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Abstract—As a cognitive radar system adapts to interference in
real time by adjusting its transmission characteristics, such as
operating frequency and bandwidth, the optimal load impedance
for the transmit power amplifier will also change. A search
algorithm and tunable matching network on the output of the
transmit power amplifier optimizes the amplifier for improved
system performance, such as increased transmit power and
resultant radar range. However, later changes in interference will
cause the cognitive radar to change its transmission frequency
again, affecting the optimal impedance and potentially requiring
reoptimization. In order to determine when reoptimization is
needed, this work demonstrates use of the earth mover distance
(EMD) applied to utilized transmit frequencies over time to
determine when reoptimization may provide meaningful output
power improvement.
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I. INTRODUCTION

As the radio-frequency (RF) spectrum becomes increasingly
congested, the applicability of real-time reconfigurable radar
systems is more pronounced. Many frequency bands previously
allocated solely to radar have been either reallocated for
spectrum sharing or deallocated completely.

In spectrum sharing scenarios, a cognitive radar must adapt
its transmission characteristics, such as center frequency and
bandwidth, in real time to avoid RF interference (RFI) from
other spectrum users. An example of such a system is the
Software Defined Radar (SDRadar) [1], which also utilizes a
tunable output matching network to optimize the transmit power
amplifier load impedance for output power for the active
transmit bandwidth.

Given the wide range of possible transmissions, it is
infeasible for a cognitive radar to predetermine all optimal
configurations in advance. Instead, a real-time circuit
optimization algorithm must be used, such as the average
gradient algorithm of [2]. Such search algorithms converge to a
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single optimum for a given situation. However, since the RFI
environment and corresponding optimum will continue to
change long after search convergence, continual optimization is
required.

Approaches for restarting gradient searches have been
demonstrated in cases where the search space is multimodal [3],
where search momentum may be misguiding the search [4], and
where periodic restarts help overcome ripples in the objective
function [5]. Restarting optimization can also be used to
continue searching for a potentially moving optimum value,
which is the focus of this work.

However, unnecessary search restarts during live system
optimization will degrade performance as the configuration is
varied from the current optimum during the optimization
routine. As such, it is desirable to perform optimization only
when a better optimum setting is available. We present a method
for relating changes in utilized transmit frequencies to potential
output power improvement to reduce the number of search
restarts required for continual circuit optimization of cognitive
radar systems.

II. METHODS

To determine when a previous optimum configuration is no
longer optimal in the current environment, some portion of the
cognitive radar configuration or performance must be monitored
for variation over time. While the radar transmitter output power
could be monitored for changes in performance, the radar may
transition to a state where the output power remains the same,
but additional power could be obtained by reoptimizing for the
new configuration. As such, the sole monitoring of output power
to detect need for a re-optimization can be misleading. Instead,
this work monitors the frequencies utilized by the cognitive
radar, as this directly represents the configuration, and changes
in this frequency configuration can indicate a need for re-
optimization.

For monitoring, the utilized transmit frequencies are
represented as a one-dimensional histogram, where bin height



represents how often each frequency was utilized by recently
transmitted waveforms. For consistency across varied history
windows, this histogram is normalized by dividing each
histogram bin by the number of radar transmissions represented
by the histogram. This approach provides flexibility in instances
where the cognitive radar is varying its rate of adaptation in
response to the dynamics of the spectral environment. An
example of this histogram for a series of radar transmissions is
shown in Fig. 1. As different spectral environments permit
broader or narrower spectrum usage, the overall mass of this
distribution may change. To account for this effect when
comparing different distributions, this histogram is translated
into a probability mass function (PMF) by dividing the
magnitude of each bin by the L1 norm of the distribution.

100 Spectrum Utilization Distribution

80

60

40

20

Utilization Percentage (%)

0
3.25 3.26 3.27 3.28 3.29 3.3 3.31 3.32 3.33 3.34 3.35
Frequency (GHz)

Fig. 1. Example histogram of transmit spectrum utilization for a series of radar
transmssions. This distribution can be obtained by sequentially transmitting five
different radar waveforms, each centered at 3.3 GHz with varying bandwidths
(50 MHz, 40 MHz, 30 MHz, 20 MHz, and 10 MHz). As the frequency range
3.295-3.305 GHz is used in each transmission, these frequencies have a
utilization percentage of 100 %. Likewise, 3.275-3.28 GHz and 3.32-
3.325 GHz are only utilized as part of the 50 MHz transmission, resulting in a
utilization percentage of 20 %.

Metrics for comparing such functions are common,
including the Kullback-Leibler (KL) divergence [6], root-mean-
square deviation (RMSD) [7], and earth mover’s distance
(EMD) [8]. The selected metric can be correlated with potential
power improvement, and a threshold can be used to specify
when the radar should be reoptimized.

KL divergence, as defined by (1), is widely used in
information theory to measure the relative entropy between two
distributions [6]. However, this is not a true metric; that is,
Dy, (P]|Q) is not necessarily equal to Dy, (Q||P). Additionally,
it can be non-finite when the two distributions contain different
zero-valued entries, such as when the distributions do not
overlap, as is often the case for distributions of utilized SDRadar
transmit frequencies.
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The RMSD metric, as defined by (2), is also not ideal for this
application, as it uses nonlinear weighting based on the
magnitude of the difference [7]. Additionally, the RMSD is not

able to provide information about the magnitude of separation
between non-overlapping distributions. That is, for a fixed

number of frequency bins, N, the RMSD is saturated as soon as
the utilized bandwidths no longer share any common spectrum,
without regard for the amount of separation between the utilized
bandwidths.

11\1]=1(Pn - Qn)z

RMSD(P||Q) = N

(2)

The EMD is a useful metric for comparing utilized frequency
distributions. Originally proposed in [8] as a metric for
determining the similarity of images, EMD is analogous to the
minimum amount of physical work required to transform one
distribution into the other, and it provides a true metric when
applied to normalized distributions. Given one-dimensional
histograms with uniform bin width, the EMD can be computed
as the sum of the absolute value of the cumulative sum of the
differences between the distributions. For ease of thresholding
in this application, knowledge of the possible transmit frequency
range is used to normalize the EMD with respect to the max
possible EMD, resulting in the final computation:

1 N n
EMD(P,Q) = mz . -—1Pi - Qi|, 3)

where P and Q are one-dimensional PMFs of N bins. Unlike KL
divergence and RMSD, EMD can represent the absolute distance
between non-overlapping distributions, as the nested
summations capture the degree of separation between the
utilized frequencies and not only the change within a single
frequency bin. This ability is a requirement for any metric that is
used, as this separation translates to the magnitude of a given
frequency shift, which is the feature of interest for this work.

To illustrate the ability of each of these methods to describe
differences in spectrum utilization by a cognitive radar, three
different transmit spectrum utilization comparison scenarios are
presented in Fig. 2, along with the resulting metric values.

III. MEASUREMENT RESULTS

The methods of this paper were tested using the SDRadar
system of [1] operating at 3.3 GHz with a bandwidth of
100 MHz. A Microwave Technologies MWT-173 field-effect
transistor (FET) was used as the amplifier device, with

Vps = 45V, Veg=-14V, and P, = 14 dBm. The load
impedance presented to the transistor is adjusted using the
evanescent-mode cavity tuner of Semnani [9]. A simulated RFI
environment is created using an Agilent N5182A vector signal
generator playing back looped RFI signals of 50000 samples at
a sample rate of 60 MSa/s.

A. Threshold Determination

For the purposes of this work, it is desired that an
optimization will always be performed when more than 0.5 dB
of additional output power is available. Changes in RFI that
result in the current tuner impedance performing no more than
0.5 dB worse than the new (unknown) optimum may or may not
be subject to optimization. To determine the EMD threshold that
produces this behavior, a selection of 17 SDRadar waveforms
distributions were optimized, with each chosen to provide a
representative sample of the possible SDRadar transmit
waveforms. These waveforms are listed in Table 1.
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Fig. 2. Distance metric results for three different spectrum utilization cases:
fully overlaped, no overlap, and large separation. Each metric’s result is shown
at the top of the corresponding distribution diagram. As expected, we find that
KL divergence becomes undefined once the distributions begin to separate.
Additionally, RMSD fails to report the degree of separation between the two,
becoming saturated once the distributions are disjoint. However, EMD is able
to reflect the absolute separation between the distributions, which allows it to
be correlated to the expected change in radar performance over various
frequency bands.

TABLE I. SDRADAR TEST WAVEFORM CHARACTERISTICS

Center . Center .
Bandwidth Bandwidth
Frequency Frequency
(MHz) (MHz)
(GHz) (GHz)
3.2105 21 33 25
3.2175 35 3.1 55
3.2225 45 3.14 22
3.28 31 3.315 45
3.285 45 3.32 31
3.286 22 3.375 50
3.29 55 3.3825 35
33 50 3.3895 21
33 35 -- --

The optimum power and corresponding impedance for each
waveform was then determined, and the performance of each
waveform’s optimal impedance was evaluated for all other
waveforms. In additional, the EMD between each pairing of
waveforms was calculated. The footprint of a histogram relating

EMD to differences in the performance of optimal impedances
is shown in Fig. 3.

Based on the results of Fig. 3, an EMD threshold of 0.1
ensures that opportunities to obtain more than 0.5 dB of
performance improvement are never ignored (false negative rate
of 0). Detailed detection characteristics for this threshold are
listed in Table II. In general, the relationship between EMD and
potential power improvement will vary for different systems, as
each system’s susceptibility to performance variations with
frequency will differ.
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Fig. 3. Relationship between the EMD of two waveforms and the output power
improvement obtained by reoptimizing after a transition between two
waveforms.

TABLE II. 0.1 EMD THRESHOLD CHARACTERISTICS

Characteristic Occurrences
False Negatives (Missed >0.5 dB Improvements) 0
False Positives (Utilized <0.5 dB Improvements) 138
True Negatives (Missed <0.5 dB Improvements) 67
True Positives (Utilized >0.5 dB Improvements) 84

B. Threshold Performance

To evaluate the selected threshold’s performance in practice,
a simulated RFI environment was presented to the SDRadar,
with the circuit optimization algorithm running in tandem.
During each iteration of the experiment, the current RFI
environment may be randomly changed, which the SDRadar
will adapt to by changing its transmit waveform accordingly.
The probability of an RFI change occurring begins at 10 % for
the first iteration, increases by 10 percentage points for each
iteration with no change, and resets to 10 % after each RFI
change. This wunpredictable RFI pattern ensures the
reoptimization criteria is not dependent on how long ago the last
optimization was performed.

Following each potential RFI transition opportunity, the
current SDRadar transmit distribution is compared to the



previously optimized distribution using the EMD metric defined
in (3), without knowledge of whether an RFT transition occurred.
If the EMD surpasses the chosen threshold of 0.1, a circuit
optimization is triggered; otherwise, the circuit configuration
remains unchanged.

After 1000 total iterations, the power that could have been
achieved during each iteration was determined. Fig. 4 shows the
transmission frequency range versus time, the EMD for each
transition, and the RF output power performance near the largest
missed improvement. Fig. 5 shows the same features over a
different time period that includes the largest utilized
improvement found in the experiment.

Over the 1000 iterations, the RFI was changed 269 times,
with the threshold reoptimizing the circuit 219 times and
maintaining the existing configuration 50 times. Based on these
results, the metric and threshold performed as designed, with a
maximum unrealized performance improvement of 0.33 dB
(compared to the desired maximum unrealized performance
improvement of 0.5 dB) and an average realized performance
improvement of 0.48 dB. As the desired maximum unrealized
performance improvement was not exceeded, we conclude that
reoptimization is triggered in time to minimize the potential
performance loss associated with the periods when the radar is
not actively being optimized.
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Fig. 4. Realized and unrealized performance improvement (bottom) and
measured EMD (middle) of SDRadar frequency transitions (top) for a 200
iteration window centeed at the largest unrealized performance opportunity of
0.33 dB (Iteration 480).

As expected, the threshold initiated optimizations more than
necessary, with 133 of the optimizations resulting in less than
0.5 dB of performance improvement. If the EMD threshold was
instead chosen to permit some degree of false negatives, then the
number of optimizations providing less than the target
performance improvement would be reduced.

IV. CONCLUSIONS

A method for monitoring changes in cognitive radar
behavior has been demonstrated for use in determining when a
radar’s configuration has shifted significantly enough to warrant
reoptimization. This method has been shown to successfully
ensure that reoptimization occurs when more than 0.5dB of
additional output power can be obtained, while reducing the
number of unnecessary reoptimizations, improving the
consistency of the system’s performance. This work may be
useful in further development of an approach that dynamically
selects the reoptimization threshold based on the performance
improvements achieved by previous optimizations.
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Fig. 5. Realized and unrealized performance improvement (bottom) and
measured EMD (middle) of SDRadar frequency transitions (top) for a 200
iteration window including the largest realized performance opportunity of
1.76 dB (Iteration 969).
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