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Abstract—Software algorithms are incapable of generating
truly random numbers. Algorithmic pseudo random number
generators (PRNG’s) are used instead. Any pure randomness,
like initiating a random seed, requires a query external to the
PRNG algorithm. Is it possible for deep learning to mimic the
performance of a PRNG algorithm using a generated string
of numbers for training? There are at least two approaches
to doing this. In the first, a class of parameterized PRNG’s
is assumed a priori and learning consists of identification the
PRNG parameters. The second approach is nonparametric and
makes no model assumption. It seeks to forecast subsequent
pseudo random numbers learned solely from a string of numbers
generated by the PRNG. Our approach closely resembles the
latter. We show that learning the sequence of a variation of the
linear congruential generator random number generator to a good
approximation is possible using neural network deep learning.

Index Terms—Markov Chains, Piece-wise Continuous, Linear
Congruential Generator, Pseudo Random Numbers, Deep Neural
Networks, Nonparametric Forecasting

I. INTRODUCTION

True random numbers cannot be generated algorithmically
[1]. True (nonalgorithmic) random numbers are generated in
quantum mechanics in the process of radioactive decay.2

Pseudo random number generators (PRNG), algorithms that
simulate randomness, are implemented for many applications.
They are used to generate random numbers, even though they
are deterministic in nature. When used in electronic gaming,
the performance of a PRNG requires passing performance hur-
dles [2] such as those in the Die Hard battery of randomness
tests [3] available in the software package Dieharder.3

Besides randomness, PRNG’s must be difficult to invert.
Otherwise, future numbers can easily be derived from past
numbers. The more difficult the inversion, the better. However,
the current PRNG’s are generated from deterministic models

2Quantum random number generators can be purchased at Amazon.com
and are available on line. See. e.g., ANU QRNG: Quantum random numbers,
https://qrng.anu.edu.au/random-hex/

3The Linux documentation of the dieharder package can be found on
https://linux.die.net/man/1/dieharder.

specified by a few lines of code. In theory, the algorithm can be
discovered or at least mimicked given a sufficiently long string
of numbers generated by the PRNG. In practice, this is very
difficult to do, but it is possible to get a good approximation.
Instantiations, like cryptographically secure PRNG [5], require
high security scrutiny [6], [7]. The work described in this arti-
cle presents an experimental approximation of the predictions
of a PRNG from raw data. There are at least two approaches
to characterizing a PRNG. The first approach assumes a
priori a class of parameterized PRNG’s. The learning includes
identifying the PRNG parameters. The second approach is
nonparametric and it makes no assumption about the model. It
seeks to forecast subsequent pseudo random numbers learned
solely from a string of numbers generated by the PRNG.
Similar to the latter, our method only assumes that the PRNG
is a first-order Markov process. Only the latest results of the
PRNG are used to calculate the next one [8], [9].

II. BACKGROUND

Before general computers, references to long lists of printed
numbers [10] were used to manually pick random numbers.
For early computers, the classic Handbook of Mathematical
Functions (1965) [10] proposed programs for PRNG’s. An
example is the linear congruential generator (LCG). The
general form of a LCG is:

Xn+1 = (aXn + c) mod T. (1)

The LCG requires three parameters: {a, c, T}. A parametric
inversion would assume an LCG and attempt identification
of these three parameters whereas a nonparametric approach
makes no assumptions about the model and attempts inver-
sion by examining only a string of pseudo random numbers
generated by the PRNG. Using a parametric prior, George
Marsaglia presented a crack for a LCG [11]. The Python code
is available [12]. Only a couple of dozens of consecutive
pseudo random numbers are required to solve the inversion
problem and identify the parameters.
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Some LCGs, as it is the case of RANDU [2], are less
effective because of a poor selection of the parameters in (1).

A more recent and effective PRNG is the Mersenne Twister
[13]. But this PRNG is also invertible using a parametric
model. Accordingly to Shema [12], the version MT19937 of
the Mersenne Twister can be reverse engineered if a series of
624 consecutive numbers are known.

LCGs are Markov chains. A typical Mersenne Twister
generates random numbers in batches of 624 integers each
with 32 bit accuracy. Each batch derives from an internal state
of the Mersenne Twister. The transition between states is also
a Markov process in the sense that the previous state act as
the seed for the next.

Savicky et al. [2] test some of the most commonly used
PRNG’s by using neural networks to detect dependencies. Also
see Fan et al. [14].

Taketa et al. [7] provide a theoretical analysis of the inverse
relation between the mathematical complexity of the PRNG
and the quality of the possible machine learning approxima-
tions. Li et al. [4] use deep learning to obtain approximate
predictions of a PRNG with applications on randomness tests.
They work with integers using a standard LCG and their
method obtain accurate approximations when bounding the
period of the LCG.

A more complex PRNG, introduced in the next section, is
used for this work. It consists of a non-linear variation of the
LCG that uses real numbers.

III. METHODOLOGY

To test whether a feed forward deep neural network (DNN)
[15] can parametrically mimic a PRNG given a long string of
data generated by the PRNG, we use a variation of the LCG in
(1) suggested for use in early programmable calculators [16].
Specifically,

xn+1 = frac
[
(xn + π)

5
]

(2)

where “frac” is the fractional part operator and xn+1 is the
next output of the PRNG using xn as a seed. Then xn+1 is
used as the seed for xn+2, etc. The PRNG is deterministic, but
an initial random seed x0, chosen external to the procedure,
makes the rest of the numbers in the sequence pseudo-
stochastic. A plot of (xn + π)

5 for 0 ≤ xn ≤ 1 without the
frac operation in (2) is in Figure 1.

The form of (2) was chosen in part because it kept key
strokes to a minimum. Each of the operations of adding π,
exponent (to the fifth power) and frac requires a single key
stroke.

Due to the range ceiling of the original PRNG (2), the output
over the interval [0, 1) wraps to 913 piece-wise continuous
segments. The number of discontinuities is found according
to

(π + 1)
5 − π5 = 912.5.

Figures 2, 3 and 4 show the zoom-in versions of the output
of the original PRNG in (2). The geometrical visualization of
application of the frac() part to Figure 1 consists of cutting
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Fig. 1. A plot of (xn + π)5 over the interval [0, 1].

the plot into pieces of height 1 and translating them down to
the range [0, 1).
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Fig. 2. Original PRNG in (2) over the interval [0, 0.005].

It is possible to approximate a piece-wise continuous func-
tion with a DNN [8], [9].

A simplified version of this PRNG is helpful for the
experimentation process:

xn+1 = frac
[(
xn +

π

3

)5]
(3)

The experimentation with this simplified version of the PRNG
provided some intermediate results and it also served as a
starting point to solve the original version of the PRNG.

The PRNG in (2) is referred to as the original PRNG and
the one in (3) the simplified PRNG.
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Fig. 3. Original PRNG in (2) over the interval [0.5, 0.505].
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Fig. 4. Original PRNG in (2) over the interval [0.995, 1).

The simplified PRNG reduces the number of continuous
segments of the output over the range [0, 1) from 913 to 35.
Its shape is shown in Figure 5 over the entire range of [0,1).

IV. EXPERIMENTS

The numbers of continuous segments of the original PRNG
and the simplified PRNG differ by over an order of magnitude
(from 913 to 35). Consequently the experiments for each of
them use different DNN architectures and the preprocessing
of the input also varies.

A. Simplified PRNG

The complexity of the simplified PRNG already requires
a DNN with many nodes and layers to learn the model. But
the PRNG has only one input, xn, that proved insufficient to
train the DNN. To solve this problem, a preprocessing step

xn

x
n
+
1

Fig. 5. Simplified PRNG in (3) over the interval [0,1).

was added to the system consisting of a transformation from
the one dimensional input to an 100-element vector:[

xn, 2xn, . . . , 34xn, x
2
n, . . . , x

34
n , x

−34
n , . . . , x−2

n

]
(4)

This strategy with increased dimension of input does not suffer
from the curse of dimensionality [17], because all the input
features in (4) lie on a twisted one-dimensional line in a one-
hundred-dimensional space.

Figure 6 shows the architecture of the DNN consisting of
10 layers with 100 nodes each except for the output layer that
has 1 node. These are dense layers, the weight initialization is
orthogonal [18] and the bias initialization is 0.1. The activation
function for all the layers uses a sigmoid, optimizer ADAM,
and the loss function is the mean squared error. The DNN is
trained with 3 million pseudo random numbers using a batch
size of 35,000 during 38 hours on a NVIDIA GPU model
GTX 2080 Ti.

B. Original PRNG

For the original PRNG, the one-dimensional input, xn, of
the PRNG was preprocessed into a 512-element vector:[

xn, frac
(
xn +

1

512

)
, . . . , frac

(
xn +

511

512

)]
(5)

The numbers of the vector in (4) sweep over a wide range. The
vector in (5) restricts the range of the input on the unit interval
while keeping the dimension of the input at 512. Note there is
no raising the terms in (5) to the 5th power so no parametric
hint is given to the DNN on the locations of the discontinuities
in the PRNG. This choice of input worked well.

In the previous experiment, using the preprocessing of (4), it
is observed that the training process starts by approximating
all the predictions with a value around 0.5 and then slowly
learns one segment piece at a time from left to right with
high accuracy. The learning keeps going from left to right.
The training process also presents diminishing returns. With
the preprocessing of (5) the training is faster. Instead of
learning slowly from left to right with diminishing returns,
this preprocessing produces a faster learning pattern where all
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Fig. 6. Model of the DNN used to approximate the simplified PRNG.

the pieces are learned simultaneously. The downside of the
approach is a loss of accuracy.

Figure 7 shows the architecture of the DNN consisting of
3 layers of 512 nodes, 2 layers of 256 nodes and the output
layer of 1 node. All the layers, except for the input layer, are
interspersed with batch normalization. They are dense layers,
the weight initialization is orthogonal and the bias initialization
is 0.01. The activation function for all the layers is sigmoid,
optimizer ADAM and the loss function is the mean squared
error. It is trained with 1 million sequential pseudo random
numbers using a batch size of 35,000 during 3 weeks on a
NVIDIA GPU model Tesla V100.

Fig. 7. Model of the DNN used to approximate the original PRNG.
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V. ANALYSIS

Following the previous section, the results of the simplified
PRNG and the original PRNG are analyzed here.

A. Simplified PRNG

The mean square error (average of the squared errors) value
on the trained DNN versus target value is about 0.00236. The
results are shown in Figures 8, 9, 10 and 11. Figure 8 shows
the DNN approximations in orange superimposed over the true
pseudo random numbers in blue. The accuracy is such that the
blue color is only visible close to the discontinuities. Figure 9
illustrates the displacement between the DNN predictions and
the pseudo random numbers. Again, the approximations are
clear except for the points closer to the discontinuities of the
PRNG function. Figures 10 and 11 show the same histogram
with 250 bins from 100,000 samples, on different scales, illus-
trating the distribution of the error of the approximations of the
DNN. For almost half of the cases the error (magnitude) is less
than 0.004, and about 90% of the numbers are approximated
with an error less than 0.02. The error histogram in Figure 10
is shown on a more informative log scale in Figure 11.

Fig. 8. DNN predictions (orange) superposed to the simplified PRNG outputs
(blue).

B. Original PRNG

The mean square error of the trained DNN is 0.00261.
The results are presented in Figures 12, 13 and 14. Figure
12 illustrates the displacement between the DNN predictions
and the true pseudo random numbers. Figures 13 and 14 are
the same histogram on different scales. They have 50 bins
and were generated using 1,000,000 samples to illustrate the
distribution of the error of the approximations of the DNN.
For 60% of the cases the error is less than 0.04, and about
90% of the numbers are approximated with an error less than
0.1. The error histogram in Figure 13 is shown on log scale
in Figure 14.

The primary sources of DNN error are seen graphically
in Figure 9 where there are large variant spikes near 0 and
1. The same error is seen in Figure 12 where there are

Fig. 9. DNN predictions by PRNG outputs from 1,000,000 equidistributed
numbers (simplified PRNG). The blue diagonal corresponds to zero error.

Fig. 10. 250 bins histogram of the error of the approximation for the simplified
PRNG.

clouds shown in the upper left and lower right of the plot.
Errors primarily arise from the sharp discontinuities in the
PRNG. The discontinuities in (2) are evident in Figures 2
through 4. The training error for the simplified PRNG at the
discontinuities is visible in Figure 8.

Here is an illustration of the source of these errors. A value
of xn = 0.2458111 in the original PRNG gives (xn + π)5 =
445.9999625 and, therefore xn+1 = 0.9999625. This is right
on the edge of a discontinuity as illustrated by the very close
xn = 0.2458112 giving (xn + π)5 = 446.0000283 and a very
different result of xn+1 = 0.0000283. Very small errors close
to 1 can thus give a result that flips the answer from a number
close to 1 to a number close to 0. The converse is also true.
This accounts for the spikes in Figure 9 and the two clouds in
Figure 12. In Figure 12 the modulo extensions of the plot in
the upper right hand corner can be seen both at the upper left
and lower right of the figure. Although faint, there are vertical
error streaks on both the left and right of Figure 12 akin to
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Fig. 11. Same histogram as in Figure 10 on a logarithmic scale.

Fig. 12. DNN predictions by PRNG outputs from 1,000,000 equidistributed
numbers (original PRNG). The blue diagonal corresponds to 0 error.

the spikes seen in Figure 9.

VI. CONCLUSION

The modified linear congruential generator (LCG) can be
mimicked by training a DNN. LCG’s are characterized by
a piece-wise continuous function that can be learned by a
DNN. Conventional DNN’s assume underlying continuity.
The modified LCG in (2) consist of a non-linear piece-wise
continuous function with many segments. We use DNN’s
to approximate PRNG’s with tens and many hundreds of
segments. It is a difficult task for DNN’s to learn functions
with large amounts of jump discontinuities. Both theoretical
and experimental work approximating non-linear functions
with DNN’s is already available in the literature, as well as
theoretical analysis on how DNN’s can approximate piece-
wise continuous functions. To our knowledge, this is the
first article showing how a non-linear piece-wise continuous
function with a multitude (913) of jump discontinuities can be
approximated experimentally.

Fig. 13. 50 bins histogram of the error of the approximation (original PRNG).

Fig. 14. Same histogram as in Figure 13 on a logarithmic scale.

The ability of DNN’s to nonparametrically crack LCG’s and
parametrically invert the more sophisticated Mersenne Twister
makes one worry about the use of PRNG’s in the fields of
cryptography and gaming. Better quantum random number
generators that cannot be inverted should be used.4
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