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Extrapolation of Load-Pull Data: A Novel Use of
GAN Artificial Intelligence Image Completion
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Abstract— Amplifier design, both in traditional approaches
and real-time circuit optimization, greatly benefits from fast
and thorough extraction of information from measurement data.
Using only a few performance samples at varying impedances,
deep learning image completion techniques can be utilized to
extrapolate an entire set of Smith chart load-pull contours.
In addition to speeding nonlinear device characterizations, this
extrapolation can be performed in an iterative fashion for use
as a circuit optimization algorithm with a very low number of
measurements. The techniques of this work have been tested in
the measurement of a nonlinear, large-signal amplifier. The load
impedance can be estimated with a typical error of <0.1 linear
units using as few as seven impedances and yields even better
accuracy with larger sample sizes.

Index Terms— Artificial neural networks, circuit optimization,
machine learning algorithms, measurement techniques, power
amplifiers.

I. INTRODUCTION

RUCIAL transistor performance information for ampli-
fier design is often gathered through an extensive process
that includes nonlinear measurement and characterization tech-
niques, such as load-pull measurements. Performing load-pull
measurements to characterize the maximum power, efficiency,
or linearity performance of a device over changing load
impedance often requires the measurement of many pres-
elected impedance points. To reduce the number of mea-
surements required in the design process, designers often
rely on software nonlinear device models created from mea-
surements over a subset of possible device configurations.
Meanwhile, in reconfigurable power amplifiers, the optimum
load impedance must be found through real-time measure-
ments, which must be minimized to allow fast adaptivity.
Both traditional and real-time design scenarios can benefit
from techniques that are able to extract more information
from fewer data points, either by reducing the size of load-
pull measurement datasets, accelerating model development,
or improving the rate of real-time optimization.
The ability of neural networks to learn and extrapolate per-
formance of an individual large-signal microwave device using
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a measured dataset has been previously demonstrated [1], [2],
[3], [4], [5], [6], [7]. Such approaches often seek to train an
individual network to model a single device for simulation and
design purposes, accelerating system development. However,
given the typical computational cost associated with training
neural networks, these methods may struggle in application to
real-time optimization problems.

Instead of using neural networks, many other approaches
for impedance optimization have been explored in the liter-
ature, including locating constant power contours and pro-
ceeding toward increased performance [8], fitting measured
data to an equation and solving for the optimal value [9],
genetic algorithms controlling a hybrid varactor/MEMS switch
tuner [10], and alternatively searching for optimal reflection
phase and gradually increasing reflection magnitude [11].
However, Barkate et al. [12] demonstrated that gradient-based
methods perform well for real-time circuit optimization when
compared with other typical algorithms.

Rather than train neural networks to model a device
(i.e., predict the output of a device given some input), it is
possible to instead train a network to directly predict measured
performance characteristics, such as output power or gain,
from sample measurements at a small number of configura-
tions. As an example, consider the proposed problem shown
in Fig. 1. Here, a subset of a device’s load impedance gain
contours has already been evaluated, and it is desired to obtain
the complete set of load-pull contours without additional
measurement.

Saini et al. [13] previously demonstrated a form of load-pull
extrapolation by generating polyharmonic distortion behav-
ioral models [14] for the device in question, using as few
as 15 measurements. It is possible to reduce the required
information even further by instead applying image completion
techniques from deep learning to extrapolate the unknown por-
tions of the load-pull contours, as shown in Fig. 1. In general,
image completion techniques have been successfully applied
to complicated datasets, including full-color photographs [15]
and partial electron microscopy [16].

In a preceding conference paper, we demonstrated the appli-
cation of image completion for the simple case of simulated
linear amplifier S-parameter data [17], with good predicative
capability shown using as few as nine measurements near
the center of the Smith chart. This present article demon-
strates, unlike the conference paper [17], success at extrap-
olating nonlinear load-pull data using the image completion
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Fig. 1. TIllustration of load-pull extrapolation objective: given the partial set
of load-pull measurements (top), it is desired to produce the complete set of
contours (bottom) without additional measurement. Reprinted from [17].

method trained on similar generated linear S-parameter data.
The previous conference paper [17] used only generated
S-parameter data to simulate contours and attempt to pre-
dict the linear, simulated results with image completion.
This present article demonstrates the accurate prediction of
measured, nonlinear device contours. The successful appli-
cation of this method to nonlinear devices demonstrated
using multiple nonlinear load-pull measurements is, as such,
a much broader and applicable accomplishment than the scope
of [17]. In addition, this work provides a process in which
a small number of points are algorithmically and iteratively
selected during measurement to provide quality extrapolation
with a minimum number of measurements, improving on
the use of fixed, square sets of measurements from [17]
and establishing how these techniques could be employed
for live circuit optimization in an adaptive system. Finally,
this present article demonstrates the successful use of the
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Fig. 2. Illustration of the function of the generator and discriminator networks
utilized within the GAN architecture used in this present article.

extrapolation approach in measurement results for a nonlinear
amplifier, while work [17] is limited to simulation demonstra-
tion of extrapolation for generated linear amplifier S-parameter
models.

Section II provides an overview of the load-pull extrapola-
tion method providing the basis for this work and introduces
a novel family of circuit optimization algorithms built upon
the iterative application of load-pull extrapolation. Section III
then shows the performance of this optimization algorithm for
live measurement data and compares the results to an existing,
gradient-based method. Section IV provides a more detailed
look at the quality of the individual extrapolations completed
in the experiments of Section III. Finally, Section V presents
conclusions from this work.

II. THEORY

The load-pull extrapolation and circuit optimization tech-
niques here are built upon the deep image completion method
demonstrated for simulated, linear devices in [17]. For pur-
poses of clarity, here is a brief overview of the approach.

To extrapolate full load-pull contours from a partial dataset,
performance measurements from the known impedances are
treated as an image for the purposes of image completion.
The term “image completion” is derivative of the use of
this approach to images. The “images” here correspond to
performance data plotted on the Smith chart, while the “image
completion” corresponds to filling in unknown portions of
these data.

The image completion process applies a gradient search
to a generative adversarial network (GAN) trained on known
load-pull contours. GANs utilize two networks pitted against
each other with opposing goals [18]. In this present article,
the discriminator network is trained to determine whether an
image is a member of the training set of load-pull contours or
a false, generated image. Meanwhile, the generator network
is trained to produce load-pull images that meet the criteria
learned by the discriminator, resulting in misclassification.
By iteratively training these networks (and taking care to avoid
overfitting), the discriminator learns how to recognize valid
load-pull contours and the generator learns how to produce
valid load-pull contours. The operation of these networks is
shown in Fig. 2, and the relationship of these networks to one
another is described in Fig. 3.

Given a well-trained GAN, load-pull extrapolation can be
achieved by performing a gradient search on the inputs to
the generator network, searching for an input Z that produces
a generated image G(Z) that closely agrees with the perfor-
mance at the measured impedances. This is shown in Fig. 3.
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Fig. 3. Tllustration of the image completion search process used in this present
article. The input to the generator network is revised over time to produce
load-pull contours that have good agreement with the known performance
contours and present the appearance of a real load-pull dataset.
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Fig. 4. WGAN-GP network topology for load-pull critic network. This
network operates on a 32 x 32 pixel grayscale load-pull image and produces
a single value estimating how far the input image is from the learned set of

valid load-pull images. Illustration synthesized using [21].
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Fig. 5. WGAN-GP network topology for load-pull generator network.

This network operates on a 128-element initialization vector and produces
a synthesized 32 x 32 pixel grayscale load-pull image. A hyperbolic tangent
activation layer provides the final scaling of the network output. Illustration
synthesized using [21].

The method avoids the need to train the neural networks for the
specific device under test, unlike the method used by Avolio
et al. [1], which uses measurement data to train a network for
modeling a specific device.

We use a Wasserstein GAN with gradient penalty
(WGAN-GP). The Wasserstein GAN architecture reduces loss
metric saturation, provides a more stable and robust training
process, and is less susceptible to vanishing gradients and
mode collapse [15], [19]. Because the WGAN-GP architecture
uses the Wasserstein distance for quantifying how far the
generated image is from the expected set (as opposed to
categorizing the generated image as belonging to the set), the
discriminator network is typically referred to as the “critic”
network instead. The network implementation and layer topol-
ogy for this present article are the same as in [17], originally
adapted from [20]. Figs. 4 and 5 show the illustrations of the
resulting network structure for the WGAN-GP generator and
critic networks used in this present article.

These networks have been trained using 100 000 sets of sim-
ulated output power contours for linear amplifier devices [17],
represented as 32 x 32 pixel images. These data have been
obtained by randomly generating amplifier S-parameters and
solving for the output power with various load impedances
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and a fixed 50-Q source impedance using the transducer gain
relationship from [22]. Each output power value is also subject
to simulated measurement noise of up to +720 u'W, which
corresponds to about 0.1 dB of error at 15 dBm. The resulting
images are standardized and preprocessed with a hyperbolic
tangent function as recommended by Li et al. [23], matching
the output form of the generator network.

For image completion, this present article uses a slightly
modified version of the algorithm in [17], which is originally
derived from [24]. This approach provides known data, spec-
ified as a masked image X, and produces a completed image
containing valid load-pull contours that accurately reflect the
known data. The mask of points providing measured inputs to
the generator network is described [17] by

1, X(n) is valid

M(n) = (1

0, X(n) is invalid
where n is an index giving the image pixel number.

In comparing G(Z) the image that is generated by the
generator network, to the measurement points, loss metrics are
used. Contextual loss is the similarity between the generated
image and the measured points %, using the mask M, and is
given by [17]

Lcontexl(z) = ”M * G(f) -M >l<£”1 (2)

Perceptual loss, on the other hand, compares the image created
by the generator network G(Z) to the dataset trained by the
critic network C() and is defined as follows [17]:

Lpercept(z) = IOg(l - C(G(é))) 3)

The overall loss is a linear combination of the contextual
loss and perceptual loss, with the relative weight of each
determined by a hyperparameter 4 [17]

L(é) = Lecontext (2) + jvaercept (2) “4)

In this work, we use 4 = 1. The optimization attempts to
obtain Z such that L(Z) is minimized.

For loss minimization, we use the Adam optimization [25]
with learning rate 0.01, f; = 0.9, £, = 0.999, and € = 1078,
While work [17] uses a fixed number of optimization iterations
when searching for an appropriate generator network input,
this present article instead monitors the loss metrics used
during optimization, greatly reducing the computation required
for each extrapolation. When the combined loss metric reaches
a local minimum, the search concludes, and the corresponding
generator output provides the load-pull extrapolation result.

The general process flow for a circuit optimization algorithm
using only load-pull extrapolation to drive exploration of the
search space is shown in Fig. 6. For each of the given steps
in the algorithm, different variations are possible.

The algorithm implementation used in this present article is
built on a simple “maximum addition” technique, where the
best predicted impedance from the previous load-pull extrap-
olation is chosen for measurement, and its performance is
added to the dataset used for the next extrapolation. The initial
point is chosen at random from one of the four pixels closest
to 50 Q. Using this measurement, an (essentially random)



4852

Perform initial
measurements

\

Check
for search
convergence

Converged

Return to Best
Impedance

Not Converged

Run Load-Pull
Extrapolation

Y

Perform additional
measurements (if any)

J

Fig. 6. Generic process for circuit optimization using load-pull extrapolation.
Variations on the algorithm are possible by changing how the initial and
subsequent measurement points are selected based on extrapolation results
and by changing the convergence criteria.

optimum is generated by extrapolation, and this optimum is
then measured and used with the measurement at the initial
50-Q point to predict the next optimum. The predicted optima
continue to be added to the dataset of measured points,
and the search converges when the most recently predicted
best impedance has already been evaluated during a previous
iteration, at which point the best measured impedance is
reported as the optimum. If applied to a frequency hopping
context or live system, the current impedance could be used
as the initial point of the optimization process instead of first
tuning near 50 Q.

This maximum addition technique is well suited for systems
where the time cost of performing a load-pull extrapolation is
low relative to the time required to tune to and evaluate a
new impedance value. However, if this situation is reversed
(i.e., it is faster to tune and measure the performance extrapo-
lations), it may be beneficial to evaluate multiple impedances
per extrapolation. For example, the eight pixels surrounding
a predicted optimal impedance could also be evaluated in
addition to the optimal impedance. This also permits a more
sophisticated convergence check that looks for the presence of
some local maximum performance. Given the typical convex
nature of output power contours on the Smith chart, any
local maximum would be assumed to be the global maximum
without requiring an additional search.

III. DEMONSTRATION OF CIRCUIT OPTIMIZATION VIA
LOAD-PULL EXTRAPOLATION

A. Test Configuration

The circuit optimization via load-pull extrapolation tech-
nique of Section II has been tested and measurement demon-
strated using the Skyworks 65017-70LF InGaP packaged
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amplifier with a bias voltage of 7 V. For each frequency under
test, the Skyworks amplifier was power swept with a 50-Q load
impedance to find the 3-dB compression input power; these
3-dB compression power values are used for all the results
in this article. For this device, it is necessary to offset the
measured powers by 20 dB to place them in the expected range
for the image completion networks. In the event, this offset is
unknown for a device, and it can be learned on the fly as part
of the measurement process, offsetting the measured powers
to fall near the network’s expected average power. This avoids
improper extrapolation caused by power values that lie in the
highly nonlinear range of the hyperbolic tangent activation
function.

In this simple load-pull setup, the harmonic terminations of
the device under test were not controlled or known. Stancliff
and Poulin [27] and Colantonio et al. [28] demonstrated the
use of harmonic load-pull measurements in device design and
optimum termination. The harmonic terminations of the device
impact performance and contour shape. In this situation, since
the harmonic terminations, in general, vary as the fundamental
load reflection coefficient is varied, it is expected that the
contours will be different than for fixed, known harmonic
terminations. This, perhaps, may make it even more difficult
to accurately predict the device performance in most modeling
cases. However, in this case, an image processing approach is
used to generate the contours, and it is limited to extrapolating
from what it can “see” based on the limited measurement
dataset, irrespective of device harmonic termination impacts.

All image completions in this section are run using a com-
puter with an NVIDIA GeForce RTX 2070 Super GPU, AMD
Ryzen 3700X CPU, and 32 GB of DDR4-3200 RAM, with
an average image completion time of 1.1 s. Measurements are
acquired using custom MATLAB software with a traditional
load-pull system (Maury Microwave passive automated load-
pull tuner and Keysight Technologies signal generator and
power meter).

B. Measurement Results

The circuit optimization technique was tested at 21 fre-
quencies between 2 and 4 GHz, spaced at 100-MHz intervals.
The 50 searches were performed at each frequency (a total of
1050 searches). The results from several example searches at
various frequencies are shown in Figs. 7-9. Each figure shows
the similarity between the real and final predicted contours,
as well as the true optimal impedance and the optimized
impedance. “Original Data” represents the real contours,
obtained for comparison through traditional load-pull measure-
ment. “Final Extrapolated Data” represents the extrapolated
load-pull contours based on the complete collection of “Mea-
sured Points.” The “Final Predicted Optimum Impedance”
is the optimum point extrapolated from all measured data.
The “Search Optimum Impedance” is the impedance with
the best performance over the course of the search. These
points are often different, as the final predicted optimum
impedance point is extrapolated from all data, whereas the best
measured point (labeled the “Search Optimum Impedance”) is
the best performing point of the measured data, rather than
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Results for a single run of the load-pull extrapolation circuit
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Fig. 9.

Results for a single run of the load-pull extrapolation circuit

optimization algorithm at 2 GHz. This search evaluated seven impedances
in 63 s, converging to an impedance 1 pixel up and to the left of the true
optimal impedance, with an associated performance loss of 0.09 dB.
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LP Max Power: 18.7dBm Pred Max Power: 18.4dBm Search Max Power: 18.6dBm
qrgdiction Loss: 0.22dB Search Loss: 0.045db Elapsed time: 66.67s 18

Output Power (dBm)

&> Original Data .
ZE DFinal Extrapolated Data %
® Measured Points

True Optimal Impedance
Final Predicted Optimal Impedance
Search Optimal Impedance

Fig. 8.  Results for a single run of the load-pull extrapolation circuit
optimization algorithm at 2.7 GHz. This search evaluated seven impedances
in 67 s, converging to an impedance 1 pixel to the left of the true optimal
impedance, with an associated performance loss of 0.05 dB.

the extrapolated optimum. In all three of these examples, the
selected maximum power varies from the optimum power by
less than 0.1 dB, with eight or fewer impedances evaluated.

optimization algorithm at 4 GHz. This search evaluated eight impedances
in 73 s, converging to the true optimal impedance.
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Fig. 10. Overview of search results for circuit optimization with load-pull
extrapolation. Results are shown for 1050 searches run across 21 frequencies
from 2 to 4 GHz. Power loss is the difference in performance for the optimal
load-pull impedance and the final search impedance.

This is a significant improvement on traditional load-pull
measurements and on impedance optimization algorithms,
given both the accuracy and the small number of required
measurements.

A complete overview of the achieved performance (com-
pared to load-pull maximum) and elapsed time for all
1050 trials is shown in Fig. 10. To accurately compare the
search performance against the maximum power reported by
the load-pull for each frequency, the load-pull performance
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Fig. 11. Results for a suboptimal run of the load-pull extrapolation
circuit optimization algorithm at 2.8 GHz. This search converged early after
evaluating four impedances in 39 s, missing the true optimum by a significant
margin.

(obtained from the traditional load-pull measurements) for the
final search impedance is used in place of the power reported
at the end of the search. This eliminates the impact of small
variations in measured power that occur over the significant
time needed to run all 1050 trials.

Fig. 10 shows that the search algorithm is generally success-
ful, converging to within 0.5 dB of the optimal performance
95% of the time (1001 out of 1050 trials). Of these trials,
the search converges within 60.5 s on average, with 95% of
these searches converging within 84 s. In addition, more than
half the searches obtain performance within 0.1 dB of the
true optimum (547 out of 1050 trials). Instances that miss the
optimal impedance by a significant margin generally obtained
an early repeated maximum predicted impedance, leading to
early search convergence, such as the result shown in Fig. 11.
This can be mitigated by requiring a minimum number of
measured points prior to convergence and selecting additional
impedances to evaluate by some other means when an early
repeat does occur. However, imposing a minimum number of
measurements also imposes a floor on how quickly the search
is allowed to converge.

Compared to a load-pull gradient search such as the one
implemented in [26], this algorithm is able to converge much
faster with significantly fewer measurements. The load-pull
gradient search mentioned n [26] proceeds by beginning at
a candidate point, measuring two neighboring points around
the candidate, and then proceeding a search distance in the
direction of steepest ascent. The gradient search mentioned
in [26] stops when the search distance, decreased when the
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Fig. 12.  Histograms of the elapsed times for the 14 gradient search trials

of [26] and the 1050 extrapolation search trials of this work are shown. For
each search type, the percentage of the total searches performed for each
algorithm finishing in a given time is plotted in the histogram.

next candidate performs more poorly than its predecessor,
is decremented below a defined resolution distance. His-
tograms of the elapsed times for the 14 gradient search trials
mentioned in [26] and the 1050 extrapolation search trials of
this work are shown in Fig. 12. For each search type, the
percentage of the total searches performed for each algorithm
finishing in a given time is plotted in the histogram. While
work [26] does not report elapsed times for each search,
we have estimated the timing by applying the average tuning
and measurement time for the traditional load-pull system to
the number of performance queries reported in [26] (assuming
that the computation time required for the gradient search is
negligible). By this standard, the searches performed in [26]
converge in an average time of 166.7 s—nearly double the
95th percentile time for the extrapolation searches that achieve
within 0.5 dB of the optimal performance. This faster conver-
gence comes at a cost of performance consistency: the total
variation in final impedance for the gradient search presented
is reported to be on the order of half a single pixel in the
load-pull extrapolation search (each pixel is roughly 0.06 units
wide on the Smith chart). Note that it may be possible to
improve the accuracy of the load-pull extrapolation algorithm
by training on a collection of nonlinear data, as opposed to
the simulated, linear data used in this article, or by increasing
the pixel density of the load-pull images.

IV. ANALYSIS OF NONLINEAR LOAD-PULL
EXTRAPOLATION QUALITY

Following up on the results mentioned in [17] for lin-
ear devices, this section considers the quality of the load-
pull extrapolations performed as part of the searches in
Section III. Over the course of those searches, extrapolations
were performed using anywhere from 1 to 14 measure-
ments. However, only one extrapolation each used 13 and 14
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TABLE I

NONLINEAR LOAD-PULL EXTRAPOLATION PERFORMANCE:
PREDICTED PEAK STATISTICS

Mean | Median
Power | Power | MeanI; | Median I}
Number of |Sample| Error Error Error Error
Impedances | Size (dB) (dB) |Magnitude| Magnitude
1 1050 | 2.35 2.03 0.612 0.595
2 1050 | 3.65 3.51 0.655 0.609
3 1049 3.38 2.99 0.564 0.551
4 1047 1.35 0.477 0.275 0.204
5 1013 | 0.813 | 0.330 0.203 0.144
6 747 0.378 | 0.238 0.146 0.129
7 416 0.517 | 0.193 0.135 0.091
8 197 0.488 | 0.199 0.129 0.091
9 81 0.331 | 0.172 0.132 0.091
10 34 0.900 | 0.156 0.128 0.091
11 12 0.181 | 0.171 0.107 0.078
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Fig. 13.  Power error box plot (median, quartiles, and extremes) for the

extrapolations performed in Section III. Here, an error is the difference
between the measured load-pull maximum performance and the maximum
power reported by the extrapolated load-pull.

measurements, and only five extrapolations used 12 measure-
ments. Figs. 13 and 14 show statistics for the error in the
predicted power and optimal impedance for all extrapolations
with at least ten extrapolations per input dataset size. Table I
provides a numeric summary of these results for comparison
with the simulated, linear results mentioned in [17].
Comparing the results mentioned in Table I and [17], the
extrapolations based on at least seven measurements per-
form comparably to the linear results with 81 measurements
grouped around the center of the Smith chart, based on
the median I'; error magnitude. (For comparison purposes,
we prefer the median statistic as it more closely represents the
typical extrapolation result without as much influence from the
rare strong outliers visible in Figs. 13 and 14.) This finding
suggests that the load-pull extrapolation benefits greatly from
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Fig. 14. Load impedance error box plot (median, quartiles, and extremes)

for the extrapolations performed in Section III. Here, an error is the distance
between the measured load-pull optimal reflection coefficient and the optimal
reflection coefficient reported by the extrapolated load-pull.

having a collection of points scattered throughout the Smith
chart, as opposed to a group of points near a single area. This
finding may be useful for other microwave device modeling
applications, such as the results mentioned in [1], which used
measurements from a uniform grid in a single area of the
Smith chart. In addition, the extrapolation method continues to
perform quite well on nonlinear measurements, despite having
only been trained on simulated, linear devices.

V. CONCLUSION

The ability to extrapolate nonlinear characteristics of ampli-
fier output power versus reflection coefficient (load-pull) from
partial datasets utilizing deep learning image completion tech-
niques has been demonstrated. This approach has produced
good predictive ability (median optimal I'; error vector mag-
nitude below 0.1) with as few as seven measured impedances,
even when the underlying neural networks are only trained
on randomly generated linear S-parameters. Load-pull extrap-
olation accelerates amplifier optimization processes, such as
traditional device characterization load-pull measurements or
real-time impedance tuning techniques, by quickly identifying
areas of interest. Accelerated impedance tuning has been
demonstrated using an iterative extrapolation method, provid-
ing significant time savings over a gradient search method
using the same hardware measurement platform.
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