proof is given in Appendix 6.1.

Corollary 4.6. For 𝑀 = 1, Theorem 4.5 says the efflorescent
function will converge to zero if∫

𝑡

���� 𝑑2

𝑑𝑡2
𝑔(𝑡)

���� 𝑑𝑡 = 𝐴 < ∞

Example 4.7. Consider the two dimensional kernel

𝑔
(®𝑡 ) = Π(𝑡1)𝑒−𝑡

2
2 ,

where the rectangle function is

Π(𝑡) :=
{

1 ; |𝑡 | ≤ 1
2

0 ; |𝑡 | > 1
2 .

(17)

Then (WolframAlpha.com, 2020)∫
®𝑡

����� 𝜕3

𝜕𝑡32
𝑔

(®𝑡 ) ����� 𝑑®𝑡 =
∫ ∞

𝑡1=−∞
Π(𝑡1)𝑑𝑡1

∫ ∞

𝑡2=−∞

����� 𝑑3

𝑑𝑡32
𝑒−𝑡

2
2

����� 𝑑𝑡2
=

= 4
(
1 + 4𝑒−3/2

)
= 𝐴 < ∞

and 𝑖1 + 𝑖2 = 0 + 3 > 𝑀 = 2. The criteria in Theorem 4.5 are
met and asymptotic convergence of the efflorescent function
to zero is assured.

Asymptotic Convergence To a Fixed Function

As the following example shows, the efflorescent function can
converge to a fixed function of ®𝑡 as scaling increases.

Example 4.8. Consider the one dimensional kernel

𝑔(𝑡) = 𝑒−𝑡𝜇(𝑡) (18)

Figure 19: Using the exponential decay kernel in (18)
results in the 𝜁𝜎 (𝑡)’s shown. As 𝜎 → ∞, the function
approaches the sawtooth shown by the thick red line
given by (19). (For this plot, 𝑇 = 275.)

where 𝜇(𝑡) is the Heaviside step function.13 Then 𝜁𝜎
(®𝑡 ) con-

verges in steady state to the solid red sawtooth waveform
shown in Figure 19.

lim
𝜎→∞

𝜁𝜎 (𝑡) =
1
2
− 𝑡

𝑇
; 0 < 𝑡 < 𝑇 (19)

A proof is given in Appendix 6.2.

Asymptotic Limit Cycle Periodicity in 𝜎

Efflorescent functions can be asymptotically periodic as a func-
tion of the expansion scaling variable 𝜎.

Theorem 4.9. Using the scalar periodicity matrix Q = 𝑇 , the
one dimensional kernel

𝑔(𝑡) = Π (𝑡)

results in a efflorescent function periodic in 𝜎 with a period of
𝑇𝜎 = 2𝑇 .

Proof. The one dimensional Fourier series expression for the
12For 𝑀 = 5 and ®𝑖 = [4 0 1]𝑇 , for example,(

𝑀∏
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) = 𝜕5

𝜕𝑡4
1 𝜕𝑡3

𝑔
(®𝑡 ) .

13Equal to one for positive argument and zero otherwise.
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efflorescent function is

𝜁𝜎 (𝑡) =
𝜎

𝑇

∑
𝑚≠0

sinc
(𝜎𝑚
𝑇

)
𝑒𝑖2𝜋𝑚𝑡/𝑇 . (20)

where
sinc(𝑢) := sin(𝜋𝑢)

𝜋𝑢

is the one dimensional Fourier transform of Π(𝑡). For 𝑚 ≠ 0,
the 𝑚th Fourier series coefficient is

𝑐𝜎 [𝑚] = 𝜎𝐺
(𝜎𝑚
𝑇

)
=

𝜎

𝑇
sinc

(𝜎𝑚
𝑇

)
=

=
1
𝑇

sin
(
𝜋𝑚𝜎
𝑇

)
𝜋𝑚

Because of the sin term, 𝑐𝜎 [𝑚] is periodic with respect to 𝜎
with period 2𝑇 .

𝑐𝜎+2𝑇 [𝑚] = 𝑐𝜎 [𝑚]

Since all of the Fourier series coefficients in (20) are periodic
with period 2𝑇 , we conclude that

𝜁𝜎+2𝑇 (𝑡) = 𝜁𝜎 (𝑡).

and the efflorescent function oscillates as a function of 𝜎. □

The periodicity of 𝜁𝜎 (𝑡) is illustrated in Figure 20. The func-
tion is bounded by |𝜁𝜎 (𝑡) | ≤ 1 and is plotted over a single
period. The Figure begins with an all zero function marked
with the number 0. 𝜎 increases a bit. For the function marked
1, there is now a short positive pulse and the remainder of the
function is zero. Since 〈𝜁𝜎〉 = 0, all of the functions shown
have zero area. The pulse at the origin begins to spread as
𝜎 increases as is seen in the functions marked 2 through 7.
Then, at 8, the function returns to being identically zero. The
second phase is shown in Figure 20b. We begin with the zero
function marked 8 in Figure 20a which is also marked 8 in Fig-
ure 20b. 𝜎 increases a bit. The function marked 9 is a short
negative pulse. As 𝜎 increases, the negative pulse widens as
is seen in the functions marked 9 through 15. Function 16 is
identically zero and is the same as the function marked 0 in
Figure 20a. One period is complete and, as 𝜎 increases, the
next identical period begins.

4.3 Efflorescent Examples

The most interesting of efflorescent functions are those that
have no fixed asymptotic convergence properties. In two di-
mensions, such efflorescent functions continually bloom in a
nonrepeating manner. The reader is encouraged to view the
online videos (Nybal, 2014d; Nybal, 2014c; Nybal, 2014b; Ny-
bal, 2014a) (especially the expanding pillbox cone and circular

(a) The first part of the periodicity in 𝜎.

(b) The second part.

Figure 20: The periodicity in 𝜎 of 𝜁𝜎 (𝑡) for expanding
rectangular kernels in (20). The period in 𝜎 is 2𝑇 . The
function 𝜁𝜎 (𝑡) is also periodic in 𝑡 with period 𝑇 .
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cone videos) to fully appreciate this emergence. Screen shots
for expanding circle and cone shaped kernels are shown in Fig-
ures 3, 14 and 15. We now analyze properties of these two
kernel types.

We find useful the radial measures

𝑟 = ‖®𝑡‖ and 𝜌 = ‖ ®𝑢‖

where
‖®𝑡‖ =

√
𝑡21 + 𝑡22 . (21)

When the variable 𝑟 = 𝑟 (𝑡1, 𝑡2) is used in a two dimensional
expression, we assume it to be a two dimensional function of
𝑡1 and 𝑡2 as expressed here. Doing so avoids writing out the
square root expression in (21) at each usage. The variable
𝜌 = 𝜌(𝑢1, 𝑢2) can similarly be interpreted as a function of 𝑢1
and 𝑢2.

Expanding Pillbox Circle Example

The expanding circles example is a special case of (8) for 𝑀 =
2 dimensions where the kernel 𝑔(®𝑡) is one inside a circle of unit
radius and is otherwise zero.14

𝑔(®𝑡) = Π
( 𝑟
2

)
. (22)

Then 𝐺 (®0) is simply the area of a unit radius circle. From the
signal integral property in (2).

𝐺 (®0) =
∫
®𝑡
Π

( 𝑟
2

)
𝑑®𝑡 = 𝜋.

For expanding circles, the expanding kernel function is

𝑥𝜎
(®𝑡 ) = ∑

®𝑚
Π

(
‖®𝑡 − Q ®𝑚‖

2𝜎

)
so that 𝑔

(
®𝑡−Q ®𝑚
𝜎

)
in the ®𝑚th tile is a circle of radius 𝜎 centered

at Q ®𝑚.

The 2D Fourier transform of a unit radius circle in (22) is
(Marks II, 2009)

𝐺 ( ®𝑢) = 𝐽1 (2𝜋𝜌)
2𝜌

where 𝐽1 (·) is a first order Bessel function of the first kind.
Asymptotically (Abramowitz and Stegun, 1972)

𝐽1 (2𝜋𝜌)
2𝜌

−→
𝜌→∞

𝜌−3/2

2𝜋
cos

(
2𝜋𝜌 − 3

4
𝜋

)
(23)

14Specifically, from the definition of Π( ·) in (17), 𝑔 (®𝑡 ) = Π (𝑟/2) is one
for 𝑟

2 < 1
2 . This is equivalent to 𝑟 = ‖®𝑡 ‖ =

√
𝑡2
1 + 𝑡2

2 < 1 which defines a
circle of unit radius.

so that, for ®𝑚 ≠ ®0,

𝜎2𝐺 (𝜎P ®𝑚) = 𝜎2 𝐽1 (2𝜋𝜎‖P ®𝑚‖)
2𝜎‖P ®𝑚‖

−→
𝜎→∞

1
2𝜋

√
𝜎

‖P ®𝑚‖3 cos
(
2𝜋𝜎‖P ®𝑚‖ − 3

4
𝜋

)
The sufficient condition of Theorem 4.4 for convergence of the
efflorescent function to zero is therefore not met.

Pillbox Expansion on a Hexagonal Grid We have yet to
specify a periodicity for the expanding circles. Assume the
circle centers are spaced hexagonally in accordance with the
periodicity matrix in (3). From (4) we see that

| det P| = 1
| det Q| =

2
√

3𝑅2
. (24)

The expanding kernel function’s mean, from (10), is therefore

〈𝑥𝜎〉 = 𝜎2
(

2
√

3𝑅2

)
𝜋 =

2𝜋𝜎2
√

3𝑅2

Screen shots for the efflorescent function is shown in Figure 3
from the video available online (Nybal, 2014d).

Expanding Circular Cones

Set the two dimensional kernel to a circular cone of unit height.

𝑔
(®𝑡 ) = (1 − 𝑟)Π

( 𝑟
2

)
For circularly symmetric functions, the 2D Fourier transform
becomes the Hankel transform (Marks II, 2009) so that (Wol-
framAlpha.com, 2020) becomes

𝐺 ( ®𝑢) = 2𝜋
∫ 1

0
𝑟 (1 − 𝑟)𝐽0 (2𝜋𝑟𝜌)𝑑𝑟 (25)

=
𝐻0 (2𝜋𝜌)𝐽1 (2𝜋𝜌) − 𝐻1 (2𝜋𝜌)𝐽0 (2𝜋𝜌)

4𝜌2 .

where 𝐻𝑛 (·) are Struve functions (Weisstein, 2020) and 𝐽𝑛 (·)
are Bessel functions of the first kind. In Appendix 6.3, we
show that

𝜎2𝐺 (𝜎P ®𝑚) −→
𝜎→∞

− 2
𝜋2

√
𝜎3

‖P ®𝑚‖ cos
(
2𝜋𝜎‖P ®𝑚‖ − 𝜋

4

)
. (26)

As is the case with the expanding circles, the condition of
Theorem 4.4 for convergence to the mean for the expanding
cones is therefore not met. For any fixed P and ®𝑚 ≠ ®0, the
limit does not approach zero as 𝜎 increases without bound.
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Circular Cone Expansion on a Hexagonal Grid Assume
the cone centers are spaced hexagonally in accordance with
the periodicity matrix in (3). Thus we can use (24). Since
𝐽0 (0) = 1, the volume of a cone with a unit circle base and
unit height is, from (25),

𝐺 (®0) = 2𝜋
∫ 1

0
𝑟 (1 − 𝑟)𝑑𝑟 = 𝜋

3
.

The expanding kernel function’s mean, from (10), is then

〈𝑥𝜎〉 = 𝜎2
(

2
√

3𝑅2

)
𝜋

3
=

2
√

3𝜋𝜎2

𝑅2 .

As was the case for the circular pillbox, the limit does not
approach zero as 𝜎 increases without bound. Screen shots for
the cone’s efflorescent function are shown in Figures 14 and
15 from the video available online (Nybal, 2014c).

5 Conclusions

We have introduced the idea of periodic expanding kernel and
efflorescent functions and have shown they can display widely
variant behaviors dependent on the kernel and the underly-
ing periodicity. Examples are given of efflorescent functions
that converge to zero, converge to a nonconstant fixed point
and oscillate. When the efflorescent functions fluctuate with-
out repeating, patterns reminiscent of continual blooming can
emerge. Special occurrences for a circular pillbox kefor of the
three petal geometry representing Christianity’s trinity and the
flower-of-life. All emergent patterns are periodic and can be
used for artful tiling.

6 Appendices

6.1 Proof of Theorem 4.5: Convergence to
the mean

The derivative theorem of Fourier analysis indicates(
𝑀∏
𝑘=1

𝜕𝑖𝑘

𝜕𝑡𝑖𝑘𝑘

)
𝑔

(®𝑡 )
has a Fourier transform of(

𝑀∏
𝑘=1

( 𝑗2𝜋𝑢𝑘 )𝑖𝑘
)
𝐺 ( ®𝑢)

Thus

𝐺 ( ®𝑢) =

∫
®𝑡

[(∏𝑀
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) ] 𝑒−𝑖2𝜋®𝑡𝑇 ®𝑢𝑑®𝑡∏𝑀
𝑘=1 ( 𝑗2𝜋𝑢𝑘 )𝑖𝑘

.

and

|𝐺 ( ®𝑢) | =

����∫®𝑡 [(∏𝑀
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) ] 𝑒− 𝑗2𝜋®𝑡𝑇 ®𝑢𝑑®𝑡
����

(2𝜋)�̃� ∏𝑀
𝑘=1 |𝑢 |

𝑖𝑘
𝑘

=

≤

∫
®𝑡

����(∏𝑀
𝑘=1

𝜕𝑖𝑘

𝜕𝑡
𝑖𝑘
𝑘

)
𝑔

(®𝑡 ) ���� 𝑑®𝑡
(2𝜋)�̃� ∏𝑀

𝑘=1 |𝑢 |
𝑖𝑘
𝑘

=

=
𝐴

(2𝜋)�̃� ∏𝑀
𝑘=1 |𝑢 |

𝑖𝑘
𝑘

where

�̃� =
𝑀∑
𝑘=1

𝑖𝑘 . (27)

Continuing

𝜎𝑀 |𝐺 (𝜎 ®𝑢) | ≤ 𝐴𝜎𝑀

(2𝜋𝜎)�̃� ∏𝑀
𝑘=1 |𝑢 |

𝑖𝑘
𝑘

and

𝜎𝑀 |𝐺 (𝜎P ®𝑚) | ≤ 𝐴𝜎𝑀−�̃�

(2𝜋)�̃� ∏𝑀
𝑘=1 | (P)𝑘 ®𝑚 |𝑖𝑘

.

With all other parameters fixed, this expression tends to zero
for increasing 𝜎 when

𝑀 − �̃� < 0

or, using (27),
𝑀∑
𝑘=1

𝑖𝑘 > 𝑀

6.2 Proof of Theorem 4.8: Convergence to a
fixed periodic function

Applying the exponential kernel in (18) to (8) for scalar Q = 𝑇
gives

𝑥𝜎 (𝑡) =
∞∑

𝑚=−∞
exp

(
− 𝑡 − 𝑚𝑇

𝜎

)
𝜇(𝑡 − 𝑚𝑇)

= 𝑒−𝑡/𝜎
∞∑

𝑚=−∞
𝑒𝑚𝑇 /𝜎𝜇(𝑡 − 𝑚𝑇)
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Over the period 0 ≤ 𝑡 < 𝑇 ,

𝑥𝜎 (𝑡) = 𝑒−𝑡/𝜎
0∑

𝑚=−∞
𝑒𝑚𝑇 /𝜎 .

Using a geometric series

𝑥𝜎 (𝑡) =
𝑒−𝑡/𝜎

1 − 𝑒−𝑇 /𝜎

and
𝜁𝜎 (𝑡) = 𝑥𝜎 (𝑡) −

𝜎

𝑇
.

Express the exponentials as a truncated Taylor series.

𝜁𝜎 (𝑡) =
1 − 𝑡

𝜎 + 𝑡2

2𝜎2

𝑇
𝜎 − 𝑇 2

2𝜎2

− 𝜎

𝑇
.

After some manipulation

𝜁𝜎 (𝑡) −→
𝜎→∞

𝜎
(
𝑡 − 𝑇

2
)
+ 𝑡2

2

𝑇
(
𝜎 − 𝑇

2
)

−→
𝜎→∞

1
2
− 𝑡

𝑇

which is the desired result in (19).

6.3 Proof of (26): Cone convergence

The Struve functions used in (26) can be defined by their
Taylor series (Weisstein, 2020)

𝐻0 (𝑧) =
2
𝜋

∞∑
𝑘=0

(−1)𝑘 𝑧2𝑘+1

[(2𝑘 + 1)!!]2

and
𝐻1 (𝑧) =

2
𝜋

∞∑
𝑘=0

(−1)𝑘+1𝑧2𝑘

(2𝑘 − 1)!!(2𝑘 + 1)!! .

They have the following asymptotic behavior (Wolfram Re-
search, 2020b)

𝐻0 (𝑧) −→
|𝑧 |→∞

√
2
𝜋𝑧

sin
(
𝑧 − 𝜋

4

) (
1 +𝑂

(
1
𝑧2

))
and

𝐻1 (𝑧) −→
|𝑧 |→∞

2
𝜋

(
1 +𝑂

(
1
𝑧2

))
.

Likewise, the Bessel function has the asymptotic behavior
(Wolfram Research, 2020a)

𝐽0 (𝑧) −→
|𝑧 |→∞

√
2
𝜋𝑧

cos
(
𝑧 − 𝜋

4

) (
1 +𝑂

(
1
𝑧2

))

and
𝐽1 (𝑧) −→

|𝑧 |→∞

√
2
𝜋𝑧

cos
(
𝑧 − 3𝜋

4

) (
1 +𝑂

(
1
𝑧2

))
In light of these behaviors, inspection of (26) reveals the
𝐻1 (𝑧)𝐽0 (𝑧) term asymptotically dominates the 𝐻0 (𝑧)𝐽1 (𝑧)
term and

𝐻1 (2𝜋𝜌)𝐽0 (2𝜋𝜌) −→
𝜌→∞

2
𝜋2 𝜌

− 1
2 cos

(
2𝜋𝜌 − 𝜋

4

)
.

Thus

𝜎2𝐺 (𝜎 ®𝑢) −→
𝜎→∞

− 2
𝜋2

√
𝜎3

𝜌
cos

(
2𝜋𝜎𝜌 − 𝜋

4

)
from which (26) follows.
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