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Abstract
The identification of out-of-distribution content is critical to the successful implementation of neural networks. Watchdog
techniques have been developed to support the detection of these inputs, but the performance can be limited by the amount
of available data. Generative adversarial networks have displayed numerous capabilities, including the ability to generate
facsimiles with excellent accuracy. This paper presents and empirically evaluates a multi-tiered watchdog, which is developed
using GAN-generated data, for improved out-of-distribution detection. The cascade watchdog uses adversarial training to
increase the amount of available data similar to the out-of-distribution elements that are more difficult to detect. Then, a
specialized second guard is added sequentially. The results show a solid and significant improvement on the detection of the
most challenging out-of-distribution inputs.
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1 Introduction

Data augmentation is described as imagination or dreaming
by C. Shorten and T. M. Khoshgoftaar [13]. They survey dif-
ferentmethods of image data augmentation for deep learning,
including adversarial training and generative adversarial net-
works (GANs) [5]. Adversarial training can be used to attack
or defend systems, as well as to increase the amount of avail-
able training data. The goal of data augmentation is to create
new data samples from the existing training set. This new
data is obtained according to the purposes of the application
[12]. In this work, data augmentation serves to supplement
the kind of out-of-distribution outlier data that reside closest
to the distribution manifold.

In the previous work [2,3], the autoencoder watchdog
is introduced as a technique to identify out-of-distribution
inputs to classification neural networks. The autoencoder
watchdog combines input reconstruction with an error mea-
surement calculation. This error is a measure of the distance
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between the input data and the training data manifold in the
latent space.

Data samples distant from the manifold are determined to
be out of distribution. As calculated error decreases, input
data better resemble data close to the training manifold, and
the more fuzzy the classification becomes. The work pre-
sented in this paper introduces the cascade watchdog, which
specializes in identifying outliers data which resides close
to the manifold of the distribution. This is achieved through
a two-step process. First, training data are produced using
a GAN, which has been trained to generate near-manifold
images. Second, a binary classification neural network is
designed to differentiate between in-distribution and near-
manifold out-of-distribution data. The binary classifier is
then added to the original watchdog data pipeline, creating
a multilayered cascade watchdog. Additional layers may be
added, as necessary, to achieve the desired performance.

2 Background

GANs are effective tools for data augmentation. Since the
first publication, where Goodfellow et al. introduced GANs
in 2014 [5], a variety of techniques and applications have
been developed across diverse fields. Yi et al. [15] present a
review of adversarial training in medical imaging, one of the
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most prolific fields of application of GANs on data augmen-
tation.

The basic structure of a GAN consists of a generator and a
discriminator. The generator is trained to fool the discrimina-
tor, while the discriminator is trained to differentiate between
real and fake inputs.After aGANhas been trained, it provides
a source of freshly generated data samples, which resemble
real system inputs. Once the generator of the GAN is trained,
it produces in-distribution samples from noise. Variations of
GANS and their many applications are available in the liter-
ature [4,17,18].

This paper presents a method of adversarial training
inspired by the GAN model. The main contrast between the
generative adversarial training method presented here and
other widespread applications of GANs resides in the differ-
ent target. Normally, the goal of a GAN is to generate data
in the distribution of the dataset. However, in this paper, the
goal is to obtain out-of-distribution samples within a certain
distance of the distribution.

This work expands upon the concept of autoencoder
watchdog neural networks, previously identified as a tech-
nique for outlier identification in classification networks
[2,3]. The cascadewatchdog presented in this paper improves
upon the precision of the outlier identification task, demon-
strating improvedoutlier identificationwhile reducingmisiden-
tifications. In a nutshell:

1. The autoencoder serves as the discriminator of the GAN
module,

2. The GANmodule generates out-of-distribution data sam-
ples close to the distribution manifold, and

3. A combination of in-distribution and generated out-of-
distribution data is used to train the binary classifier.

The binary classifier specializes in identifying outliers that
are closer to the distribution manifold. Data far within the
manifold are easy to classify. Classification of data close to
the manifold surface is more difficult. Applying the autoen-
coder and the binary classifier in sequential order improves
outlier identification, while preventing the network from dis-
carding in-distribution elements by mistake.

Other approaches are available for outlier identification.
Atlas et al. [1] and Hwang et al. [6,7] identified manifold
boundary points using neural network inversion [8,9,14]. Yu
et al. [16] propose a method that identifies outliers that are
only far from the distribution. Lee et al. [11] use a genera-
tor component to produce data samples on the boundary of
the distribution. They train the classifier to assign less con-
fidence to the classification of inputs on the boundary of the
distribution. In order to obtain less confidence at the output of
the classifier for ‘boundary’ inputs, they set the output target

as the uniform distribution for ‘boundary’ inputs during the
training process.

Our approach differs from the previously mentioned
methods. The components of the cascade watchdog, the
autoencoder and the binary classifier, are designed, trained,
and deployed to optimize their effectiveness: The autoen-
coder is used in the loss function of the GAN, and the GAN
serves to generate an augmented dataset specifically crafted
to optimize the performance of the binary classifier so that,
once deployed, the layers potentiate each other.

3 Methodology

The distribution manifold lies is a small portion of the
input space. The autoencoder layer is capable of identify-
ing many outliers, covering a significant portion of the input
space. To determine the boundary between in-distribution
and out-of-distribution, the autoencoder uses a threshold
hyperparameter. When selecting the threshold, there is a
trade-off between false negatives (out-of-distribution data
samples that are not identified as outliers) and false pos-
itives (in-distribution data samples that are classified as
outliers). A large threshold reduces the false-positive rate
but also increases the false-negatives rate, whereas a small
threshold reduces the false-negative rate, but increases the
false-positive rate.

The second layer of the cascadewatchdog is a fine-grained
binary classifier that complements the autoencoder layer. The
binary classifier specializes in identifying outliers that reside
close to the distribution. The threshold of the autoencoder
can be increased to reduce the false-positive rate relying on
the additional layer of defense provided by the binary clas-
sifier, which decreases the false-negative rate safely. At the
end of this process, both the false-positive and false-negative
rates are reduced. More outliers are identified, and less in-
distribution data are erroneously discarded.

3.1 Adversarial watchdog

The autoencoder also supports the development of a GAN,
which generates out-of-distribution data samples close to the
autoencoder threshold. For training the GAN, two goals are
necessary to generate a rich dataset:

1. Producing data samples where the autoencoder produces
an error similar to the threshold.

2. Distributing the generated data samples across the bound-
ary of the manifold. To avoid the collapse of the GAN,
each generated output depends on a point on themanifold
taken from the in-distribution training set. Each gener-
ated data sample comes from one input on the training
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Fig. 1 Flowchart of the cascaded watchdog. An input that passes both
layers of defense is considered as pertaining into the distribution

data. The distance between generated outliers and inputs
must be similar to the threshold of the autoencoder. The
same error function between the input and output of the
autoencoder is used to measure the distance between the
generated out-of-distribution data sample and the origi-
nal in-distribution data sample.

The combination of these two targets generates a dataset
that is spread through the space near the boundary of the
distribution manifold, preventing the collapse of the GAN.

The sequence of steps to produce the second layer of the
cascade watchdog is:

1. Train the autoencoder.
2. Train the GAN and generate the dataset near the boundary

of the distribution.
3. Create a fine-grained binary classifier.

The last step consists of training the binary classifier in
two categories: in-distribution and out-of-distribution. The
original training dataset is labeled as in-distribution, while
the dataset near the boundary of the distribution generated
with the GAN is labeled as out-of-distribution.

After both the autoencoder and binary classifier are
trained, they combine sequentially to form the cascadewatch-
dog, as seen in Figure 1. First, the input is analyzed using the
autoencoder layer, which identifies whether the input is an
outlier or not. If the autoencoder does not identify the input as
an outlier, the input is then analyzed by the binary classifier.
If neither the autoencoder nor the binary classifier identifies
the input as an outlier, then the input is considered to be an
in-distribution element.

The performance of the binary classifier is evaluatedwith a
tenfold bias–variance analysis. The quality of the binary clas-
sifier is measured by observing the false and true negatives.
Figure 2 shows a Venn diagram of the cascade watchdog

Fig. 2 Venn diagram dividing the input space. The biggest area is the
set of outliers detected by the autoencoder, inside are those filtered by
the binary classifier, and the bold “M” is the manifold with some false
negatives around

formed by the autoencoder and the binary classifier. The
domain of the autoencoder is the full input space and the
outliers that are farther from the manifold are detected, while
the domain of the binary classifier is only the space that the
autoencoder does not filter. Ideally, all of the outliers are
detected,while all in-distribution data are permitted.Observe
that Figure2 does not contain false-positive outliers (i.e., no
part of the manifold is marked as out-of-distribution), but
has false-negative outliers (outliers that are very close to the
manifold are not detected).

4 Experimentation

The first step of the experiments is to train the autoencoder
with the MNIST dataset 1. Examples of the MNIST dataset
are shown in Figure 3. The GAN is trained to generate data
samples close to the boundary of the distribution (see some
examples in Figure 3).

The boundary of the distribution is approximated by the
threshold error function between the input and the output
of the autoencoder. The error function, LAE, chosen for the
threshold of the autoencoder is proportional to the root-mean-
squared error (RMSE). The formula for the RMSE is:

RMSE
(
x, x̂

) =
√√√
√1

n

n∑

i=1

(
xi − x̂i

)2
, (1)

and the autoencoder error function is

LAE
(
x, x̂

) =
√√√√

n∑

i=1

(
xi − x̂i

)2
, (2)

1 The MNIST dataset is available on TensorFlow: https://www.
tensorflow.org/datasets/catalog/mnist.
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Fig. 3 Illustration of the binary classifier training dataset. Each pair
of images in the columns is an input and its corresponding output of
the GAN. Images in the first row are original data samples from the
MNIST dataset; the second row are the corresponding GAN-generated

samples. The values in the captions of each Subfigure are theLAE errors
between original and GAN-generated samples. The images included in
this figure are selected from each class of the dataset at random

where n is the number of pixels of the images (for theMNIST
images, n = 28 × 28 = 784), xi is a pixel of the original
image, and x̂i is the reconstruction of the pixel by the autoen-
coder. According to (1) and (2),

LAE = √
nRMSE. (3)

For the experiments, a value of LAE = 5 is selected for the
autoencoder threshold.

The loss function of the GAN, LGAN, has four compo-
nents:

LGAN = a + b + c + d

4
(4)

where

a =| T − RMSE(x, y) |
b = max{0,RMSE(x, y) − T }
c =| T − RMSE(y,RAE (y)) |
d = max {0,RMSE (y,RAE (y)) − T }

and

• |.| is the absolute value.
• x is an input to the GAN, a data sample from the MNIST
training dataset.

• y is the GAN output, a data sample on the boundary of
the distribution generated by the GAN from the current
input, x , that is being used for training.

• RAE (y) is the reconstruction that the previously trained
autoencoder produces from the output of the GAN y.

• T is a threshold hyperparameter for the training of the
GAN.

T is a different variable from the autoencoder threshold, even
when they are technically related. T is an hyperparameter of
the GAN that is fine-tuned for the GAN to generate images

which the autoencoder will reconstruct with error close to
the autoencoder threshold.

To get images close to the autoencoder threshold, LGAN

penalizes manifold distances that are greater or smaller than
the threshold T . Distances to the manifold that are greater
than T (included in components a, b, c, and d) are penalized
double than those that are smaller than T (only included in
a and c), because the former added twice as much as the
latter in (4). This gives stability to the training process. At
the same time, LGAN is designed to satisfy the two goals of
the GAN stated in Sect. 3.1: Components c and d serve to the
purpose of Goal 1, by comparing the reconstruction error of
the augmented dataset with the threshold T , and components
a and b in (4) serve to the purpose of Goal 2, by comparing
each output of the GAN y to a particular data sample in the
manifold x .

Finally, the architecture of the binary classifier is shown
in Figure 5. The binary classifier is a standard convolutional
neural network classifier.

A geometrical parallelism can help to explain how LGAN

in (4) works. The GAN considers each data sample of the
training dataset to generate another one at a small distance
from the manifold. For training purposes, the generated data
sample is projected back to the manifold with the autoen-
coder. The training goal of LGAN is to make the distance
from x to y equal to the distance from y to RAE (y), and
equal to T . Intuitively, the GAN generates y from x in an
orthogonal direction from the manifold, at a distance T (x
lies on the manifold). This geometrical idea serves as inspi-
ration for LGAN in (4).

The results of the experiments show that thismethodology
to train the GAN produces diverse images at the desired dis-
tance from the manifold. To generate images with a specific
LAE value, the training of the GAN requires a smaller value
for the threshold hyperparameter T . This is consistent with
the multiplicative factor

√
n in (3). For instance, the GAN

needs T ≈ 0.2 to obtain results of LAE ≈ 5.25 (according
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Fig. 4 Architecture of the autoencoder. The same structure is used for
the autoencoder and for the GAN. Also, the GAN uses transfer learning
from the autoencoder for the encoder and only trains the decoder

to (3), 0.2
√
784 = 5.6); a GAN threshold of T = 0.05 pro-

duces images with LAE ≈ 1.3 (which is also relatively close
to 0.05

√
784 = 1.4). Setting the hyperparameter T � 0.3

makes the GAN collapse. Using grid search [10], the opti-
mal is T = 0.1375. With this value of T , the GAN produces
images with an average LAE of 4.14, which is below the

Fig. 5 Architecture of the binary classifier used as the second layer
defense of the cascade watchdog

threshold of the autoencoder value, set as 5, but it produces
the best results at the end of the experimentation pipeline.

After training the GAN, one data sample on the bound-
ary of the distribution is obtained for each input of the
original dataset (see Figure 3). The training dataset of the
fine-grained binary classifier layer consists of both the origi-
nal in-distribution data and the generated near-the-boundary
data.

The training of the autoencoder is excluded from the bias–
variance analysis. Once trained, the autoencoder is used
for the 10 experimental runs. On each run, the GAN is
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Table 1 Tenfold bias–variance
analysis for outlier detection of
the binary classifier. Note: The
first column corresponds to the
threshold applied to the output
of the softmax function on the
binary classifier

In-distribution certainty # True positive False positive
Avg. Std. Dev. Avg. Std. Dev.

1.0 0.77044 0.15077 0.03032 0.04879

0.99999999 0.77044 0.15077 0.03032 0.04879

0.9999999 0.74089 0.15728 0.01834 0.03079

0.999999 0.69939 0.16655 0.00752 0.01301

0.99999 0.63721 0.17212 0.00185 0.00320

0.9999 0.56401 0.15985 0.00030 0.00062

0.999 0.50184 0.13965 0.00006 0.00015

0.99 0.44579 0.11334 0.00001 0.00003

0.9 0.39786 0.09438 0.00000 0.00000

Fig. 6 ROC curve for outlier detection by the binary classifier (see
Table 1). The point (1, 1) and the diagonal, which would represent
random guess, are not included because they do not fit into the plot

trained reinitialized, allowing it to generate a fresh near-the-
boundary dataset; then, the binary classifier is zeroed and
then retrained. 50 000 data samples from the MNIST dataset
are used in this process.

In order to characterize the performance of the cascade
watchdog, 10 000 samples from the MNIST dataset and 10
000 outlier samples are used. The outlier samples are taken
from the Fashion MNIST dataset 2. Samples of the Fashion
MNIST dataset can be seen in Figure 7. The in-distribution
samples from theMNIST dataset used for testing are separate
from the samples used for training.

The architecture of the autoencoder (see Figure 4) has an
encoder and a decoder connected sequentially. In between,
the latent space has 16 features. The architecture of the

2 The FashionMNISTdataset is available onTensorFlow: https://www.
tensorflow.org/datasets/catalog/fashion_mnist.

GAN is the same as the autoencoder. Transfer learning is
applied for the encoder block of the GAN by copying the
weighs from the autoencoder. The encoder of the GAN is
then frozen during the training, and only the decoder block
of the GAN is trained. In essence, the autoencoder latent rep-
resentation of theMNIST training dataset is used as input for
the GAN decoder. Or, in other words, the generative com-
ponent of the GAN is trained to produce on-the-boundary
data samples from the autoencoder latent representation of
the in-distribution data samples.

5 Analysis

The workflow of the cascade watchdog (see Figure 1) has
two steps:

1. Autoencoder outlier detection.
2. Binary classifier outlier detection.

In the first step, the autoencoder detected 9347 outliers
out of 10 000 data samples taken from the fashion MNIST
dataset. In the second step, the remaining 653 outliers not
detected by the autoencoder are tested on the binary classifier.
The results of the tenfold bias–variance analysis are shown
in Table 1 and in Figure 6. In Figure 6, the true-positive
rate accounts for the fraction of the outliers that the binary
classifier detected, while the false-positive rate corresponds
to the in-distribution samples that the binary classifier layer
classifies as outliers. The ROC curve characterizes a very
good performance of the binary classifier, where the true-
positive rate increases to about 3

4 , while the false-positive
rate stays low. The specific values used to create this ROC
curve are shown in Table 1. The binary classifier has a true-
positive rate of 39.8% with 9.5% standard deviation, while
preserving a zero false-positive rate. The false-positive rate is
0 until the threshold of the binary classifier certainty is raised.
Approaching the certainty threshold to the limit (certainty
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Fig. 7 Examples of fashion MNIST outliers detected by the autoen-
coder (Subfig. 7a), the binary classifier with a certainty threshold of 0.5
(Subfig. 7b), and not detected (Subfig. 7c)

greater than 0%) produces a small value for the false-positive
rate (3%), while the true-positive rate improves from 40% to
77% in average.

In the experiments, the TPRof the standalone autoencoder
is 93.47%. Considering a TPR of 77% for the binary classi-
fier, the proportion of outliers that are identified on the system
is 0.9347+ (1−0.9347)×0.77 = 0.985981. Therefore, the
combined TPR of the cascade watchdog is 98.6%.

In Figure 7, observe the differences between true-positive
outliers filtered by the autoencoder and by the binary classi-
fier. Also compare the detected outliers with the false nega-
tives (unfiltered outliers). The outlier images not detected
by the cascade watchdog, such as those seen in Figure
7c, resemble features from the in-distribution MNIST data:
Angles, ovals, andwriting strokes (seeFigure 3).Between the
detected outliers in Figures 7a and 7b, the differenceswith the
MNIST data are more evident. The outliers detected by the
binary classifier (see Figure 7b) are visually different from
the MNIST data, but they also can be perceived as having
some subtle features in common. On the other hand, between
the outliers detected by the autoencoder (see Figure 7a), it is
rare to observe features similar to the in-distribution MNIST
dataset.

6 Conclusion

The cascade watchdog improves the trade-off between true
and false negatives of the stand-alone autoencoder. Adding
the binary classifier improves the true-positive rate, while
reducing the false-positive rate. The enhancement of the
outlier detection is possible due to the production of an
augmented dataset by means of adversarial training. The
autoencoder, the GAN, and the binary classifier work in con-
junction to produce successful results.

The results of the experiments show that the binary
classifier constitutes a significant contribution for out-of-
distribution identification, encouraging the application of
the binary classifier together with the autoencoder in future
implementations. The high true-positive rate obtained in the
experiments, combined with the low false-positive rate, con-
firms that the idea of splitting the out-of-distribution space
into different subsets is a good approach for the detection
of outliers. While the first layer defense (autoencoder) is
capable of detecting most of the outliers, the second layer
defense specializes in the out-of-distribution subspace that is
closer to the manifold of the distribution. Adversarial train-
ing is capable of generating an augmented dataset to train the
binary classifier. The cascade watchdog multi-tiered adver-
sarial guard passes the proof of concept stage successfully
and has the potential to be appliedmore broadly to real-world
classification problems, which require the system to identify
out-of-distribution inputs.
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