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Abstract — Existing impedance tuners are often able to
utilize characterization processes that model the underlying
behavior of the tuner’s fundamental parameters to efficiently
select a range of parameter settings that evenly span the
device’s potential impedance characteristics. However, new
tuner implementations cannot take advantage of these
processes without preestablished knowledge of their
underlying behavior, and this behavior can be difficult to
efficiently and reliably model. In such circumstances, a model-
less characterization process is required to determine the
device settings needed to span its possible impedance values
efficiently and evenly. Here, a process using a recursive
interval-halving approach is demonstrated for characterizing
impedance tuners without the use of a model.

Index Terms — automated impedance tuner, calibration,
device characterization, load pull

[. INTRODUCTION

Much effort has been expended into the development of
real-time configurable and optimizable RF transmitter and
receiver systems. One requirement for such a system is the
ability to alter the impedances presented to the system’s
amplifiers. Traditional load pull impedance tuners are too
slow for real-time operation and too large for integration
into a final deployable system. In their place, various
reconfigurable impedance tuners have been designed that
are able to adapt faster and are housed in a much smaller
package.

Although such newer technologies may not require the
use of a characterization when used to optimize an amplifier
system [1], it is nevertheless helpful to have a
characterization during development and testing as
amplifier behavior is most easily understood and analyzed
when performance is mapped to a Smith Chart.

Generating a tuner characterization can be a time-
consuming effort since every impedance point within the
characterization table must be individually tuned to and
then measured. Because the precise relationship between
the tuner’s fundamental parameters and the resulting
reflection coefficient (denoted in this paper using P — T')
may not be understood at the start of the characterization
process, the selection of a small set of fundamental
parameter settings that provide a given coverage of the
Smith Chart is nontrivial. In situations where the behavior
of the relationship P — I' cannot be easily modelled,
manual trial and error can lead to a good distribution of
parameter settings that results in the desired

characterization. However, an automated approach that is
able to determine a sufficient distribution greatly reduces
the time required and results in a more consistent result
between users.

II. RELATIONSHIP OF TUNER PARAMETERS TO IMPEDANCE

Traditional load-pull tuners implemented using a slide
screw assembly (such as the Maury Microwave Automated
Tuner System (ATS) tuner shown in Fig. 1) exhibit a
relatively straightforward  relationship between
fundamental tuner parameters and reflection coefficient [2].
In general, the distance of a mismatch probe from a
transmission line (denoted as h in this paper) is able to
control the magnitude of the tuner’s reflection coefficient
|T'| while the position of that probe along the transmission
line (denoted as x) is able to control the phase of the
reflection coefficient £I'. That is, the relationship (h, x) —
I" can be described as:

IT| < h

= .

(h,x) =~ {LF o x

An approximation of this relationship is illustrated in
Fig. 2.
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Fig. 1. Impedance tuners characterized in this work are the Maury
Microwave ATS tuner (Model MT982B) (top) and the EMCT of
Semnani [5] (bottom).
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Fig. 2. Illustration of the impact of carriage and probe position
within the Maury impedance tuner. In general, the magnitude of
the reflection coefficient (line segment in top plot) is controlled
by the probe position (middle), and the phase of the reflection
coefficient (arc in top plot) is controlled by the carriage position
(bottom). In practice, the probe position also impacts the phase by
adding a constant phase offset to the carriage position response.

If using a tuner with a more complicated relationship than
the previous (h,x) — T, these methods are not applicable.
In particular, the tuner for which we demonstrate our
method, designed by Semnani [4] and later adapted to
employ commercial-off-the-shelf actuators [5], utilizes two
adjustable evanescent mode resonant cavities. We will refer
to this tuner as the evanescent mode cavity tuner (EMCT).
This tuner is also shown in Fig. 1. The height of each cavity
is adjusted by extending plates attached to linear actuators,
whose extension lengths are denoted in 0.5 pm increments
as ny and n,. For this device, the input resonant cavity
height selects a tuning circle on the Smith Chart with center

and radius dependent on the value of n,, and the output
resonant cavity selects a point on this circle dependent on
the value of n,, as illustrated in Fig. 3. As with the slide
screw tuner, these relationships are nonlinear, with larger
values of (n,,n,) resulting in more significant impedance
variations. In this situation, the relationship (ny,n,) - T
cannot be simplified into two independent relationships as
was done for (h,x) = T.

EMCT I' Characterization

Im(T")
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Fig. 3. Illustration of the impact of actuator extensions n, and n,
within the EMCT of [5]. In general, the first actuator (n;) selects
an arc of varying radius and center on the Smith Chart (illustrated
with the red circle), while the second actuator (n,) sweeps along
a given arc. In reality, these arcs are not closed and are shown as
full circles for illustration purposes.

While a model can be determined by calculating the
center and radius of each tuning circle associated with n,,
each circle model would require sweeping n,, which is
complicated by its nonlinear behavior. The approach
presented by Spirito [3] could be applied for a fixed value
of ny, but the resulting mapping of n, would not be
transferrable to other values of n,. This would allow for the
creation of a characterization consisting of points uniformly
distributed across the Smith Chart, at the cost of two passes
over the fundamental parameter domain.

If uniformity can be sacrificed in favor of ensuring the
spacing between points in the final characterization is less
than a desired maximum, then a more generic algorithm
built upon an interval-halving approach can be used, with
fewer restrictions on the nature of the relationship P — T.
The following section illustrates this algorithm using a
tuner with arbitrary parameters P = (n4,n,).



III. RECURSIVE INTERVAL-HALVING MAXIMUM
SEPARATION ALGORITHM

Let the sorted set of allowed values for the parameters
(ny,n,) be represented as N; and N, , the Euclidian
distance between two values of I' be represented as 6T, and
the desired maximum point separation be represented as
AT'. For this discussion, sweeps of n, will be performed for
each selected value of n;.

For a given n, sweep, start by measuring I" for the first
and last points of the set N, and 6T between these two
points. If this distance is greater than desired maximum
point separation AT, then select the next chosen value for
n, as the midpoint of the set N,. Note that this has divided
the set N, into two different intervals: one that runs from
the first value of N, to the midpoint, and a second from the
midpoint to the final value of N,. Calculate 6T for the
endpoints of each of these two intervals and divide each
interval in halfif 6T > AT for each interval. If 6T < AT for
either of the intervals, then this interval does not need to be
halved further. This process can be repeated recursively for
each of the new intervals until 6T < AT for all intervals,
indicating the desired point separation is reached. This
process is illustrated in Fig. 4.

Note that this process is not guaranteed to achieve a
uniform spacing of points in the resulting characterization,
or even within a single parameter sweep. For example,
consider the simple example of characterizing the arbitrary
one-dimensional function

X
f(x) = e20
over the domain 0 <x < 100 with a desired point
separation of no more than 25, as shown in Fig. 5. While a
uniformly spaced characterization would contain around 7
points evenly spaced on the y-axis from 0 to 150, the
resulting characterization contains 10 points with some
intervals sampled beyond the desired density, such as the
three points within the range 0 < f(x) < 25.

A similar process can be used for the higher-level
parameter n,. Complete the described n, sweep process of
Fig. 4 for both the first and last points of the set N; to create
the first n, interval. To determine if this interval should be
halved, compute 8T between the two n, sweeps from the
N, endpoints. This provides a measure of 6T between the
N, endpoints as a function of n,. For each continuous
interval of the n, sweeps where the requirement 6T < AT
is violated, halve the n, interval and perform additional
sweeps of n,, with n, constrained to the violating interval.
This process is illustrated in Fig. 6, and an example
subdivision with multiple violating n, intervals is
illustrated in Fig. 7.
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Fig. 4. Flowchart demonstrating recursive interval-halving
process for a single parameter.

Example Characterization of f(z) = e?/2
0 - — — — — — — — — — .

1 e T
100
75f 6

50 -

Dependent Variable (f(z))

|
|
2B P e s v e e e oy " |
|
|
|

0 . i I I | | .
0 10 20 30 40 50 60 70 80 90 1

Independent Variable (x)

0

X

Fig. 5. Example characterization of the function f (x) = ez0 over
the domain 0 < x <100 with a desired maximum point
separation within the dependent variable space of 25. Each point
is numbered in the order that it is evaluated. Note that the
separation of points along the y-axis is not uniform, but also does
not exceed the desired separation maximum, which is the goal of
this characterization algorithm.
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Fig. 6. Flowchart demonstrating the recursive interval-halving
process for a second parameter.

IV. LIMITATIONS ON TUNING PARAMETER RELATIONSHIP

While this characterization algorithm functions without
generating a model of the underlying relationship between
the fundamental parameters and the resulting impedance,
there are some constraints that must be maintained to ensure
good performance.

First, the relationship P — T is assumed to be smooth—
that is, continuous changes in P will result in continuous
changes in I'. Violating this assumption could prevent the
interval-halving process from eventually converging. We
are unaware of any physically realizable tuner designs that
are capable of violating this assumption.

Secondly, it is assumed that the behavior of a given
fundamental parameter is such that all resulting values of T’
within a radius AI' correspond to a continuous set of
fundamental parameter values. In other words, the
parameter sweep should not revisit regions of the Smith
Chart that were reached during earlier portions of the
sweep. If this assumption is violated, it is possible that the
interval-halving process converges sooner than desired.
This assumption is actually violated by the EMCT of [5] for
the end points of a given n, sweep for extreme values of
n,. Compensation for this is accomplished by requiring that

a minimum set of points per sweep is visited. If the process
converges before this amount, the sweep interval is divided
according to a predetermined spacing which ensures the full
sweep behavior is observed, and then the interval-halving
process is executed with this initial seed of intervals.
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Fig. 7. Example n; subdivision with multiple violating N,
intervals. As n, is swept for ny = A and n, = B, 6T < ATl is
violated near the ends of the current N, set (mapping to the top
and bottom of the Smith Chart) and an additional interval in the
middle of the N, set (mapping near the vertical center of the Smith
Chart). In response, three sweeps of n, are made using n; =
0.5(A + B) using the three violating intervals of N,.

Finally, this process is not well suited for a tuner that is
controlled using fundamental parameters with a binary
functionality, such as the tuner presented by Calabrese [6].
Such a tuner is incompatible with the interval-halving
approach as the interval for each parameter is indivisible by
nature (each parameter only has two states—no interval
halving is possible).

V. RESULTS

An example characterization generated using the
approach of Section III with AI' = 0.1 and the EMCT of [5]
is shown in Fig. 8. The regions of N; and N, that were
sampled more densely during the characterization process
are shown in Fig. 9. Note that the spacing in Fig. 9 needed
to obtain the characterization of Fig. 8 is extremely
irregular and cannot be obtained by any simple linear or
exponential sweep.

To achieve the specified AT, the algorithm visited 971
impedances in 276 seconds, achieving a maximum point
separation of 0.08. While this is close to the desired



maximum point separation, the average point separation of
0.03 is much lower. This is because the tuning circles
associated with each n; value overlap in many instances
even for distant values of n;. As the characterization
algorithm only checks for point spacing within a circle and
between adjacently selected circles, oversampling can
occur along overlapping circles.
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Fig. 8. Characterization of the EMCT [5] generated using the

process of Section III with a target point separation of 0.1.
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Fig. 9. Subset of the fundamental parameter values chosen during
the characterization of Fig. 8. Values of n; < 3450 and n, <
3700 are sparsely sampled and excluded from this figure for
clarity.

To compare this method with the state of the art,
characterizations were performed of the Maury tuner using
the same method. Unlike the EMCT, each adjustable

component of the Maury tuner requires different amounts
of time to set to new positions. As such, it is recommended
to use the slower component as the higher-level
fundamental parameter n,. For the Maury tuner, the faster
parameter is the probe position, and the slower parameter is
the carriage position. To demonstrate, characterizations
using either option for n; and AI' = 0.2 are shown in Figs.
10 and 11 below. These characterizations both provide
comparable coverage to that achieved by the Maury
software characterization with a target I' separation of 0.2
shown in Fig 2.

Characterization of Maury Tuner, AT' = 0.2, n; — x

Im(T)

0 02 04 06
Re(T)
Fig. 10. Characterization of the Maury Tuner generated using the
process of Section I1I with a target point separation of 0.2 and the
carriage position as nq, resulting in a faster characterization

process.

Results for each characterization are summarized in
Table 1. As expected, characterizing the Maury tuner is
much faster when the probe position is used as n,,
completing in 67% of the time despite using 46 more
measurements. Additionally, our algorithm outperforms the
approach built into the Maury tuner’s software, evaluating
more than twice as many points in 30 fewer seconds.



Characterization of Maury Tuner, AT' =0.2, ny — h
1e

0.8

0.6

0.4

41 -08 -06 -04 02 0 02 04 06 08 1
Re(T)
Fig. 11. Characterization of the Maury Tuner generated using the
process of Section III with a target point separation of 0.2 and the
probe position as n;, resulting in a slower characterization
process.

TABLEI
CHARACTERIZATION PERFORMANCE METRICS

# of I'| Time (s)| Min 6T'| Max 6T'| Avg 8T
Maury Software 107 800(0.00056| 0.1538| 0.1226
(Fig. 2)
Maury Fast ny 250 77010.00032 0.1763| 0.0755
(Fig,10)
Maury Slow ny 204 1152(0.00075| 0.1673| 0.0947
(Fig.11)
EMCT 971 276(0.00005| 0.0785| 0.0280
(Fig. 8)

VI. CONCLUSION

An efficient approach for choosing tuning parameter
values required to achieve a minimum Smith Chart
separation in load-pull tuner characterizations has been
presented. This characterization approach is expected to be

especially useful and efficient in situations where the
relationship between fundamental tuning parameters and
reflection coefficient is not easily able to be modeled or
understood.
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