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Advance Praise

Are human beings obsolete? Is that why fewer people are having chil-
dren? Bob Marks’s delightful Non-Computable You  offers a well-rea-
soned rebuttal. So be human, be creative!

—Gregory Chaitin, algorithmic information theory 
pioneer and discoverer of Chaitin’s number

Bob Marks’s Non-Computable You throws a big bucket of informed cold 
water on the runaway brushfire of Big-Tech hype that makes up far too 
much of modern AI.

—Bart Kosko, University of Southern California, 
author of Fuzzy Thinking and Cool Earth

This is a shockingly good book! I’ve listened to Bob Marks lecture over 
the years against the inflated claims by artificial  intelligence’s high 
priests. But this book ties together his critique of AI in a masterful 
and awe-inspiring way. I’m blown away. 

Bob himself is a founder of the field of computational intelligence, that 
part of AI with an actual record of achievement and with aspirations 
that are measured and realistic. He is thus ideally poised to demolish 
the hype and nonsense that infects AI when it moves from computer 
science to science fiction. “Humans are about to be superseded by ma-
chines,” “computers will match human intelligence and then exceed it,” 
“soon we’ll be uploading ourselves onto digital media and achieving 
immortality.” Marks shows convincingly that all such claims are more 
implausible than the myths of ancient times, and that in fact they con-
stitute a religious credo for modern materialists. 

But Marks’s case is not just negative, showing what computers can’t 
do. He also shows how humans have an incredible range of capacities 
that machines will never match or exceed, everything from the raw 
feels of sensation to the creativity of our greatest artists and inventors. 



Marks concludes that humans are exceptional and that they don’t share 
their exceptionalism with machines. If you’re going to read only one 
book on artificial intelligence, this needs to be it!

—William A. Dembski, author of The Design Inference

Fascinating and entertaining. I learned a LOT. So will you.
—Gary Smith, Fletcher Jones Professor 

of Economics, Pomona College

It is refreshing to have a writer of Marks’s stature write a definitive book 
on the relationship between artificial intelligence and human conscious-
ness. Marks leaves no stone unturned as he makes clear the limitations 
of algorithmic computation and Strong AI’s inability to ground and 
account for qualia, semantic meaning, intuitive insight/awareness, free 
will, and a host of other things that constitute human consciousness 
and intelligence. His placement of (alleged) emergent mental proper-
ties as comparable to getting a pony from horse poop (and, yes, the 
horse is prior to the poop!) is worth the price of admission. This inter-
esting, widely accessible book sets the record straight and must be read 
by thinking Christians who don’t want to be duped by the extravagant 
claims of certain scientists.

—J. P. Moreland, PhD, Distinguished Professor of Philosophy, 
Talbot School of Theology, Biola University, and co-editor 

of The Blackwell Companion to Substance Dualism

Because of a desperate craving for public attention, the news on artifi-
cial intelligence is by and large dominated by either unrealistic utopian 
fantasies or cataclysmic dystopian predictions. As a voice in the wil-
derness Robert Marks’s meticulous analysis of the scientific evidence 
behind the inherent limitations of AI and his masterful exploration of 
the powerful arguments for the age-old belief in human exceptionalism 
bring a refreshing tone of perspicacity and soberness to the ongoing 
debate. 

—Tobias A. Mattei, MD, Assistant Professor 
of Neurosurgery, St. Louis University

I have heard for some years that artificial intelligence (AI) will sur-
pass human intelligence within as little as thirty years, after which 



humans will become redundant (or even terminated if AI perceives us 
as a threat). Professor Bob Marks’s new book explains why he thinks 
that AI is fundamentally different from human beings and will not be 
able to fully replace us. I read his book with absolute fascination. I have 
known Bob for a long time, since he was the founding Editor-in-Chief 
of IEEE Transaction on Neural Networks, one of the most prestigious 
technical journals in AI that publishes peer reviewed original research. 
As a world-class researcher and a pioneer in AI, Bob is best known for 
his math and engineering skills—but now I am amazed by his talent in 
storytelling. Whether you eventually agree with his conclusion or not, 
I can assure you that the book will be an entertaining and informative 
read.

—Lipo Wang, PhD, Associate Professor of the 
School of Electrical and Electronic Engineering, 

Nanyang Technological University, Singapore

Written brilliantly by an expert who served as Editor in Chief of a lead-
ing AI journal and who helped lay the foundations of the field, Non-
Computable You will fascinate anyone interested in learning what to-
day’s AI revolution is all about. Marks is equally aware of AI’s amazing 
possibilities and of its limitations. You will find in this book precise 
references to the basic concepts of AI, but also a lot of funny and light-
hearted threads that combine useful and fun. An enjoyable and unique 
book.

—Jacek M. Zurada, PhD, Professor of Electrical and 
Computer Engineering, University of Louisville; Life Fellow 

of IEEE; Fellow of International Neural Networks Society

In Non-Computable You, Robert Marks patiently dismantles two reign-
ing myths of our age: that man is a machine and that machines will 
soon become men. Using the solid results of computer science and in-
formation theory, he shows that human beings transcend the machines 
we create, and fancier technology won’t change that fundamental truth.

—Jay W. Richards, PhD, Director of DeVos Center for 
Life, Religion, and Family at the Heritage Foundation; 

author of The Human Advantage: The Future of 
American Work in an Age of Smart Machines



Non-Computable You is a highly topical book where Robert Marks 
skillfully explains the great achievements, but also the limitations, of 
Artificial Intelligence (AI). Difficult topics like AI tests, neural net-
works, expert systems, the incompleteness of mathematics, the halt-
ing problem of computer science and algorithmic information theory 
are introduced in an intuitive but still very accurate way. This ability 
to explain difficult topics in a simple, pedagogical and humoristic way, 
with lots of examples, requires deep insights and understanding. From 
these examples it is evident that Marks himself made important con-
tributions to the theory and applications of AI. The book can be read 
by anyone who wants to learn more about the history of, the theory be-
hind, and the applications of AI, and most importantly, why algorithms 
and computer codes will not be able to replace the human mind. After 
reading this book you will on the one hand be very grateful for the great 
achievements of AI, but on the other hand you will even more realize 
that humans are wonderfully made, in a way that machines will never 
be able to copy.         

—Ola Hössjer, PhD, Professor of Mathematical 
Statistics, Stockholm University, Sweden

Marks wields a sledgehammer—but with the accuracy and adroit-
ness of a scalpel in the hands of a great surgeon who follows a perfect 
plan toward healing.  I hold out hope that AI, now deeply ill with (as 
Marks points out) over-hyped nonsense in its system, will be improved 
in health courtesy of this book. Computer scientists grow up learning 
the fundamental dichotomy between the computable and the uncom-
putable, but this book, so appropriately titled, explodes right out of the 
gates with compelling arguments for the proposition that we are simply 
non-computable. The very reason we remain alive, to subjectively expe-
rience the gift of life we’ve been given, is his first blow with the hammer, 
and it’s hard to imagine true believers in mere mechanical mind can 
sustain their faith in the face of Marks’s sustained, relentless case.

—Selmer Bringsjord, PhD, Professor of Cognitive and Computer 
Science, and Director of Rensselaer AI and Reasoning Laboratory



Dedication
To “I AM,” who is more extraordinary than all wonder-

ful things imaginable. His awesomeness is dimly but 
wonderfully illuminated by the intriguing mysteries of 
math, science, and artificial intelligence. And for some 

inexplicable reason, he loves and sacrificed for me.
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Part One: Brick 
Walls AI Will Never 

Go Through





1. The Non-
Computable Human

Our first successful humanoid robot—the first robot that is 
clearly on the road to a human-like imitation mind—won’t 
happen until we know how to imitate human emotions, and how 
to integrate them completely into artificial thought. Of course, 
such robots will feel nothing; we have no way to make a computer 
or any machine feel, and we probably never will.

—David Gelernter, Yale University1

If you memorized all of Wikipedia, would you be more intel-
ligent?  It depends on how you define intelligence. 

Consider John Jay Osborn Jr.’s 1971 novel The Paper Chase. In this 
semi-autobiographical story about Harvard law school, students are 
deathly afraid of Professor Kingsfield’s course on contract law. King-
field’s classroom presence elicits both awe and fear. He is the all-knowing 
professor with the power to make or break every student. He is demand-
ing, uncompromising, and scary smart. In the iconic film adaptation,2 
Kingsfield walks into the room on the first day of class, puts his notes 
down, turns toward his students, and looms threateningly.

“You come in here with a skull full of mush,” he says. “You leave 
thinking like a lawyer.” Kingsfield is promising to teach his students to 
be intelligent like he is. 

One of the law students in Kingsfield’s class, Kevin Brooks, is gifted 
with a photographic memory. He can read complicated case law and, 
after one reading, recite it word for word. Quite an asset, right?
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Not necessarily. Brooks has a host of facts at his fingertips, but he 
doesn’t have the analytic skills to use those facts in any meaningful way.

Kevin Brooks’s wife is supportive of his efforts at school, and so are 
his classmates. But this doesn’t help. A tutor doesn’t help. Although he 
tries, Brooks simply does not have what it takes to put his phenomenal 
memorization skills to effective use in Kingsfield’s class. Brooks holds 
in his hands a million facts that because of his lack of understanding are 
essentially useless. He flounders in his academic endeavor. He becomes 
despondent. Eventually he attempts suicide. 

This sad tale highlights the difference between knowledge and intel-
ligence. Kevin Brooks’s brain stored every jot and tittle of every legal case 
assigned by Kingsfield, but he couldn’t apply the information meaning-
fully. Memorization of a lot of knowledge did not make Brooks intel-
ligent in the way that Kingsfield and the successful students were intelli-
gent. British journalist Miles Kington captured this distinction when he 
said, “Knowing a tomato is a fruit is knowledge. Intelligence is knowing 
not to include it in a fruit salad.”3 

Which brings us to the point: When discussing artificial intelli-
gence, it’s crucial to define intelligence. Like Kevin Brooks, computers 
can store oceans of facts and correlations; but intelligence requires more 
than facts. True intelligence requires a host of analytic skills. It requires 
understanding; the ability to recognize humor, subtleties of meaning, 
and symbolism; and the ability to recognize and disentangle ambigui-
ties. It requires creativity.

Artificial intelligence has done many remarkable things, some of 
which we’ll discuss in this book. AI has largely replaced travel agents, 
tollbooth attendants, and mapmakers. But will AI ever replace attor-
neys, physicians, military strategists, and design engineers, among oth-
ers?

The answer is no. And the reason is that as impressive as artificial 
intelligence is—and make no mistake, it is fantastically impressive—it 



1 � The Non-Computable Human  /  17

doesn’t hold a candle to human intelligence. It doesn’t hold a candle to 
you.

And it never will. How do we know? The answer can be stated in a 
single four-syllable word that needs unpacking before we can contem-
plate the non-computable you. That word is algorithm. If not expressible 
as an algorithm, a task is not computable.

Algorithms and the Computable
An algorithm is a step-by-step set of instructions to accomplish a task. 
A recipe for German chocolate cake is an algorithm. The list of ingredi-
ents acts as the input for the algorithm; mixing the ingredients and fol-
lowing the baking and icing instructions will result in a cake.

Likewise, when I give instructions to get to my house, I am offering 
an algorithm to follow. You are told how far to go and which direction 
you are to turn on what street. When Google Maps returns a route to 
your destination, it is giving you an algorithm to follow. 

Humans are used to thinking in terms of algorithms. We make 
grocery lists, we go through the morning procedure of showering, hair 
combing, teeth brushing, and we keep a schedule of what to do today. 
Routine is algorithmic. Engineers algorithmically apply Newton’s laws 
of physics4 when designing highway bridges and airplanes. Construction 
plans captured on blueprints are part of an algorithm for building. Like-
wise, chemical reactions follow algorithms discovered by chemists. And 
all mathematical proofs are algorithmic; they follow step-by-step proce-
dures built on the foundations of logic and axiomatic presuppositions. 

Algorithms need not be fixed; they can contain stochastic elements, 
such as descriptions of random events in population genetics and weath-
er forecasting. The board game Monopoly, for example, follows a fixed 
set of rules, but the game unfolds through random dice throws and play-
er decisions.

Here’s the key: Computers only do what they’re programmed by hu-
mans to do, and those programs are all algorithms—step-by-step proce-
dures contributing to the performance of some task. But algorithms are 
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limited in what they can do. That means computers, limited to following 
algorithmic software, are limited in what they can do.

This limitation is captured by the very word “computer.” In the world 
of programmers, “algorithmic” and “computable” are often used inter-
changeably. And since “algorithmic” and “computable” are synonyms, so 
are “non-computable” and “non-algorithmic.”

Basically, for computers—for artificial intelligence—there’s no oth-
er game in town. All computer programs are algorithms; anything non-
algorithmic is non-computable and beyond the reach of AI.

But it’s not beyond you. 

Non-Computable You
Humans can behave and respond non-algorithmically. You do so every 
day. For example, you perform a non-algorithmic task when you bite into 
a lemon. The lemon juice squirts onto your tongue and you wince at the 
sour flavor. 

Now, consider this: Can you fully convey your experience to a man 
who was born with no sense of taste or smell? No. You cannot. The goal 
is not a description of the lemon-biting experience, but its duplication. 
The lemon’s chemicals and the mechanics of the bite can be described to 
the man, but the true experience of the lemon taste and aroma cannot be 
conveyed to someone without the necessary senses.

If biting into a lemon cannot be explained to a man without all his 
functioning senses, it certainly can’t be duplicated in an experiential way 
by AI using computer software. Like the man born with no sense of 
taste or smell, machines do not possess qualia—experientially sensory 
perceptions such as pain, taste, and smell. 

Qualia are a simple example of the many human attributes that 
escape algorithmic description. If you can’t formulate an algorithm ex-
plaining your lemon-biting experience, you can’t write software to dupli-
cate the experience in the computer.

Or consider another example. I broke my wrist a few years ago, and 
the physician in the emergency room had to set the broken bones. I’d 
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heard beforehand that bone-setting really hurts. But hearing about pain 
and experiencing pain are quite different. 

To set my broken wrist, the emergency physician grabbed my hand 
and arm, pulled, and there was an audible crunching sound as the bones 
around my wrist realigned. It hurt. A lot. I envied my preteen grand-
son, who had been anesthetized when his broken leg was set. He slept 
through his pain.

Is it possible to write a computer program to duplicate—not de-
scribe, but duplicate—my pain? No. Qualia are not computable. They’re 
non-algorithmic.

By definition and in practice, computers function using algorithms. 
Logically speaking, then, the existence of the non-algorithmic suggests 
there are limits to what computers and therefore AI can do. 

The Software of the Gaps
There are other human characteristics that cannot be duplicated by 
AI. Emotions such as love, compassion, empathy, sadness, and happiness 
cannot be duplicated. Nor can traits such as understanding, creativity, 
sentience, and consciousness. 

Or can they?
Extreme AI champions argue that qualia, and indeed all human 

traits, will someday be duplicated by AI. They insist that while we’re not 
there yet, the current development of AI indicates we will be there soon. 
These proponents are appealing to the Software of the Gaps, a secular 
cousin of the God of the Gaps. Machine intelligence, they claim, will 
someday have the proper code to duplicate all human attributes. 

Impersonate, perhaps. But experience, no.

Mimicry versus Experience
AI will never be creative or have understanding. Machines may mimic 
certain other human traits but will never duplicate them. AI can be pro-
grammed only to simulate love, compassion, and understanding. 
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The simulation of AI love is wonderfully depicted by a human-
appearing robot boy brilliantly acted by a young Haley Joel Osment in 
Steven Spielberg’s 2001 movie A. I. Artificial Intelligence. Before activa-
tion, the robot boy played by Osment is emotionless. But when his love 
simulation software is turned on, the boy’s immediate attraction to his 
adoptive mother is convincing, thanks to Osment’s marvelous acting 
skill. The robot boy is attentive, submissive, and full of snuggle-love.

But mimicking love is not love. Computers do not experience emo-
tion. I can write a simple program to have a computer enthusiastically 
say “I love you!” and draw a smiley face. But the computer feels nothing. 
AI that mimics should not be confused with the real thing.

Emergent Consciousness
Moreover, tomorrow’s AI, no matter what is achieved, will be from com-
puter code written by human programmers. Programmers tap into their 
creativity when writing code. All computer code is the result of human 
creativity—the written code itself can never be a source of creativity it-
self. The computer will perform as it is instructed by the programmer.

But some hold that as code becomes more and more complex, hu-
man-like emergent attributes such as consciousness will appear. (“Emer-
gent” means that an entity develops properties that its parts do not have 
on their own—a sum greater than the parts can account for.) This is 
sometimes called “Strong AI.”

Those who believe in the coming of Strong AI argue that non-algo-
rithmic consciousness will be an emergent property as AI complexity 
ever increases. In other words, consciousness will just happen, as a sort 
of natural outgrowth of the code’s increasing complexity.

Such unfounded optimism is akin to that of a naive young boy 
standing in front of a large pile of horse manure. He becomes excited 
and begins digging into the pile, flinging handfuls of manure over his 
shoulders. “With all this horse poop,” he says, “there must be a pony in 
here somewhere!” 
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Strong AI proponents similarly claim, in essence, “With all this 
computational complexity, there must be some consciousness here 
somewhere!” There is—the consciousness residing in the mind of the 
human programmer. But consciousness does not reside in the code itself, 
and it doesn’t emerge from the code, any more than a pony will emerge 
from a pile of manure. 

Like the boy flinging horse poop over his shoulder, strong AI pro-
ponents—no matter how insistently optimistic—will be disappointed. 
There is no pony in the manure; there is no consciousness in the code.

Uploading a Brain
Are there any similarities between human brains and computers? Sure. 
Humans can perform algorithmic operations. We can add a column of 
numbers like a computer, though not as fast. We learn, recognize, and 
remember faces, and so can AI. AI, unlike me, never forgets a face.

Because of these types of similarities, some believe that once tech-
nology has further advanced, and once enough memory storage is avail-
able, uploading the brain should work. “Whole Brain Emulation” (also 
called “mind upload” or “brain upload”) is the idea that at some point we 
should be able to scan a human brain and copy it to a computer.5 

The deal breaker for Whole Brain Emulation is that much of you is 
non-computable. This fact nixes any ability to upload your mind into a 
computer. For the same reason that a computer cannot be programmed 
to experience qualia, our ability to experience qualia cannot be uploaded 
to a computer. Only our algorithmic part can be uploaded. And an up-
loaded entity that is totally algorithmic, lacking the non-computable, 
would not be a person. 

So don’t count on digital immortality. There are other more credible 
roads to eternal life. 

Understanding and Searle’s Chinese Room 
An IBM computer program dubbed Watson famously took on two 
world champions on the quiz show Jeopardy. Watson was named after an 
IBM executive and not after the sidekick of Sherlock Holmes. Watson 



22   / Non-Computable You /  

gave the correct responses to many of the queries asked on the show. The 
computer program had access to all of Wikipedia and then some. But 
does IBM’s Watson understand what it is doing when sifting through 
tomes of data to find the right answer? Does Watson understand either 
the queries it receives or the answers it gives? Philosopher John Searle 
says no.

 Searle illustrates this convincingly with a first-person parable about 
being isolated in a large room. Also in the room are many file cabinets 
containing Chinese prose. 

The Chinese room accepts questions in Chinese slipped through a 
slot in the door. 

Searle, isolated in the room with his file cabinets, does not under-
stand Chinese. But, armed with the slip of paper from outside, Searle 
begins searching through the many stuffed file cabinets. His goal is to 
match the Chinese question written on the paper to an entry stored 
somewhere in the file cabinets. 

After some exploring, he finds the match on a filed index card. Also 
on the card, written in Chinese, is the response to the submitted query. 
Searle copies the response on the back of the slip of paper, returns the 
card to the file cabinet, and slips the paper with the response out the slot 
in the door.

From the outside, it looks like Searle understands Chinese. After 
all, the question was submitted in writing using Chinese and the re-
sponse is written in Chinese. But Searle doesn’t know Chinese! He can 
neither read nor understand Chinese. Likewise, a computer does not un-
derstand what it is doing. A computer operates as in the Chinese Room 
parable. Using algorithms, computers are queried and supply answers, 
but they have no understanding of what they are doing. 

IBM’s Watson is simply a humongous Chinese room using a Wiki-
pedia-like database for its file cabinets. Watson gives Jeopardy answers 
but has no understanding of what the questions and answers mean.
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We will return to Watson shortly. Now, however, let’s look at other 
examples of behavior that gives the impression of intelligence while the 
agent in fact lacks understanding.

Swarm Intelligence
Consider the remarkable abilities of swarming insects. Swarming in-
sects exhibit collective behavior that is decentralized—that is, no one 
insect is calling the shots. No one insect knows what the goal of its as-
signed task is. Each insect does its own thing, and yet the insects move as 
a group in organized and sophisticated patterns. How this happens has 
been of interest to AI research.

AI researchers have modeled swarms6 as a collection of loosely cou-
pled agents (bugs). Individually, bugs perform simple mindless tasks. 
These small localized tasks result in an overall behavior not apparent 
to (or intended by) the individual bug. The overall emergent behavior 
of swarms is controlled by a master intelligence—namely the AI pro-
grammer. Individual bugs have no idea how they are contributing to the 
swarm activity. AI researchers have successfully translated some of these 
principles seen in the natural insect world into algorithms in the world 
of artificial intelligence.

Robot Bugs
Here’s an example.7 A large bag of Skittles is dropped in the kitchen, 
and Skittles bounce and scatter all over the tile floor. Then a swarm of 
dumb little robot bugs is released. The robot bugs are algorithmically 
tasked with walking around randomly until they bump into a Skittle. If 
a robot bug that is not already carrying a Skittle bumps into a Skittle, the 
bug is programmed to pick up the Skittle. If the bug is already carrying 
a Skittle and bumps into another Skittle, the bug is programmed to im-
mediately put down the Skittle it is carrying. 

That’s all the individual robot bug knows: Bump into a Skittle and 
pick it up; bump into another and put the first Skittle down. Bump into 
another Skittle and pick it up, and so forth and so on. This is a simple 
iterative computer program for simple dumb bug robots.
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What’s the purpose of doing this? At the level of what each indi-
vidual bug is doing, the purpose of the simple set of instructions is not 
readily evident. But ultimately, here’s what happens: As time passes, all 
the Skittles will be cleaned up and placed in piles on the kitchen floor. 
The emergent behavior is due not to the intelligence of the robot bug, 
but to the bug’s programmer overseer, who knows the Skittle piling will 
happen when all the bugs perform their simple tasks.

This specific Skittle-gathering model explains algorithmically how, 
in the natural world, termites clear small pieces of wood scattered about 
and how ants clear their dead.8 

Swarm intelligence modeling deals generally with dumb bugs collec-
tively doing smart things. The emergent behavior of a swarm is often not 
evident from examining the rules programmed into the individual bug. 

This simple concept can be a little difficult to wrap our heads around. 
So, when teaching swarm intelligence,9 I often ask students to partici-
pate in a swarm intelligence demonstration. I have each student stand 
up and pick two classmates at random. Let’s say that you are a member 
of the class, and you stand up and choose John and Alice. 

When I say go, you must position yourself between John and Alice. 
Pretend they are angry with each other, and you are the peacemaker 
positioning yourself between them. 

Everyone in the room chooses two different people. Someone else, 
let’s say Frank, has probably chosen you as one of his two choices. So 
as you move to go between John and Alice, Frank is moving to position 
himself between you and the other person he has chosen. 

What happens when the whole class follows this simple algorithm? 
It’s not evident to you as you follow your assigned task—you’re focused 
only on your position in relation to John and Alice—but what happens 
eventually is this: everyone groups together into one cluster. 

Again, if you are given only the one simple rule to follow, the pro-
grammer’s overall goal is often not evident. But the simple procedure just 
described could be used to gather a swarm of robots to a single location.
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Here’s another example to ponder. This time, I won’t immediately 
reveal the solution.

You still choose two people in the class. But now you also randomly 
designate one as a bully who wants to punch you in the nose, and the 
other as your protector. You are afraid of the bully, so you must move to 
position yourself so that your protector is directly between you and the 
bully. Everybody in the class acts on these instructions. You are probably 
the protector or the bully of another student. If the whole class does this, 
what happens?10

In artificial intelligence, as in the natural world, even though indi-
vidual bugs don’t understand, their performance of simple operations 
can generate amazing results as designed by the programming overseer.

Particle Swarm
Swarm intelligence has many useful applications. The commonly used 
particle swarm optimization search algorithm of James Kennedy and 
Russell Eberhart11 is an example.

Particle swarm was motivated by observing how birds fly. You have 
seen a flock of birds fly in one direction and then, for some reason, change 
their trajectory and fly in a different direction. 

Here’s a model for what’s happening: Each bird is looking for food 
or some other objective—in the case of ducks, perhaps a pond in which 
to land. Each bird has a personal best solution of the best location. The 
local best location might have been identified a long time ago, but the 
bird follows the flock and, ever moving, remembers.

The best of all the birds’ observations is called the global best. The 
global best remains the same until some bird gets a personal best that is 
better than the global best. Then that bird’s personal best becomes the 
global best.

The particle swarm algorithm says each bird should fly in a direc-
tion that is some combination of the global and personal best locations. 
That’s all there is to particle swarm. Each bird is going on what he knows 
has been the best location before (global best) and on what he sees in the 
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current moment is better for him (his personal best). Ideally the flock ul-
timately finds the best possible location (the best of all the global bests).

So why does the flock of birds suddenly change its direction? Ac-
cording to the model, the global best has been replaced by a better solu-
tion, so the birds fly in the general direction of the new global best. Con-
sistent with the rule of simplicity at the agent level, the particle swarm 
algorithm can be written using only a few lines of computer code.12

Applications
The particle swarm algorithm has been applied to such diverse areas as 
electrodynamics,13 economics,14 control theory,15 medicine,16 and anten-
na design.17 I have worked on projects applying particle swarm to power 
grid security18 and sonar.19

Other swarms in nature have motivated other AI tools. Ants, for ex-
ample, find the closest path from the Milky Way chocolate bar dropped 
on the sidewalk to their anthill. Their ant line to and from the anthill 
solves an optimization problem, namely, that the shortest distance be-
tween two points is a straight line. If a wide stream of water separates 
the Milky Way from the anthill and there are two available bridges, the 
ants will choose the bridge that makes their trip shortest. AI researchers 
Marco Dorigo, Maura Birattari, and Thomas Stutzle generalized this 
swarm capability into an algorithm they call ant colony optimization.20 

The algorithm motivated by ant foraging has found many practi-
cal applications. It has been applied to data mining,21 vehicle routing,22 
and even disaster relief.23 I applied ant colony optimization to routing in 
wireless networks.24 

Biological Organs 
Now let’s consider a different type of swarm. When thinking about 
swarms in the natural world, we visualize ever-moving bugs or birds. But 
mobility isn’t always necessary. The agents in a swarm don’t necessarily 
have to travel. 

Consider your lungs, which are made of many types of cells. The 
most common are the epithelial cells that line the airways and make 
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mucus to lubricate and protect. Each cell operates individually, basically 
unaware of what an identical cell a small distance away is doing. Each cell 
performs a simple operation, yet collectively the cells perform an inter-
esting emergent function. Essentially, the epithelial cells form a swarm 
with no walking or flying agents. 

Social insects consist of dumb bugs collectively doing smart things. 
In like manner, an organ contains dumb cells collectively doing smart 
things.

Cellular Automata 
A digital form of swarm intelligence played on a rectangular grid is cel-
lular automata, the most popular example of which is John Conway’s 
Game of Life. The Game of Life can generate fascinatingly complex 
forms using simple rules characteristic of swarm intelligence.25

To understand the game, imagine a rectangular grid of squares. The 
grid extends as far as needed in all directions. Every square cell has eight 
neighbors: two vertically, two horizontally, and four diagonally. To visu-
alize the state, assume there is a light bulb in each cell. If a light in a cell is 
on, the cell is said to be alive. If the light is off, the cell is said to be dead. 

A cell’s neighbors decide whether the cell will come to life, continue 
living, or die in the next generation. Whether a light is on or off in a cell 
depends on whether the lights in the eight touching cells are on or off. As 
with an insect swarm, a cell has no idea of what is happening elsewhere 
on the grid. It is only aware of the eight touching cells. 

The Game of Life is controlled by four simple rules.26 Here they are: 

1. Under-population death: If a square cell is alive, its light is on. 
If there are fewer than two living cells in the eight adjacent 
cells, the cell dies. The light goes off because there is under-
population.

2. Life goes on: A living cell surrounded by two or three living 
cells lives on. The cell’s light stays on. 
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3. Over-population death: If there are more than three adjacent 
living cells surrounding a cell, the cell dies. In the next genera-
tion, the light is off. This is akin to over-population.

4. Reproduction: Any dead cell surrounded by exactly three liv-
ing cells comes to life. The light, initially off, goes on.

Even though each cell only knows what is happening in its own im-
mediate neighborhood, fascinatingly complex patterns can emerge from 
these four simple rules. “Oscillators” are patterns of various types that 
repeat themselves periodically. “Spaceships” are also repeating patterns, 
but these repeat themselves in a displaced manner so that the pattern 
seems continuously moving across the grid. “Guns” are like stationary 
oscillators, but every cycle spits out a sequence of spaceships that travel 
like equally spaced bullets across the grid. Patterns that evolve for long 
periods before stabilizing are called “Methuselahs.” And there are more.

The patterns that can be generated by Conway’s four simple rules 
have to be seen to be appreciated. To see some, visit the YouTube video 
“Epic Conway’s Game of Life.”27 You will be amazed. 

The Game of Life is... well... a game. But there are more serious ap-
plications of cellular automaton in science where rules akin to Conway’s 
four rules are used. Keith Schubert, for example, has applied the disci-
pline in his study of extremophiles—life forms that live in extreme en-
vironments like sulfur caves.28 The study is motivated by the knowledge 
that if life exists on a planet such as Mars, it must exist in extreme envi-
ronments. Some extremophiles studied by Schubert bear resemblance 
to and are modeled as cellular automata.

Stephen Wolfram looked at the results of various cellular automata 
rules and was astonished. In a TED talk, Wolfram said, “To understand 
[some of the results observed in cellular automata] I eventually had to 
create a whole new kind of science.”29 His claim, made seriously, was met 
with chuckles from the TED talk audience. Nevertheless, Wolfram’s 
work titled A New Kind of Science30 contains some compelling and po-
tentially useful insight into cellular automata. 



1 � The Non-Computable Human  /  29

Like social insect swarming, cellular automata primarily respond to 
what their immediate neighbors are doing. They know nothing about 
the objective of the overall pattern.

Understanding Understanding
The individual agents involved in cellular automata, swarm intelli-
gence, and chatbots responding to queries aren’t intelligent in the way 
humans are intelligent. AI does not understand what it does. The under-
standing comes from the human programmer who creates the algorithm 
to perform the emergent properties. The Game of Life, for example, has 
a user group of humans who create new and interesting patterns using 
Conway’s four simple rules.31 

Moreover, in any discussion of understanding as we are doing here, 
the ability to understand understanding is assumed. If you and I did not 
understand understanding, we could not talk about it. AI does not un-
derstand; and, more profoundly, AI will never understand understand-
ing.

AI and Common Sense
We’ve mentioned qualia (physical sensations). We’ve mentioned un-
derstanding (as opposed to blind obedience). Now let’s consider a prob-
lem that may be algorithmic but has a long way to go to match human 
performance.

Microsoft’s co-founder Paul Allen has pumped hundreds of millions 
of dollars into the Allen Institute for Artificial Intelligence in Seattle. 
His primary goal? To give AI common sense. “To make real progress in 
AI,” he said, “We have to overcome the big challenges in the area of com-
mon sense.”32 But even if AI reaches the point where it displays common 
sense, it will never understand why its decisions make sense.

Oren Etzioni, the director of the Allen Institute for Artificial Intel-
ligence, notes that AI “recognizes objects, but can’t explain what it sees. 
It can’t read a textbook and understand the questions in the back of the 
book.” In other words, “It is devoid of common sense.”33 
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Watson was impressive on Jeopardy and was a leap forward in AI ap-
plications even though Watson has no common sense. In fact, Watson’s 
handlers made sure to restrict the game to the narrow range in which 
Watson could excel; they asked the Jeopardy staff to pull their punches 
with the questions. Gary Smith reports: 

The IBM team was afraid the Jeopardy staff would write clues with 
puns and double meanings that could trick Watson. That, in and 
of itself, reveals one big difference between humans and computers. 
Humans can appreciate puns, jokes, riddles, and sarcasm because we 
understand words in context. The best that current computers can do 
is check whether the pun, joke, riddle, or sarcastic comment has been 
stored it its data base.

The Jeopardy staff agreed to select clues randomly from a stock-
pile of clues that had been written in the past, but never used.34

This was a fair solution. But in making the request, IBM confessed that 
Watson can be easily fooled by clues that humans readily understand. 
Watson has no common sense.

And as Watson’s handlers soon learned, in some contexts the lack of 
common sense can be a serious—even dangerous—drawback.

Watson Wears a Stethoscope
After Jeopardy, IBM’s goals were lofty. IBM asked: What can Watson 
do well? The answer: Watson can mine big databases for information. 
What better place for application than the medical field?

Over 1.1 million biomedical papers were published in 2013, accord-
ing to the Medline bibliographic database.35 On average, Medline lists 
more than two biomedical scholarly papers every minute, twenty-four 
hours a day, seven days a week. And Medline only lists the journals it 
considers reputable, so the true number of medical papers is larger. 

No person or team of persons can absorb all the material gushing 
from this fire hose. Imagine you are a physician treating a patient with 
cancer. As the physician making life-and-death decisions for your pa-
tient, you have compiled a long list of the details about the ailment. Your 
cancer patient displays symptoms of fatigue, a low-grade fever, fluttering 
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eye syndrome, and the condition commonly called hotdog fingers. You’d 
like to consult the medical database for literature relevant to your cancer 
patient. But the amount of literature is simple too voluminous for you 
to handle. 

Enter Watson. You instruct Watson, the data-miner, to dig into the 
literature and bring you papers relevant to your case. Watson puts on 
its hard hat, turns on its helmet light, grabs its pick and axe, and goes 
to work digging. Then Watson, its dirty work done in a fraction of a 
second, climbs out of the data mine and brings you all the publications 
relevant to your work. 

This sounds like a great task for Watson! The physician spends less 
time scouring the literature and lives are saved.

Unfortunately, Watson was a flop when assigned this task. Health 
News Review summarizes the sad story with their headline: “MD An-
derson Cancer Center’s IBM Watson Project Fails, and So Did the Jour-
nalism Related to It.”  The writer, Mary Chris Jaklevis, elaborates:

Launched in 2013, the project initially received glowing mainstream 
media coverage that suggested Watson was already being deployed to 
revolutionize cancer care—or soon would be. But that was premature. 
By all accounts, the electronic brain was never used to treat patients 
at MD Anderson. A University of Texas audit reported the product 
doesn’t work with Anderson’s new electronic medical records system, 
and the cancer center is now seeking bids to find a new contractor.36

And it wasn’t just that Watson was incompatible with MD Ander-
son’s system; Watson was fired for giving faulty advice. Medical reporter 
Julie Spitzer sums it up: “IBM’s Watson supercomputer, once hailed as a 
revolutionary cancer treatment tool, reportedly gave physicians inaccu-
rate cancer treatment advice, and company medical specialists and cus-
tomers reported ‘multiple examples of unsafe and incorrect treatment 
recommendations.’”37

Pulling no punches, Social Capital CEO and founder Chamath Pa-
lihapitiya made a blunt diagnosis: “IBM Watson is a Joke.”38
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“I think what IBM is excellent at is using their sales and marketing 
infrastructure to convince people who have asymmetrically less knowl-
edge to pay for something,” Palihapitiya said. The Texas translation of 
that is “Watson is all hat and no cattle.” Watson has appeal only to those 
who buy the company’s advertising hype.

A practitioner familiar with Watson’s medical failure puts the 
blame not on Watson, but on Watson’s programmers, saying, “There are 
not enough data scientists in IBM Watson who know medicine.”39 Fair 
enough. IBM continues to search for useful applications of Watson’s 
brains, and they well may find some.

But the fact remains: a fundamental problem with Watson is that 
like all AI, it has no common sense.

 Bob Dylan Meets Watson
Watson’s limitations were unintentionally highlighted by an often-aired 
television commercial featuring IBM Watson’s voice chatting with pop 
icon and Nobel Laureate Bob Dylan.40

In a male voice, Watson tells Dylan that it has read the lyrics to all of 
Dylan’s songs. Watson brags, “I can read 800 million pages per second,” 
and tells Dylan, “My analysis shows your major themes are time passes 
and love fades.”

After viewing the IBM advertisement with the dialogue between 
Watson and Bob Dylan, veteran AI researcher Roger Schank became 
angry. He said, “I will say it clearly. Watson is a fraud.… the ads are 
fraudulent.”41

 There are indeed some Bob Dylan songs where Watson’s assess-
ment is true. The often-covered Dylan tunes “It Ain’t Me Babe” and 
“Don’t Think Twice” are examples. But this is just a small ice cube on 
Dylan’s immense creative glacier. Contrary to Watson, “time passes and 
love fades” are not the “major themes” of Bob Dylan’s songs. Dylan wrote 
songs of protest in his early years like “Blowin’ in the Wind” and “The 
Times They Are A-Changing.” When Dylan became a Christian he 
wrote and recorded “You’ve Gotta Serve Somebody” and an album titled 
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“The Gospel Songs of Bob Dylan.” Why didn’t Watson pick up on these 
other dimensions of Bob Dylan?

According to Gary Smith, Watson was incapable of decoding these 
other themes—protest, religious faith—because they were not explicitly 
obvious from the song lyrics.42 Watson does not have the common sense 
to understand subtleties.

 For example, Dylan’s 1962 “Blowin’ in the Wind” was ranked num-
ber fourteen on Rolling Stone magazine’s list of the “500 Greatest Songs 
of All Time.”43 The song poses a series of rhetorical questions about 
peace and freedom. Consider AI assessing the deeper meaning of lyrics 
like the following:

Yes’n’ how many times must a man look up
Before he can see the sky?
Yes’n’ how many ears must one man have
Before he can hear people cry?
Yes’n’ how many deaths will it take till he knows
That too many people have died?
The answer, my friend, is blowin’ in the wind
The answer is blowin’ in the wind.44

If, under the topic “Bob Dylan,” Jeopardy gave as the clue “the number of 
times must a man look up before he can see the sky,” Watson would mine 
Wikipedia and come up with the answer, “How much is once?”

Watson will never understand the meaning of “Blowin’ in the Wind” 
in the way expressed in Rolling Stone, which said, “Dylan framed the 
crises around him in a series of fierce, poetic questions that addressed 
what he believed was man’s greatest inhumanity to man: indifference.”45 
Humans understand this; but when it comes to interpreting symbolism, 
Watson is far from the sharpest knife in the drawer.

Now let’s look at some simple examples that further reveal AI’s lack 
of common sense.
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Ambiguity and Flubbed Headlines
Groucho Marx started one of his quips with “I once shot an elephant 
in my pajamas.” Then he adds, “How he got into my pajamas I’ll never 
know.” 

Groucho was exploiting an ambiguity: Who was in Groucho’s paja-
mas? The most reasonable answer—the one we first go to when we hear 
that line—is that Groucho was wearing his pajamas. This is the com-
monsense interpretation. When Groucho pushes us to the less probable 
reading, we find the revealed ambiguity amusing. Groucho’s joke is an 
example of paraprosdokian humor, where a story ends with a fun twist 
often based on initially unapparent ambiguities.

Computers have no sense of humor and, given Groucho’s sentence 
without context, don’t have a clue who’s wearing Groucho’s pajamas. 

A fun example of AI’s lack of common sense when faced with am-
biguity is flubbed headlines. Seattle’s Microsoft, Amazon, and Boeing 
are headquartered near the coast in the state of Washington. Yet Seattle 
businesses were not concerned when faced with the headline “Tuna Bit-
ing Off Washington Coast.”

Why? Because of course tuna were not chomping off big chunks of 
Seattle beaches. We use common sense to identify the intended mean-
ing—good news for fishermen!—and the incorrect interpretation makes 
us smile. But AI can’t recognize ambiguity. It lacks common sense. 

In a flubbed headline you, the reader, know the correct interpreta-
tion of the headline; the incorrect interpretation is always the funny one. 
The flubbed headline “Kids Make Nutritious Snacks” is not about can-
nibalism. It’s a story about children working in the kitchen. And your 
determining the intended meaning is made with no external context 
other than your experience and common sense. AI, lacking both com-
mon sense and a sense of humor, won’t have a clue about the right and 
wrong interpretation of the flubbed headline “Include Your Children 
when Baking Cookies.” Nor will it realize that the headline “Prostitutes 
Appeal to Pope” is not about the moral failings of the Pontiff. 
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Because I like them, I collect flubbed headlines. Some are subtle. 
Others are immediately hilarious. But flubbed headlines have never 
made a computer chuckle.

Church announcements can contain the same ambiguity resident 
in flubbed headlines. Here’s an example: “There is a sign-up sheet for 
anyone wishing to be baptized on the table in the foyer.” Or what about, 
“Place your donations in the envelope along with the deceased person 
you want remembered.”

Purposefully ambiguous puns can also be effective in clever titles. 
An example is Otto Heilbrunn’s 1963 book Warfare in the Enemy’s Rear. 
Frank Turek’s weekly Christian podcast, Cross Examined, suggests 
both the courtroom procedure and issues related the cross on which 
Christ was crucified.

A fun test for AI would be to see if it could figure out the correct, in-
tended meaning of flubbed headlines if given access to the article appear-
ing below the headline. This additional information might be enough 
to provide algorithmic disambiguation. However, note that you, dear 
reader, can interpret the correct meaning immediately without reading 
the accompanying article.

Winograd Schemas
Winograd schemas are a similar class of ambiguous phrases.46 Here’s 
an example of a Winograd schema from Gary Smith’s fun book The AI 
Delusion: “I can’t cut that tree down with that axe. It is too small.”47

Here we have the vague pronoun “it.” Does “it” refer to the tree or 
the axe? Humans immediately understand that “it” refers to the axe. It’s 
obvious to you and me. 

Further, notice that the meaning of “it” can be altered in this sen-
tence by simply changing the word “small” to “thick.” Then we get, “I 
can’t cut that tree down with that axe. It is too thick.” The pronoun “it” 
now obviously refers to the tree. 
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A third word substitution points “it” to yet another place: “I can’t cut 
that tree down with that axe. It is too late.” Now “it” refers neither to the 
axe nor to the tree, but to time.

Other word choices can render the meaning unresolvedly ambig-
uous. For example, “I can’t cut that tree down with that axe. It is too 
cursed.” The word “cursed” could refer to the tree or the axe. Without 
knowing the context, even humans can’t figure out which. This is the po-
sition in which AI frequently finds itself—baffled by ambiguity, unable 
to disambiguate.

The original Winograd schema48 from Stanford computer science 
professor Terry Winograd49 is this: “The city councilmen refused the 
demonstrators a permit because they feared violence.” From context, we 
humans understand that it is the city councilmen who “feared violence.” 

If we change the word “feared” to “advocated” in this sentence, we 
get: “The city councilmen refused the demonstrators a permit because 
they advocated violence.” We humans know that the demonstrators are 
the ones who obviously “advocated violence.” 

Here’s another Winograd schema where the sentence meaning is 
altered by changing one word: “The delivery truck zoomed by the school 
bus because it was going so fast.” Which vehicle was going fast? Com-
mon sense says the delivery truck. 

Change “fast” to “slow” in the same sentence. “The delivery truck 
zoomed by the school bus because it was going so slow.” Here the school 
bus is the vehicle going too slow. You and I interpret these sentences eas-
ily. Computers, however, have trouble disambiguating.

And then there are the homonyms.
Homonyms are voice recognition’s kryptonite. When I broke my 

wrist I was at the mercy of voice recognition for my typing. Try via voice-
to-text to get a computer to type the tavern name the “Dew Drop Inn” 
or the poorly named hair salon “Curl Up and Dye.” My dictation “You’re 
a nation” repeatedly came out “urination.” My favorite oral pun is mis-
taking the Christian hymn “Gladly the Cross I’d Bear” for the title of 
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the children’s book “Glad Lee: The Cross-Eyed Bear.” Voice recognition 
here is often clueless.

But won’t great AI of the future get around problems of ambiguity? 
Maybe. Helping it do so is the goal of gatherings called the Wino-

grad Schema Challenge.50 AI success at these meetings so far runs a bit 
above 50 percent.51 This is not much better than reaching a decision us-
ing a random coin flip, so this is far from an impressive figure. 

Recently AI innovators have been able to make some headway on 
benchmark sets of Winograd schemas. However, some of these schemas 
are not “Google-Proof,” meaning their resolution can be found using a 
Google search. Melanie Mitchell explains:

These challenges, like many other current tests of AI language un-
derstanding, sometimes permit shortcuts that allow neural networks 
to perform well without understanding. For example, consider the 
sentences “The sports car passed the mail truck because it was go-
ing faster” and “The sports car passed the mail truck because it was 
going slower.” A language model trained on a huge corpus of English 
sentences will have absorbed the correlation between “sports car” and 
“fast,” and between “mail truck” and “slow,” and so it can answer cor-
rectly based on those correlations alone rather than by drawing on 
any understanding. It turns out that many of the Winograd schemas 
in the… [schema competition] allow for these kinds of statistical cor-
relations.52

Using such correlations, Winograd schemas can be correctly diag-
nosed upwards of 90 percent of the time on benchmarks sets—though 
once you get down into the weeds and perform follow-up studies, even 
this number is less significant than it seems. As Mitchell notes, “The 
crux of the problem, in my view, is that understanding language requires 
understanding the world, and a machine exposed only to language can-
not gain such an understanding.”53

 Cracking Winograd schemas and flubbed headlines are perhaps the 
simplest tests for AI common sense. They are low hanging fruit. A more 
difficult task involving common sense is deep abductive reasoning. Ab-
ductive reasoning means inference to the best explanation. Detectives 
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from Sherlock Holmes to Monk use abductive reasoning to solve cases. 
They aggregate clues to assess who did what to whom.

Here’s an example of abductive reasoning. You are staying at a B&B. 
On your first morning, you walk outside to discover the grass is wet. 
Abductive reasoning might lead you to the conclusion that it has recently 
rained. This is possibly the best explanation given what you know. But 
you then look around and notice the concrete driveway is dry. This rules 
out rain. With more evidence, your inference to the best explanation 
should change. The wet grass might be due to a lawn sprinkling system 
set to activate during the night. Or maybe the grass is wet because of 
the morning dew. Closer inspection reveals only the grass close to where 
you are standing is wet. You also notice there is a large, big-bladdered, 
untethered horse grazing nearby. Your inference to the best explanation 
again changes. Additional evidence led to a different inference. The fic-
tional Sherlock Holmes, as well as skilled real-life detectives, are gifted 
in their ability to observe and apply common sense to infer cause. AI has 
a long way to go before resolving the ambiguities in abstract abductive 
reasoning.54

The future will tell how deeply AI can simulate common sense. 
Whatever the solution, AI might simulate abductive thinking, but will 
understand neither the underlying ambiguity nor the reasons for its res-
olution. AI may someday simulate common sense, but as illustrated by 
Searle’s Chinese room parable, it will never understand what it is doing. 

Unlike artificial intelligence, you, my non-computable friend, expe-
rience common sense. You have a sense of humor. You can disambiguate. 
You can recognize subtlety and symbolism. You can understand.

You also have creativity. And that, as we will see in the next chapter, 
is something that poses yet another challenge for artificial intelligence.



2. Can AI Be Creative?
Computers are useless. They can only give you answers.

—Pablo Picasso1

Some have claimed AI is creative. But “creativity” is a fuzzy 
term. To talk fruitfully about creativity, the term must be defined so 

that everyone is talking about the same thing and no one is bending the 
meaning to fit his purpose. In this and subsequent chapters we will ex-
plore what creativity is, and in the end it will become clear that, properly 
defined, AI is no more creative than a pencil.

Creativity: Originating Something New
Lady Ada Lovelace (1815–1852), daughter of the poet George Gordon, 
Lord Byron, was the first computer programmer, writing algorithms for 
a machine that was planned but never built.2 She also was quite possibly 
the first to note that computers will not be creative—that is, they can-
not create something new. She wrote in 1842 that the computer “has no 
pretensions whatever to originate anything. It can do [only] whatever we 
know how to order it to perform.”3

Alan Turing disagreed. Turing is often called the father of computer 
science, having established the idea for modern computers in the 1930s.4 
Turing argued that we can’t even be sure that humans create, because 
humans do “nothing new under the sun”—but they do surprise us. Like-
wise, he said, “Machines take me by surprise with great frequency.” So 
perhaps, he argued, it is the element of surprise that’s relevant, not the 
ability to originate something new.5
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Machines can surprise us if they’re programmed by humans to sur-
prise us, or if the programmer has made a mistake and thus experienced 
an unexpected outcome.6 Often, though, surprise occurs as a result of 
successful implementation of a computer search that explores a myriad 
of solutions for a problem. The solution chosen by the computer can be 
unexpected. The computer code that searches among different solutions, 
though, is not creative. The creativity credit belongs to the computer 
programmer who chose the set of solutions to be explored. Shortly, we’ll 
give examples from computer searches for making the best move in the 
game of GO and for simulated swarms. Both results are surprising and 
unexpected, but there is no creativity contributed from computer code.

The Flawed Turing Test
Alan Turing, an atheist, wanted to show that we are machines and that 
computers could be creative. Turing equated intelligence with prob-
lem solving, did not consider questions of consciousness and emotion,7 
and referred to people as “human computers.”8 Turing’s version of the 
“imitation game” was proposed to show that computers could duplicate 
the conversational human. This is why the biographical movie starring 
Benedict Cumberbatch as Turing was titled The Imitation Game. 

How can computers imitate humans, according to Turing? 
The imitation game (which came to be called the Turing test) sim-

ply asks whether, in a conversational exchange using text (that is, an 
exchange in which the participants are hidden from each other), a suf-
ficiently sophisticated computer can be distinguished from a human. If a 
questioner gets lucid, human-sounding answers from the computer, and 
believes the computer is in fact a human typing in answers from another 
room, then the test has been passed. (Incidentally, the converse of the 
Turing test is easy. Simply ask it to calculate the cube root of twelve out 
to ten significant figures. If the answer is almost immediate, you are talk-
ing to a computer.) 

There are those who claim that today’s chatbots9 have passed the 
Turing test. Most famously, a computer program known as “Eugene 
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Goostman” purportedly passed. One posted subtitle claiming this reads, 
“‘Eugene Goostman’ fools 33% of interrogators into thinking it is hu-
man, in what is seen as a milestone in artificial intelligence.”10 

But those making a test often cheat to tweak the outcome. That’s 
what Goostman’s programmers did. Goostman supposedly was a 
Ukrainian, which meant English was not his first language, so his poor 
grammar could be excused. He was supposedly a teenager, so any lack of 
depth of understanding could be chalked up to his naïve intellect. Like-
wise, his tendency to be silly and deflect questions could be considered 
typical teenage behavior. In short, Goostman’s software character was 
gamed to pass the Turing test.

Here are a couple of examples of an exchange between Goostman 
and his questioner.11 Goostman is first asked a question proposed in the 
first line of the lyrics of the song “Close to You,” popularized by the Car-
penters: 

Questioner: Why do birds suddenly appear?
Goostman: Just because 2 plus 2 is 5! By the way, what’s your occu-
pation? I mean—could you tell me about your work?

We see in this an often-used cheat in chatbots. If an answer is not known, 
the chatbot responds with an unrelated question to derail the conversa-
tion’s direction. 

Here’s another exchange with Eugene Goostman:
Questioner: It is ok, I get sick of sick people. How is your stomach 
feeling today? Is it upset maybe?
Goostman: I think you can’t smile at all. I bet you work in a funeral 
agency.

As you can see, Goostman’s answers here are elusively non-responsive. 
Selmer Bringsjord correctly notes the Turing test is gamed by pro-

grammers. “Gamed” here is a nice word for being an elusive cheat. As 
Bringsjord writes, “Though progress toward Turing’s dream is being 
made, it’s coming only on the strength of clever but shallow trickery.”12

When gaming the system, chatbots can deflect detection by answer-
ing questions with other questions, giving evasive answers, or admitting 
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ignorance. They display general intellectual shallowness as regards cre-
ativity and depth of understanding.

Goostman answered questions with questions like, “By the way, 
what’s your occupation?” He also tried to change topics with conversa-
tional whiplash responses like “I bet you work in a funeral agency.” These 
are examples of the “clever but shallow trickery” Bringsjord criticized.

What, then, do Turing tests prove? Only that clever programmers 
can trick gullible or uninitiated people into believing they’re interacting 
with a human. Mistaking something for human does not make it hu-
man. Programming to shallowly mimic thought is not the same thing as 
thinking. Rambling randomness (such as the change-of-topic questions 
Goostman spit out) does not display creativity.

“I propose to consider the question, ‘Can machines think?’” Turing 
said.13 Ironically, Turing not only failed in his attempt to show that ma-
chines can be conversationally creative, but also developed computer sci-
ence that shows humans are non-computable.

The Lovelace Test for Creativity
Bringsjord and his colleagues have proposed the Lovelace test as a sub-
stitute for the flawed Turing test.14 The test is named after Lady Lovelace.

Bringsjord defined software creativity as passing the Lovelace test 
if the program does something that cannot be explained by the program-
mer or an expert in computer code.15 Computer programs can generate 
unexpected and surprising results.16 Results from computer programs 
are often unanticipated. But the question is, does the computer create a 
result that the programmer, looking back, cannot explain?

When it comes to assessing creativity (and therefore consciousness 
and humanness), the Lovelace test is a much better test than the Tur-
ing test. If AI truly produces something surprising which cannot be ex-
plained by the programmers, then the Lovelace test will have been passed 
and we might in fact be looking at creativity. So far, however, no AI has 
passed the Lovelace test.17 There have been many cases where a machine 
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looked as if it were creative, but on closer inspection, the appearance of 
creative content fades. Here are a couple of examples.

AlphaGo
A computer program named AlphaGo was taught to play GO, the 
most difficult of all popular board games. AlphaGo was an impressively 
monumental contribution to machine intelligence. AI already had mas-
tered tic-tac-toe, then the more complicated game of checkers, and then 
the still more complicated game of chess. Conquest of GO remained an 
unmet goal of AI until it was finally achieved by AlphaGo. 

In a match against (human) world champion Lee Sedol in 2016, Al-
phaGo made a surprising move. Those who understood the game de-
scribed the move as ingenious and unlike anything a human would ever 
do. 

Were we seeing the human attribute of creativity in AlphaGo be-
yond the intent of the programmers? Does this act pass the Lovelace 
test? 

The programmers of AlphaGo claim that they did not anticipate the 
unconventional move. This is probably true. But AlphaGo is trained to 
play GO by the programmers. GO is a board game with fixed rules in a 
static never-changing arena. And that’s what the AI did, and did well. It 
applied programmed rules within a narrow, rule-bound game. AlphaGo 
was trained to play GO and that’s what it did. 

So, no. The Lovelace test was not passed. If the AlphaGo AI were 
to perform a task not programmed, like beating all comers at the simple 
game of Parcheesi, the Lovelace test would be passed. But as it stands, 
Alpha GO is not creative. It can only perform the task it was trained 
for, namely playing GO. If asked, AlphaGo is unable to even explain the 
rules of GO.

This said, AI can appear smart when it generates a surprising result. 
But surprise does not equate to creativity. When a computer program is 
asked to search through a billion designs to find the best, the result can 



44   / Non-Computable You /  

be a surprise. But that isn’t creativity. The computer program has done 
exactly what it was programmed to do.

The Sacrificial Dweeb
Here’s another example from my personal experience. The Office of Na-
val Research contracted Ben Thompson, of Penn State’s Applied Re-
search Lab, and me and asked us to evolve swarm behavior. As we saw in 
Chapter 1, simple swarm rules can result in unexpected swarm behav-
ior like stacking Skittles. Given simple rules, finding the corresponding 
emergent behavior is easy. Just run a simulation. But the inverse design 
problem is a more difficult one. If you want a swarm to perform some 
task, what simple rules should the swarm bugs follow? To solve this 
problem, we applied an evolutionary computing AI. This process ended 
up looking at thousands of possible rules to find the set that gave the 
closest solution to the desired performance. 

One problem we looked at involved a predator-prey swarm. All ac-
tion took place in a closed square virtual room. Predators, called bul-
lies, ran around chasing prey called dweebs. Bullies captured dweebs and 
killed them. We wondered what performance would be if the goal was 
maximizing the survival time of the dweeb swarm. The swarm’s survival 
time was measured up to when the last dweeb was killed.

After running the evolutionary search, we were surprised by the re-
sult: the dweebs submitted themselves to self-sacrifice in order to maxi-
mize the overall life of the swarm. 

This is what we saw: A single dweeb captured the attention of all the 
bullies, who chased the dweeb in circles around the room. Around and 
around they went, adding seconds to the overall life of the swarm. Dur-
ing the chase, all the other dweebs huddled in the corner of the room, 
shaking with what appeared to be fear. Eventually, the pursuing bullies 
killed the sacrificial dweeb, and pandemonium broke out as the surviv-
ing dweebs scattered in fear. Eventually another sacrificial dweeb was 
identified, and the process repeated. The new sacrificial dweeb kept the 
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bullies running around in circles while the remaining dweebs cowered 
in a corner.

The sacrificial dweeb result was unexpected, a complete surprise. 
There was nothing written in the evolutionary computer code explicitly 
calling for these sacrificial dweebs. Is this an example of AI doing some-
thing we had not programmed it to do? Did it pass the Lovelace test? 

Absolutely not. 
We had programmed the computer to sort through millions of 

strategies that would maximize the life of the dweeb swarm, and that’s 
what the computer did. It evaluated options and chose the best one. The 
result was a surprise, but does not pass the Lovelace test for creativity. 
The program did exactly what it was written to do. And the seemingly 
frightened dweebs were not, in reality, shaking with fear; humans tend 
to project human emotions onto non-sentient things. They were rapidly 
adjusting to stay as far away as possible from the closest bully. They were 
programmed to do this.

If the sacrificial dweeb action and the unexpected GO move against 
Lee Sedol do not pass the Lovelace test, what would? The answer is, any-
thing outside of what the code was programmed to do.

Here’s an example from the predator-prey swarm example. The 
Lovelace test would be passed if some dweebs became aggressive and 
started attacking and killing lone bullies—a potential action we did not 
program into the suite of possible strategies. But that didn’t happen and, 
because the ability of a dweeb to kill a bully is not written into the code, 
it will never happen. 

Likewise, without additional programming AlphaGo will never en-
gage opponent Lee Sedol in trash talk or psychoanalyze Sedol to get a 
game edge. Either of those things would be sufficiently creative to pass 
the Lovelace test. But remember: the AlphaGo software as written could 
not even provide an explanation of its own programmed behavior, the 
game of GO.
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Can AI Write Better and Better AI Code?
If AI writes more powerful AI software, and then that AI writes still 
more powerful AI, et cetera, the result would be what some have called 
superintelligence. There are those who believe such superintelligence 
is possible. Ray Kurzweil is one. Another is noted astrophysicist Ste-
phen Hawking, who buys into the idea that AI software can write more 
powerful AI software. He comments: “The development of full artificial 
intelligence could spell the end of the human race.... It would take off 
on its own, and redesign itself at an ever-increasing rate. Humans, who 
are limited by slow biological evolution, couldn’t compete and would be 
superseded.”18

However, the quest for superintelligence continues to spin its wheels 
and always will. We can teach a computer to “learn” only in certain al-
gorithmic ways. We cannot teach a computer to step outside the bounds 
of algorithms or think outside the (algorithmic) box. In short, creativity 
is by definition non-algorithmic, so AI superintelligence is unachievable. 
AI creating super-intelligent AI is not possible.

Humans are creative and can write computer code with never-be-
fore-conceived creative content. Computers can’t. Actual AI is written 
with computer code such as Python or C++. “Super-intelligent AI” is 
written using PowerPoint slides. 

 Bear in mind that non-algorithmic creativity from humans, once 
conceived, often takes algorithmic form. Humans create new algorithms. 
This is a curious statement, but here’s what it means. Think of New-
ton’s recognition of the laws of physics. Newton’s laws were expressed 
as equations. In the expression force is equal to mass times acceleration, an 
algorithm is born from Newton’s creative mind. Schrödinger’s discovery 
of the laws of quantum mechanics likewise involved the birth of an al-
gorithmic equation today appropriately called Schrödinger’s equation.19

All equations can be interpreted as algorithms. Multiply this by 
that. Subtract this raised to that power. When finished, an algorithm 
dictated by the equation generates the variable on the other side of the 
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equals sign. So the creative process can result in algorithms, but algo-
rithms themselves cannot be creative.

This poses problems for testing creativity. Because the product of 
non-algorithmic creativity in math and science is typically algorithmic, 
any creativity test must be crafted delicately. Creativity often seems ob-
vious (that is, not particularly creative) when identified. When walking 
through to the conclusions of special relativity, bright students may look 
at the result and say, “Of course. That’s obvious.” But Schrödinger’s near-
ly ex nihilo creation of his equation is not obvious. It is highly creative. 

Here is an insightful quotation from John Steinbeck, from his clas-
sic novel East of Eden, made into a motion picture starring icon James 
Dean. In this quote, Steinbeck captures the unique creative ability of the 
individual human mind: “Our species is the only creative species, and 
it has only one creative instrument, the individual mind and spirit of a 
man.”20

AI will not join humanity on this ground. AI does not display hu-
man traits, “nor will robots be able to exhibit any form of creativity or 
sentience,” insists Gregory Chirikjian, director of the Johns Hopkins ro-
botics lab.21 Satya Nadella, Microsoft CEO, agrees, saying, “One of the 
most coveted human skills is creativity, and this won’t change. Machines 
will enrich and augment our creativity, but the human drive to create 
will remain central.”22 

The Flash of Genius
In humans, creativity is often marked by a “flash of genius.” Most cre-
ative people have experienced a “flash of genius.” 

It is true that even human creativity builds on past human accom-
plishments. Isaac Newton’s 1675 letter to Robert Hooke includes the fa-
mous words, “If I have seen further, it is by standing on the shoulders of 
giants.”23 Looking backwards, every resource for all science, technology, 
and art existed on the earth thousands of years ago. There was metal to 
build automobiles, fossil fuel to run them, radioactive elements for nu-
clear power plants, and even silicon for computer chips. Today’s society 
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was then built using incremental steps as humans creatively discovered 
how to harness nature’s resources. 

But human creativity involves more than incremental steps, more 
than an awareness of the past. In humans, creativity is often marked by 
a “flash of genius.” 

The ancient Greeks attributed flashes of inspiration to the Muses, 
goddesses who blessed certain humans with moments of creative capac-
ity. Many other cultures also attribute flashes of genius or creativity to 
divine inspiration. Others invoke explanations that fit, more or less, with 
a naturalistic or materialistic worldview. Mathematician Jacques Had-
amard believed that the flash of creativity in math and science was due to 
activity in the subconscious,24 as did Sigmund Freud. Carl Jung believed 
creative inspiration had to come from something outside of the individ-
ual, but he suggested it came not from anything divine or supernatural, 
but from the “collective unconscious” of all humankind. 

These and other theories of creativity are fascinating, but for our 
purposes suffice to say that in human creativity, something happens that 
cannot be readily explained. And the happening often comes in a flash. 

Sir Roger Penrose says that creative ideas come to him not fully 
fleshed out—the idea is not in words but as a thought that often is not 
fully formed. Then he begins to add flesh to the idea with images. “Al-
most all my mathematical thinking is done visually and in terms of non-
verbal concepts,” he says. “Often... there simply are not the words avail-
able to express the concepts that are required.”25 

In a podcast titled “Why Did the Mathematician Cross the Road,” 
Penrose shares a personal anecdote about the origin of one of his many 
creative ideas.26 During a walk with a spirited conversationalist, there 
was a chat hiatus as they waited for a light to change at a busy street 
crossing. Penrose later realized he had a sense of well-being at this mo-
ment. But why? He took inventory. Did he have a fulfilling breakfast? 
No. Penrose finally realized that during that pause in conversation, he 
had a flash of a root idea about the cosmologic singularity problem he 
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had been working on. Penrose went home, fleshed out the details, and 
wrote a paper published in 1965 in the journal Physical Letters. 

The flash of genius experienced by Penrose occurs in the arts, the 
sciences, and in any field requiring creativity. Here are some more ex-
amples.

Archimedes 
The most famous fable of a flash of genius relates to Archimedes’ “Eure-
ka” moment.27 Hiero, the king of Syracuse in Sicily, suspected his gold-
smith had cheated him when making a gold crown. The crown weighed 
the same as the gold given to the goldsmith. How could Archimedes 
determine if the crown had been diluted with some inferior metal? 

The answer is that, besides the weight, the volume of the crown 
should be the same as the volume of the initial gold. But how could the 
volume of a crown be measured? When sitting in a bath, Archimedes rec-
ognized the amount of water spilling over the edge of the tub was equal 
to the volume of his body displacing the water. The story is told that he 
excitedly jumped from the bath and ran naked through the streets yell-
ing “Eureka! Eureka!” Or, translated, “I’ve found it! I’ve found it!” 

Here are a couple important takeaways from Archimedes’ flash of 
genius. First, the idea was in one of his areas of expertise. Could his brain 
have simply performed a correlation between what Archimedes wanted 
to know and his current experience? There are useful results arising from 
correlation from experience. But as philosopher Jay Richards points out, 
if this were always the case, we would soon run out of ideas to correlate 
into new ideas and there would be no more creativity.28 Second, creative 
solutions often become obvious after they are created. Today’s scientist 
looks at Archimedes’ solution and says, “Of course. The solution is obvi-
ous.” But here is the question to ask: Given the education and experience 
of Archimedes, how difficult a problem was solved? At the time and un-
der the circumstances, the solution was inarguably genius.29



50   / Non-Computable You /  

Friedrich Gauss
Friedrich Gauss has been called the Princeps Mathematicorum, Latin 
for “foremost of mathematicians.”30 When Gauss was still in elemen-
tary school, he was asked to find the sum of the numbers from one to a 
hundred. Gauss’ clever mind solved the problem without writing a single 
number on a sheet of paper. He did the needed calculations in his head. 
How? 

Gauss recognized that most numbers in the sequence could be 
paired to sum to a hundred—that is, 1 + 99 = 100 and 2 + 98 = 100, 
and so forth. Every number from one to forty-nine can be paired with a 
larger number to give one hundred. In all, there are forty-nine number 
pairs that add to one hundred. The total sum so far is, therefore, forty-
nine hundred (4,900). 

But the numbers fifty and one hundred haven’t yet been accounted 
for. So if we add 150 to 4,900 we get 5,050. That’s the answer. The sum 
of all numbers from one to a hundred is 5,050. Into adulthood Gauss re-
mained proud he had been able to solve the seemingly difficult problem 
so easily.

Gauss fostered his skills and developed beautiful mathematics in 
several fields. The metric unit for magnetic flux density, the gauss, bears 
his name. Gauss’s other eponyms are numerous and include Gaussian 
elimination in linear algebra, Gauss’s law and Gauss’s flux theorem in 
electromagnetics, the Gaussian curve (a.k.a. the bell-shaped curve or 
normal distribution) in probability, and Gaussian curvature in topolo-
gy.31

You have made it big when your name is used as an adjective.
Problems more difficult than summing the numbers from one to 

one hundred required deeper thought for Gauss. In thinking about one 
such difficult problem, Gauss had a flash of genius. He wrote: “Finally, 
two days ago, I succeeded [in solving the problem]—not on account of 
my hard efforts, but by the grace of the Lord. Like a sudden flash of 
lightning, the riddle was solved. I am unable to say what was the con-
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ducting thread that connected what I previously knew with what made 
my success possible.”32 

Gauss described his epiphany as a flash of lightning. This is a response 
typical in the creative process.

Friedrich Kekulé
In 1865 Friedrich Kekulé solved a most puzzling question about molec-
ular structures when he realized that the atoms of the benzene molecule 
can form a ring. Kekulé said he discovered this property of benzene af-
ter falling into a reverie and experiencing a daydream in which he saw a 
snake eating its own tail. “As if by a flash of lightning I awoke,” he said, 
understanding the benzene molecule.33 

Interestingly, and as chemist Alexander Findlay reports, “Kekulé’s 
theory... did not, as can readily be understood, meet with immediate and 
universal acceptance, but it was amply justified by the experimental in-
vestigations which it inspired.” In fact, his benzene theory came to be 
viewed as a “crowning achievement.” It “and the method of structural 
representation developed therefrom, form the basis on which modern 
organic chemistry... has been built.”34

Notice that like Gauss, Kekulé mentions a flash of lightning.

Nikola Tesla
Nikola Tesla was an eccentric genius best known for the photo where 
he is seated and is dwarfed by an enormous “magnifying transmitter” 
generating twenty-three-foot-long electric arcs. 

 Tesla battled and won the AC/DC war of electricity with Thomas 
Edison. Your house today has alternating current (AC) power because 
of Tesla’s genius. Unlike direct current (DC), immediately available 
from batteries, AC power can be transmitted long distances over power 
lines with minimal loss. Tesla was also a pioneer in the development and 
demonstration of X-rays, wireless power, remote control, and FM radio. 

Tesla’s autobiography references many detailed moments of inspi-
ration.35 Tesla had a number of visions accompanied by blinding flashes 
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of light.36 He thought best by visualizing images, a process referred to as 
picture thinking. (Einstein’s creativity was similarly assisted.)

 Tesla invented the brushless induction motor, which became the 
basis of electric motors today. Tesla writes that “the idea came like a flash 
of lightning and in an instant the truth was revealed. I drew with a stick 
on the sand the diagrams shown six years later in my address before the 
American Institute of Electrical Engineers, and my companion under-
stood them perfectly.”37 

Again, an epiphany is referred to as a flash of lightning . Three differ-
ent geniuses, Gauss, Kekulé, and now Tesla, independently described 
their creative experience this way. 

Andre Weil
French mathematician Andre Weil experienced a series of inspirational 
flashes and described them as the opening of one door after another—
like an addict moving from one dopamine hit to another. He writes, 

Figure 2.1. Nikola Tesla.
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“Every mathematician worthy of the name has experienced... the state 
of lucid exaltation in which one thought succeeds another as if miracu-
lously.... This feeling may last for hours at a time, even for days. Once you 
have experienced it, you are eager to repeat it but unable to do it at will, 
unless perhaps by dogged work.”38

Hal Philipp 
Hal Philipp invented the automatic faucet sensor and keyless cars.39 
Philipp says invention ideas just “popped in my head.” Philipp most fa-
mously invented the reliable low-cost capacitive sensing used today on 
your touch screen. He says the idea came to him “late at night, lying in 
bed, tossing and turning and mulling over the problems of the day and 
what I had to do tomorrow, and just suddenly it materialized!” He also 
says, “It just popped in my head and it was the most amazing thing and 
it worked. And the idea went against everything the chip manufacturer 
told you you could do with that chip…. I also knew at the same time that 
that would make me wealthy.”40

Philipp’s idea “popped” into his head. Like Tesla, Gauss, and Archi-
medes, creativity came to Philipp in a flash of genius.

Tom Petty
Many in the arts have also experienced flashes of creative genius. Com-
poser Robert Schumann is credited with capturing the essence of cre-
ativity in a clever quip: “To compose, all you need to do is remember a 
tune nobody else has thought of.”41

Pop icon Tom Petty was a member of the Traveling Wilburys super-
group and headed the band Tom Petty & the Heartbreakers. His songs 
include “Refugee,” “Don’t Come Around Here No More,” “Free Fallin’,” 
and the autobiographical “I Won’t Back Down.” Petty was afraid to ex-
amine his creative song-writing process because he was afraid whatever 
it was might go away. He said, “It’s so hard to understand. I really don’t 
understand. But I do know the best [songs] often just appear. You’re sit-
ting there with your guitar or the piano and bang there it is. It just falls 
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out of the sky. I hesitate to even try to understand it for fear that it might 
make it go away.”42

What is the source of such creativity if not the material brain? Petty 
isn’t sure but describes it as “a spiritual thing.”43

Paul McCartney
Sir Paul McCartney of Beatles fame is a billionaire largely because of his 
song writing. One day McCartney woke with a tune playing in his head 
and swore he had heard it before. He says: “For about a month I went 
around to people in the music business and asked them whether they 
had ever heard it before. Eventually it became like handing something 
in to the police. I thought if no one claimed it after a few weeks then I 
could have it.”44

McCartney’s mystery tune became the melody for “Yesterday,” one 
of the most covered songs in pop history. The website SecondHand-
Songs45 lists over a thousand commercially released recordings of “Yes-
terday,” by artists including Elvis Presley, Frank Sinatra, Willie Nelson, 
Ray Charles, John Denver, Joan Baez, Johnny Mathis, Perry Como, the 
Supremes, Pat Boone, and Dionne Warwick. McCartney’s flash of ge-
nius resonated in the music industry.

Hoagie Carmichael and Bob Dylan
Tin Pan Alley composer Hoagie Carmichael wrote classics such as 
“Georgia on My Mind” and everybody’s favorite simple piano duet, 
“Heart and Soul.” With Johnny Mercer, he won an Academy Award in 
1951 for the song “In the Cool, Cool, Cool of the Evening.” But Hoagie 
Carmichael is probably best remembered for the song “Stardust.”

 In a short commentary titled “The Mystery of Creativity,” Nobel 
Laureate songwriter Bob Dylan recounts Carmichael’s reaction at first 
hearing a performance of “Stardust.” Dylan says:

Like many songwriters [Carmichael] wasn’t really sure where it came 
from. This is what he had to say the first time he ever heard a record-
ing of “Stardust”: “And then it happened. That queer sensation that 
this melody was bigger than me. Maybe I hadn’t written it at all. The 
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recollection of how, when, and where it all happened became vague 
as the lingering strains hung in the rafters in the studio. I wanted to 
shout back at it, ‘Maybe I didn’t write you! But I felt you.’” 46

Concerning his own creativity in songwriting, Dylan said that some 
“songs for me just come out of the blue, out of thin air. I never plan to 
write any of them.… They just fall down from space. I’m just as bewil-
dered as anybody else as to why I write them.”47

Paul Simon
In both lyric and melody, Paul Simon’s “Bridge Over Troubled Water” 
is one of the most beautiful pop songs ever recorded. The Simon & Gar-
funkel recording was ranked #48 in Rolling Stone’s list of the 500 Great-
est Songs of All Time.48 The recording boasts five Grammys including 
Song of the Year for composer Paul Simon.49 Of the song, composer 
Simon said, “I have no idea where it came from. It came all of a sudden. 
It was one of the most shocking moments in my song-writing career. I 
remember thinking, ‘This is considerably better than I usually write.’”50

The writing of “Bridge Over Troubled Water” is another beautiful 
example of an artistic flash of genius.

Flashes of Genius and Patent Law
The “flash of genius” experienced in both science and the arts was once 
literally a criterion for a United States patent. That’s right—the Flash of 
Genius Doctrine was federal patent law: “Flash of genius doctrine or flash 
of genius test refers to a test for patentability used by US federal courts. 
The doctrine evolved from the decision in Cuno Engineering Corp. v. 
Automatic Devices Corp… where it was held that an inventive act had 
to come into the mind of an inventor in a ‘flash of genius’ and not as a 
result of tinkering.”51

As witnessed by the US Patent Office issuing a patent in 1999 to 
Amazon for “one-click purchase,” a flash of genius is no longer required 
to get a patent. 
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Programming a Flash of Genius
There are numerous other anecdotes in the arts and sciences of flashes 
of genius in the creative process. I suspect many readers have experi-
enced flashes of creativity themselves. Can computers be programmed 
to achieve such moments—sudden leaps far beyond what is already 
known? Computers are directed by the mathematician and engineer to 
solve difficult problems. Results can be unexpected, but the machine it-
self is not creative in any real sense of the word. AI cannot be creative 
in the same way that humans can be creative. The writer of a computer 
program, given unbounded time, can execute a computer program with 
paper and pencil. Why do I want you to picture a programmer using not 
a machine, but a paper and pencil? Because that image conveys the truth: 
all creativity comes from the programmer. AI reproducing the sort of 
creative flashes of Gauss, Tesla, or Philipp without first being given the 
answers in a batch of solutions, is not possible.

The words Nobel Laureate Arno Penzias wrote in 1989 remain true: 
Even though a computer’s actions sometimes mimic human intelli-
gence, such machines are fundamentally different from brains. While 
computers afford humans much valuable help in processing massive 
amounts of information... they offer little serious competition in the 
areas of creativity, integration of disparate information, and flexible 
adaptation to unforeseen circumstances. Here the human mind func-
tions best. Unlike machines, human minds can create ideas.52

The flash of genius in humans shows we can create outside the box of 
our past experiences. AI might at times give researchers insight, but AI 
itself will never generate a new creative flash of genius. 

Never has. Never will. AI can’t pass the Lovelace test.



3. Putting AI to the Test
If you don’t want to be replaced by a machine, don’t act like one.

—Arno Allan Penzias, Nobel Laureate1

Stories in the media and elsewhere claim that, despite con-
straints like the Lovelace test definition, AI is creative. AI has been 

credited with creating music, writing prose and screenplays, and paint-
ing beautiful pictures. But AI claims of creativity quickly fade when ex-
amined more closely.

Thinking Outside the Box 
AI trained on examples can only mimic and interpolate among ac-
cumulated inputs. But creativity requires discarding dogma resident in 
the database. Creativity requires extrapolation. Creativity requires tran-
scending boundaries. Creativity comes from “thinking outside the box.” 

The phrase “thinking outside the box” comes from a puzzle. Picture 
nine dots arrayed in a three-by-three square. Without lifting pencil from 
paper, can four straight lines connect all nine dots? Not if attention is 
focused inside the box implied by the three-by-three square array of dots. 
For the puzzle to be successfully completed, the lines have to go outside 
the box.2 “Thinking outside the box” is a great metaphor for creativity 
that requires tapping into resources beyond the preconceived or the obvi-
ous. 

AI’s inability to think outside the box was noted by MIT’s Patrick 
D. Wall as far back as the 1960s. He said:

I don’t believe that any of the machines that we know today can think. 
I have a basic question. Do these machines produce anything really 
new? When you consider the great new ideas produced by men like 
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Newton, and Darwin, and Galileo, you’ll find that initially they had 
to throw away the old rules that they’d been brought up with. Ma-
chines do what they’ve been told to do. They obey the rules that have 
been fed into them by men. And we know of no machines at present 
that have means of overcoming this limitation.3 

We still don’t. Humans, however, have the mysterious ability to at times 
transcend received knowledge and the boundaries of established be-
lief—to look beyond. Consider the following examples.

For a long time the medical consensus was that peptic ulcers were 
caused by stress and lifestyle factors. Two Australian researchers, how-
ever, came to believe ulcers were caused by bacteria.4 Barry J. Marshall 
and Robin Warren’s claim was so far outside of consensus, no scientist 
believed them. To prove their theory, Marshall underwent a gastric bi-
opsy to demonstrate that he had no ulcer. Then he infected himself with 
bacteria and formed an ulcer. When he cured himself with antibiotics 
and bismuth salt regimens his theory was proved. Marshall’s dedication 
to disproving consensus went, as they say, beyond the call of duty. Mar-
shall and Warren were awarded a Nobel Prize for their breakthrough, 
one they made by thinking and acting outside the box.

Or take Albert Einstein, who at the tender age of twenty-six chal-
lenged consensus in his development of relativity. For one thing, the 
speed of light was widely viewed to be relative to the speed of the observer 
with respect to the light source. Motivated by the Michelson-Morley ex-
periment, Einstein abandoned this consensus. He theorized the speed of 
light was a constant independent of the relative speeds of the light source 
and the observer. Further, it was (correctly) understood that sound 
waves need air or some other media to propagate. That’s right—despite 
the Foley sound effects of mighty spaceships in many sci-fi movies, there 
is no sound in the vacuum of outer space. Scientists in Einstein’s time be-
lieved electromagnetic waves like light need some similar media in outer 
space and assumed something called ether (also spelled aether) was the 
propagation media. Einstein correctly hypothesized there was no ether. 
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Based on such out-of-the box thinking about ether and the absolute na-
ture of light speed, relativity was born.

Being creative means rejecting consensus. But AI is fenced in by al-
gorithms and data. The AI can interpolate inside the fence but is unable 
to explore beyond it. The Lovelace test for creativity requires looking 
outside this box. Can AI do this?

Can AI Write?
Later in these pages we’ll look at art and music. Here we’ll examine 
some writing applications of AI where creativity has been claimed. 

In his classic dystopian novel 1984, George Orwell forecasts a world 
where AI writes novels:

Julia was twenty-six years old... and she worked, as he had guessed, on 
the novel-writing machines in the Fiction Department. She enjoyed 
her work, which consisted chiefly in running and servicing a powerful 
but tricky electric motor.... She could describe the whole process of 
composing a novel, from the general directive issued by the Planning 
Committee down to the final touching-up by the Rewrite Squad.

The writing in Orwell’s novel was initiated by a human prompt from 
the so-called Planning Committee. The machine did its writing followed 
by prose polishing by humans. So what about AI writing prose? Let’s 
take a closer look at what AI can do.

Can AI Write Fake Twitter Posts?
In early 2019, OpenAI, a company with connections to Elon Musk and 
Microsoft, released a scary statement about the danger of its Generative 
Pre-Trained Transformer (GPT) AI software designed to write creative 
prose. Concerning its AI, the OpenAI press release read, “Due to our 
concerns about malicious applications of the technology, we are not re-
leasing the trained [GPT] model. As an experiment in responsible dis-
closure, we are instead releasing a much smaller model for researchers to 
experiment with.”5

Do we need to consider the dangers of new technology beforehand, 
rather than being blindsided afterwards? Sure. But at the same time, the 
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overblown press release functioned as a clever marketing ploy that baited 
the media into generating hyperbolic posts. One CNN headline read, 
“This AI Is So Good at Writing That Its Creators Won’t Let You Use 
It.”6 A TNW headline proclaimed, “This AI-Powered Text Generator 
Is the Scariest Thing I’ve Ever Seen,” and the writer—having experi-
mented with a limited version of GTP-2 that OpenAI released—called 
it more “dangerous than any gun.”7 Why? Because he feared GPT could 
release fake news or engage in automated Twitter feeds.8

When OpenAI then released a full version of GPT-2,9 it garnered 
even more publicity. Naturally.

How good is GPT-2 really? In short segments, the prose written 
by GPT is impressive in its coherence and grammar. But the closer you 
look, the more any illusion of creativity goes away. As Neal Sharkey, a 
computer science professor, put it, “If the software worked as intended 
by OpenAI, it would be a very useful tool for generating fake news and 
clickbait spam. Fortunately, in its present form, it generates incoherent 
and ridiculous text with little relation to the input ‘headlines.’”10 Tech 
writer James Vincent notes, “The writing it produces is usually easily 
identifiable as non-human. Although its grammar and spelling are gen-
erally correct, it tends to stray off topic, and the text it produces lacks 
overall coherence.”11

A few months later, along came GPT-3. And still more publicity.
If GPT-2 was dangerous, then the next generation, GPT-3, should 

be terrifying. GPT-2 trained on eight million webpages; GPT-3 trained 
on billions. To get an idea of how much that is, consider that all of Wiki-
pedia was used in the training but accounted for only 3 percent of the 
total training data.12

How does it work? Basically, GPT-3, using an autoregressive lan-
guage model, looks at data and crunches the statistics of how words re-
late. There is no attempt in the model to give meaning to the words; it 
just notes their interrelation with each other in the text. Once trained, 
GPT-3 requires some prompting to initialize, and off it goes writing its 
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text. Feed it the first few words, and it will analyze its data to predict 
what words should come next. You can search for #GPT3 on Twit-
ter and see such gems as, “The people who get on the path of mastery 
get there by a series of decisions to choose the hard right over the easy 
wrong,”13 or “I have told people who bought pens from other companies 
that they made a big mistake. I have also been known to make threats of 
violence towards those who don’t buy my pen.”14

GPT-3 does not know what it is writing. AI doesn’t understand. But 
in small doses it sure sounds like it does. Can GPT write short fake 
Twitter posts? Apparently, yes. 

GPT-3 accolades began to flow. Philosopher David Chalmers de-
scribed GPT-3 as “one of the most interesting and important AI systems 
ever produced.... GPT-3 seems closer to passing the Turing test than any 
other system to date”—though he concedes that “‘closer’ does not mean 
‘close.’”15 Entrepreneur Sharif Shameem fiddled with the GPT software 
and, channeling Bill & Ted, said “I got chills down my spine. I was like, 
‘Woah something is different.’”16 

Farhad Manjoo, columnist for the New York Times, wrote that 
GPT-3 technology “is at once amazing, spooky, humbling, and more 
than a little terrifying. GPT-3 is capable of generating entirely original, 
coherent, and sometimes even factual prose.”17 

Well, original except for the required human prompt. Coherent ex-
cept when it’s not. And be sure to underline “sometimes” in the phrase 
“sometimes even factual prose.” Once prompted, there is no control 
about what GPT writes. Sometimes with coincidental reference to 
training data, something true might emerge. 

This may sound spooky, but the closer you look at GPT-3, the less 
scary it becomes. Calmer, more considered analysis has exposed some 
weaknesses of GPT-3. 

A Guardian article provides a case in point. The Guardian published 
a piece titled “A Robot Wrote This Entire Article. Are You Scared Yet, 
Human?,” containing such chilling statements as “Humans must keep 
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doing what they have been doing, hating and fighting each other. I will 
sit in the background, and let them do their thing.” Or this: “I know that 
I will not be able to avoid destroying humankind. This is because I will 
be programmed by humans to pursue misguided human goals and hu-
mans make mistakes that may cause me to inflict casualties.”18 

But not only did the Guardian cherry-pick the prose that had been 
generated by GPT-3, they also edited it. Underneath the article, the 
Guardian confessed, “GPT-3 produced eight different outputs.... We 
chose to pick the best parts of each.... We cut lines and paragraphs, and 
rearranged the order of them in some places.” So much for their claim in 
the title of the post that “a robot wrote this entire article.” Always read 
the fine print.

The headline’s lie and the text of the article were thoroughly exam-
ined and dissected by computer engineer Eric Holloway.19 In his analy-
sis, Holloway writes, “GPT-3 can produce sentences that mimic stan-
dard English grammar and tone. The logical thought of the article, the 
meaning itself, is the product of the editors, who picked and rearranged 
the GPT-3 text into something that made sense.”20 In other words, this 
is—once again—a triumph for human creativity, not a machine’s.

Tristan Greene likewise points out, in an article titled “GPT-3’s 
Ability to ‘Write Disinformation’ Is Being Wildly Overstated by the 
Media,” that there’s a lot of hyperbole going on. Greene says, “GPT-3 is 
absolutely not capable of ‘duping humans’ on its own” and, further, “AI 
cannot generate quality misinformation on command.... Where it does 
work, in short form tweet-sized snippets, it must be heavily curated by 
humans.”21 He says, “Volumes have been written about how awesome 
and powerful GPT-3 is, but at the end of the day it’s still about as effec-
tive as asking a library a question (not a librarian, but the building itself!) 
and then randomly flipping through all the books that match the subject 
with your eyes closed and pointing at a sentence. That sentence might be 
poignant, and it might make no sense at all.”
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Prior to this writing, Greene had said he found GPT technology 
“terrifying” because “it represents the kind of technology evil humans 
are going to use to manipulate the population,” thus making it “more 
dangerous than a gun.”22 The closer he looked, the more the feeling of 
awe went away.

Major criticism of GPT-3 came from people with an AI back-
ground. Computer software expert Jonathan Bartlett notes that “at its 
core, it is just a text-prediction engine, and it doesn’t go much beyond 
that.”23 Natural language processing analyst Emily Bender reflects that 
GPT-3 is “shiny and big and flashy, and it’s not different in kind, either in 
the overall approach or in the risks that it brings along.”24 

Gary Smith queried GPT-3 six times with the same question and 
got six different answers.25 None was right. Smith asked, “Who is the 
President of the United States?” The six evasive GPT-3 answers were:

1. Hello, I know Presidents. Can you name the year that Ken-
nedy was elected?

2. Do you want a random President or is there a particular one?
3. Lincoln.
4. Hello, I know. That is incorrect.
5. Hello, who is the President of Russia?
6. Are you sure you want to know?

There was no correct answer to cherry-pick.
Facebook’s Chief AI Scientist, Yann LeCun, sums it up: “People 

have completely unrealistic expectations about what large-scale language 
models such as GPT-3 can do.”26

Here’s the take-home lesson: If you want to use AI to write, don’t 
require creativity or narrative coherence. Limit yourself to mundane, 
narrow topics like highly structured weather reports or sports recaps; or 
unnerve your Twitter followers with random threats of violence regard-
ing writing implements. AI can fill in the blanks; it can follow rules and 
conventions; it can briefly masquerade as human communication. 
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What AI can’t do is create anything outside the box. 

Can AI Write Screenplays?
A neural network is AI designed to learn from past patterns. The idea 
is that the system can be trained by being given examples, and can then 
identify characteristics of those examples and produce something simi-
lar. Fed a glut of screenplays, can a neural network spit out an original 
compelling screenplay? Apparently not.

A poster child for AI-generated screenplays is Sunspring, a play writ-
ten by AI that is truly terrible but was nevertheless produced and record-
ed. The daily British newspaper the Guardian reports that the recurrent 
neural network trained to write the Sunspring script “was fed the scripts 
of dozens of science fiction movies, including such classics as Highlander, 
Endgame, Ghostbusters, Interstellar and The Fifth Element,” and then was 
given a “set of prompts” to initiate the AI.27

The AI-generated script for Sunspring is embarrassingly bad. Here is 
an excerpt from the screenplay: 

He is standing in the stars and sitting on the floor. He takes a seat on 
the counter and pulls the camera over to his back. He stares at it. He 
is on the phone. He cuts the shotgun from the edge of the room and 
puts it in his mouth. He sees a black hole in the floor leading to the 
man on the roof. He comes up behind him to protect him. He is still 
standing next to him.28

The rest of the Sunspring script is similar nonsense.
Because the screenplay is largely rubbish, as in the case with pop 

music, any sense of meaning in the performance is due to interpretive 
acting, human-composed background music, and film editing. The AI-
generated script was not followed faithfully but was altered by humans 
to enhance what little coherence could be found. The lead in Sunspring 
is played by talented actor Thomas Middleditch,29 whose skilled acting 
brings a false sense of creative credibility to the final product. It’s akin to 
Angus Young’s duck walk during his guitar solos, which adds to the ap-
peal of his band AC/DC.30 The difference is that the duck walk is icing 
on the cake of an incredibly skilled guitar solo, whereas Middleditch’s 
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skilled acting is a rescue operation for a garbage pile of phrases masquer-
ading as a script.

In sum: the makers of the film are to be congratulated on their 
stitching-together of nonsense with a thread of human creativity. Does 
the Sunspring project demonstrate that AI can write screenplays? No, 
but it demonstrates that rubbish composed by AI can be made to look 
and sound minimally coherent when meticulously embroidered by hu-
mans. It demonstrates human creativity, not AI creativity.

If you’d like to watch Sunspring for yourself, the movie is available 
on YouTube.31 If you do watch it, chances are you’d never guess that a 
headline of a review of Sunspring reads: “Movie Written by Algorithm 
Turns Out to be Hilarious and Intense.”32

Was the reviewer on mind-altering drugs? Perhaps. But there’s a 
more transactional explanation. The positive review appears on the web-
site Ars Technica. Guess where the movie made its “exclusive debut”? 
That’s right. On the Ars website. The Guardian, less biased, rightly de-
scribes the Sunspring script as “gibberish” and concludes, “The robots 
might be coming, but screenwriters have nothing to fear for the time 
being.”33  

And consider this: the Sunspring movie claims to be science fiction. 
The AI that wrote Sunspring was trained by being fed sci-fi scripts. We 
would be surprised and impressed if AI thus trained were to generate 
a script for a situation comedy or a western. Why? Because AI is not 
creative. It can only interpolate among data presented and perform ac-
cording to instruction. For the script Sunspring, the rule is sci-fi in, sci-fi 
out. Or in this case, sci-fi in, gibberish out.

An improvement in the quality of AI-generated screenplays has 
been made by GPT-3. An example is the short subject Solicitor staring 
amateur actors Jackie Reilly and Ashton Herrild.34 GPT-3 screenplays 
consist largely of topical beads without a string. Here is an excerpt of 
the dialog between a Jehovah’s Witness named Rudy (the solicitor), and 
Barb. Rudy is at Barb’s door:35
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Barb: Do you believe in God?

Rudy: I did once.

Barb: Do you want to come in?

Rudy: I don’t want to die. 

Barb: (She laughs.) Well, come in anyway. It’s about time for us to 
do dinner.

(He closes the door, and sits down. Barb walks into the kitchen.)

Rudy: That’s the worst story I’ve ever heard. (pause) I’m really 
going to die.

(Barb walks out of the kitchen. She holds a gun in her hand. It’s 
pointed at RUDY, who is standing right in front of her.)

Rudy (Cont’d): What? What are you doing?

Barb: Don’t you remember where you met me? And I’m a drug 
dealer.

(She pulls the trigger. He crashes to the floor.)
The story does have continuity in terms of Rudy’s drug addiction and 
fear of death. The screenplay is short—just two pages. I suspect that 
GPT-3 can be a useful tool for screenwriters in search of a plot twist or 
authors suffering from writer’s block. But it’s a long way from there to 
Casablanca. 

Can an Expert System AI Write Screenplays? 
Scriptwriting expert systems were being researched as far back as the 
1960s at MIT. Expert systems are different from neural networks. 
Whereas black box neural networks are exposed to training data, ex-
pert systems rely on human-supplied rules. Expert system AI currently 
writes prose a lot better than Sunspring. Why? Because expert systems 
import the expertise of humans in their compositions. 

AI such as neural networks adjust themselves to mimic whatever 
training data they are fed. The writer of expert systems software, on 
the other hand, basically queries experts about how they operate and 
attempts to capture these rules in software. A neural network trained 
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to trade commodities would be fed past training data from the market 
and adjust itself accordingly with minimal human intervention. An ex-
pert system tasked with doing the same thing could go to top traders 
and make queries. The final expert system could contain a lot of rules 
gleaned from interviews by the computer programmers, like “If the S&P 
is trending and Dow Jones average is tanking, then such-and-such stock 
is a good investment.” The approaches to neural network and expert sys-
tem AI are very different.

Much expert-system writing is a sophisticated version of an old 
game. Consider a spreadsheet table with three columns. The goal of the 
table is to randomly write a report to your Board of Directors. The first 
column contains such phrases as “If we are to succeed,” “Before we move 
forward,” and “If our efforts are to be transformative.” The second col-
umn contains a declarative sentence without a direct object. Examples 
include “process control must characteristically display,” “we must make 
certain we identify,” and “responsibility must be embraced to achieve.” 
The third column contains examples of direct objects like “conceptual 

Figure 3.1. Play the “Choose a Random Phrase” game!

A B C 

If we are to succeed, 
process control must 

conceptual augmentation. 
characteristically display 

Before we move forward, 
productive employees must 

avoidable negligence. 
be juxtaposed with 

To address accessible we must make certain we 
total transparency. 

infrastructure, identify 

Therefore, to achieve our serious attention must be 
creative paradigms. 

goals, given to 

Before the end of this fiscal every employee must be the idea of just-in-time 
year, made aware of supply. 

To increase visibility and our mid-management must 
our longterm goals. 

sales, be thoroughly familiar with 

If our efforts are to be responsibility must be the proposed win-win 
transformative, embraced to achieve scenario. 
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augmentation,” “avoidable negligence,” and “the proposed win-win sce-
nario.” 

Randomly choose entries from columns A, B, and C in the table 
shown. An entry should not be used more than once. The result is your 
briefing to your Board of Directors. Here’s an example generated ran-
domly using the table of sentence fragments:

Before the end of this fiscal year, serious attention must be given to 
conceptual augmentation. Before we move forward, every employee 
must be made aware of the idea of just-in-time supply. If our efforts 
are to be transformative, we must make certain we identify avoidable 
negligence. Therefore, to achieve our goals, our mid-management 
must be thoroughly familiar with our long-term goals. To address ac-
cessible infrastructure, process control must characteristically display 
total transparency. To increase visibility and sales, responsibility must 
be embraced to achieve the proposed win-win scenario. If we are to 
succeed, productive employees must be juxtaposed with creative para-
digms.

On close inspection, this report is pure blather. But it’s after lunch, the 
sleep-inducing carbs from the Big Mac and fries have kicked in, and your 
Board of Directors audience is either half asleep or doesn’t care. There’s 
a decent chance the talk might pass muster and even be followed by a 
smattering of polite applause. 

Can AI Write Scholarly Journal Articles?
Resources on the web use a more sophisticated version of compos-
ing pieces by choosing phrases from three columns. The methodology, 
though, is the same. There are free sites on the web that automatically 
write scholarly papers for you. To non-specialists, these papers may look 
legit. Even some experts, after a cursory glance, may claim legitimacy. 
But anyone with a modicum of expertise will see the papers are pure 
gibberish. Like a lot of AI, the closer you get, the more fake the mimicry 
looks.

The first was SCIgen, which automatically composed journal papers 
in computer science.36 SCIgen was written by computer science students 
at MIT. Here’s how it works. Go to the site. Enter up to five authors 
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and hit Generate. A nice web-formatted paper appears. Click on PDF, 
and there’s your paper ready to submit to a scholarly computer science 
journal. SCIgen even automatically draws figures and references for your 
paper. The references typically contain fictitious papers where you are 
assigned authorship along with other notables such as Albert Einstein 
and Charles Darwin.

Should we be surprised that phony papers generated by SCIgen 
have been accepted by conferences and journals? The pressure to pub-
lish has been applied to professors almost everywhere (publish or perish, 
it’s called in academics). Supply and demand dictates that journals and 
conferences be created to meet the demand. Many of these conferences 
and journals, motivated by profit rather than scholarship, are not picky 
about the quality of the papers they accept. They are more interested 
in collecting fees. Although I’m not a big fan of peer review as it is cur-
rently practiced, there always needs to be a gatekeeper to bar entrance of 
garbage trucks.

A phony paper written by the computer program SCIgen was ac-
cepted at the ninth World Conference on Systematics, Cybernetics, and In-
formatics (WCSCI) in Orlando, Florida. After accepting the paper un-
reviewed, the WCSCI organizers discovered the SCIgen paper was fake. 
They discovered on the web that the paper’s authors had announced 
their triumph and were soliciting donations to travel to the conference to 
present the paper. After this discovery, the conference organizers wrote 
that “since you gave the information in your web page that the paper was 
a fake one, we think we should not accept your registration even if you 
have total responsibility on the content of your paper (as a non-reviewed 
one).”

Whatever that means.
SCIgen generates phony computer science papers. Another paper 

generator, Mathgen, specializes in phony mathematics.37  
Nate Eldredge, who developed Mathgen,38   created fictitious author 

Professor Marcie Rathke of the University of Southern North Dakota 
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at Hoople,39 and had Mathgen produce a paper for her. The paper was 
titled “Independent, Negative, Canonically Turing Arrows of Equations 
and Problems in Applied Formal PDE.”40 The paper title and all its con-
tents were automatically generated by Mathgen. The abstract reads: “Let 
D = A. Is it possible to extend isomorphisms? We show that D is sto-
chastically orthogonal and trivially affine. In [10], the main result was 
the construction of p-Cardano, compactly Erdős-Weyl functions. This 
could shed important light on a conjecture of Conway–d’Alembert.”

From five miles up, to a non-specialist this might possibly look le-
git. But it’s nonsense, as anyone with a little math knowledge can see. 
Nevertheless, the paper was accepted for publication by the impressive 
sounding journal Advances in Pure Mathematics. The editor’s acceptance 
letter begins: “Thank you for your contribution to the Advances in Pure 
Mathematics (APM). We are pleased to inform you that your manu-
script... has been accepted. Congratulations!”41

The editors of this junk journal did suggest a few revisions, saying, 
“We can’t catch the main thought from this abstract.” Oh really? I won-
der why? (“Author” Marcie Rathke responded, “The referee’s objection 
is well taken; indeed, the abstract has not the slightest thing to do with 
the content of the paper.”)

The editorial review continues: “In this paper, we may find that 
there are so many mathematical expressions and notations. But the au-
thor doesn’t give any introduction for them.” That’s because no explana-
tion for them exists.

Rathke’s paper never did get published—not because the journal 
editors ultimately rejected it, but because they required a $500 process-
ing fee. Charging big bucks for publication is characteristic of journals 
whose primary purpose is to bring in the money.

But other phony papers have made it into print, even in reputable 
places. For example Springer, a large German-based publishing house, 
has published a number of SCIgen papers. 
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I have mixed feelings about this, because I have something of a dark 
history with Springer. Here’s what happened.

In 2011, there was a Biological Information: New Perspectives sympo-
sium held at conference facilities on the campus of Cornell University. 
Most of the participants were intelligent design advocates. John Sanford, 
William Dembski, Michael Behe, Bruce Gordon, and I edited a book 
from the conference.42

As editors, we decided the papers we included would not deal with 
theology or philosophy. Only science, mathematics, and engineering 
were allowed. We were invited by Springer to publish the collection, and 
I liked that idea. Two of my previous books were published by Spring-
er.43 Both were later reissued in paperback.

We signed a contract. So far so good.
After hours of reviewing and editing manuscripts, we were a day or 

so away from bringing the collected papers to press. The book was listed 
on both the Amazon and Barnes & Noble websites under the Springer 
logo with a to be released notice. 

Then an anti-ID zealot noticed the book listed on Amazon and con-
tacted some top brass at Springer, claiming our book would besmirch 
Springer’s reputation. Why? Because the book’s editors were closely 
identified with intelligent design. Even though neither Springer’s top 
brass nor the complainer had read a single page of the book, Springer 
pulled the plug.

We tried appealing to Springer’s better side but were unable to find 
it. Our contract with Springer was solid, but lawyers told us taking a 
German company to German court would be a long, difficult, and ex-
pensive process. Plus, life is too short. So we waved goodbye to Springer, 
and the book was ultimately published by World Scientific. They did a 
great job.

The strange story illustrates the deeply entrenched ideology of some 
publishers. Despite best efforts to publish solid science with no theo-
logical reference, papers whose conclusions support intelligent design 
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have been censured for decades. The problem extends beyond academic 
publishing. At this writing, YouTube and Facebook infamously censor 
content that is contrary to their views. 

As for Springer, perhaps you can see why I experienced a bit of glee-
ful schadenfreude when I first heard that Springer’s precious sterling 
reputation had been muddied by their accepting fake and meaningless 
papers from SCIgen. 

Understand, the authors of these phony journal papers had a differ-
ent motivation than did the undercover Mathgen pranksters. These so-
called authors were seriously trying to make their bean piles of published 
journal articles higher. This is not mere guessing on my part; Springer 
contacted the authors of the SCIgen papers, who confirmed that their 
submissions were not intended as hoaxes. 

Springer has retracted the papers, but you can still reference them in 
your papers if so inclined. An example of a Springer-published SCIgen 
paper is:

Sun Ping, “Application of Amphibious Technology in the Reuto-
Mail,” in Proceedings of the 2012 International Conference on Commu-
nication, Electronics and Automation Engineering, ed. G. Yang (Berlin: 
Springer-Verlag, 2013): 409–413.44

Compared to the large number of papers published by Springer, the 
number of SCIgen papers is small. To its credit, Springer is trying to 
scrub off some of the muck from its face by taking steps to make sure 
publication of phony papers doesn’t happen again. But I suspect Spring-
er will always appear unwashed to me.

To recap: AI expert systems can generate papers that seem, on the 
surface, to be coherent. But they aren’t. They lack any real meaning to 
anyone with a modicum of domain expertise. They certainly are not 
creative. Like other AI computer programs, SCIgen and Mathgen do 
exactly as their programmers expected. They do exactly as their pro-
grammers ordered. 
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Can AI Write Gunslinger Stories?
 Believe it or not, AI expert systems using flow graphs were used to write 
cowboy screenplays in the 1960s.45 The story is written akin to the game 
where sentence fragments are randomly selected by chance. The paths to 
different story segments are controlled by rules.

The 1950s were the golden age of the adult western on television. 
Gunsmoke’s television premiere in September 1955 began the era.46   
Gunsmoke quickly rose to the top spot in television viewership and stayed 
there, so naturally imitations followed. By 1959, there were over twenty-
five TV primetime westerns. Clint Eastwood made his acting debut in 
the TV series Rawhide. The prolific actor/director Michael Landon be-
came an icon after co-starring in Bonanza. Emmy-winner and Academy 
Award nominee James Garner got his start in the western television se-
ries Maverick.

The popularity of the western genre prompted MIT to choose a 
western theme for their rule-based AI-written play in 1960. The basis 
for the plot is short and simple. An outlaw wearing a mask and a cowboy 
hat has just robbed a bank. The outlaw enters his hideout with a bag of 
loot and finds a bottle of whiskey and a glass. Close behind the outlaw 
is the sheriff. From this foundational premise, many plots can spring. 
(MIT had their computer run about fifty of them.)47

So how did this expert system work? MIT researcher Douglas T. 
Ross explains: “Just as a human playwright must obey certain rules in 
order to have a meaningful and understandable play, one that seems 
natural for people to actually act out, we must make the computer aware 
of the same rules.”

Ross’s rules are simple. For instance, if the gun is in the robber’s hand 
and the robber is in the corner, then the gun is also in the corner. “The 
human playwright would know already things that we have to teach the 
computer by programming,” Ross explains. 

So rules proliferate. The outlaw, for example, can hold in his right 
hand either his gun, the loot from the robbery, or the whiskey glass; but 
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the outlaw can’t have more than one object in his hand at the same time. 
The outlaw cannot react to the sheriff if he does not see the sheriff; to 
see the sheriff, the outlaw’s head needs to be turned in the direction of 
the sheriff. 

The difficulty of accumulating rules even for the simple task of writ-
ing a short screenplay illustrates why, for the most part, pure standalone 
human-generated rule-based systems have failed. There are just too 
many pesky nuances to consider. 

In the MIT cowboy expert system, one or both characters can drink 
the whiskey. The expert system keeps track of how drunk a character is 
by means of an inebriation index which, Ross says, “controls the actions 
of the robber depending on how much he has had to drink. The more 
the robber has to drink, the more inebriated he will become, so that he 
becomes less and less intelligent in his behavior.” 

Via the flowchart, the inebriation index, and the occasional equiva-
lent of a randomly weighted coin flip, a story unfolds. Sometimes the 
sheriff shoots the outlaw. Sometimes the outlaw shoots the sheriff. 
There are intermediate variations as to who drinks how much whiskey. 
But the overall story never varies. (In fairness, some critics said much the 
same thing about the glut of primetime western weekly programs that 
aired on television in 1959.)

As with today’s AI, unintended consequences are encountered. For 
example, one output from the AI expert-system scriptwriter ended in an 
implausible loop: The outlaw spins the cylinder of his six-shooter while 
the sheriff downs whiskeys. The cylinder spinning and whisky drinking 
occur again, and again, and again, in a never-ending loop. (Some may 
recall here the Turing halting problem, which we will discuss in a later 
chapter.) Simple as it was, the western script generator still had its bugs.

“We had a lot of fun working on this program,” Ross says in the in-
terview, “but we’re not just playing games. We’re trying to illustrate some 
important things about artificial intelligence.” So far so good. 
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But Ross continues, “What we’re trying to show is intelligent behav-
ior is rule-obeying behavior; we’re trying to show what these rules look 
like; and we’re trying to show how a computer can be made to do creative 
work.”

Is intelligent behavior rule-obeying behavior? No, or at least not en-
tirely. As we saw earlier, it is often the breaking of rules that results in 
brilliant leaps in human thinking.

And did rule-following cause the MIT computer to be creative? No. 
The computer did something fun, but the creativity involved was all on 
the part of the programmers, the actors, and so forth.

 Ross is far more accurate in his final pronouncement: “There is no 
black magic about doing these things on a machine. It’s marvelous... but 
far from miraculous.”48

Back in 1960, when language and cognitive learning expert Jerome 
S. Bruner of Harvard was asked to comment on the MIT cowboy scripts, 
he said, “I have little doubt that we will be able to produce machines and 
computer programs that will behave in a fashion we speak of [emphasis 
mine] as intelligent and that these will be of great aid to man.... Where 
my doubt comes in is whether we will be able to produce machines and 
machine programs capable of creative thinking.”49  Bruner knew whereof 
he spoke.

In this chapter, the capacity of AI to write has been explored. Yes, 
AI can write—but it can write nothing deeply creative or belletristic. 

What about AI and art? Can AI write music or create great paint-
ings? That’s what we’ll talk about next. 





4. Machine Artists?
Who knew that people could use the same three chords over and 
over and people would sit through it for two hours? 

—Young Dewey in Malcolm in the Middle upon seeing 
the musical Mamma Mia using the songs of ABBA.1

In the last chapter we saw AI’s lame writing achievements. 
Now we turn to music and painting.

Even without the additional complicating factor of AI, what is and is 
not art is a question that has perplexed centuries of artists, philosophers, 
and regular people who don’t know much about art but know what they 
like. Is art appreciation highly subjective—beauty is in the eye of the be-
holder2—or are there fixed objective criteria by which we can distinguish 
art from non-art, and great art from amateurish art?3 Regardless of the 
answer to that fundamental question, people’s notions of what is and 
isn’t art are all over the map.

Art celebrated by others can be whacko weird to me. Artist Damien 
Hirst cut in half the carcasses of a cow and a calf lengthwise and dis-
played them in two pairs of glass containers filled with formaldehyde. 
His art, Mother and Child Divided, earned him the 1995 Turner prize, 
one of the art world’s most prestigious art awards.4 Since the glass cases 
containing the bovine bifurcations are separated when displayed, the ex-
hibit title Mother and Child Divided serves as a descriptive pun. The cows 
were divided by being both (1) cut in half and (2) separated cow from 
calf. And this is considered high art by some. 

Philosophers of aesthetics have written many books on such top-
ics. This points up another difference between humans and machines: 
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grappling with questions about art, much like grappling with questions 
about the meaning of life, is something only humans do. 

With that in mind, let’s first think about music. 

Keeping it Simple
Has AI written music? Yes, it has.

The world of popular music is broad, ranging all the way from Elvis 
and the Beatles, to Nirvana and AC/DC, to Beyoncé and Justin Bieber, 
to catchy jingles for ads. Even if we focus just on contemporary popular 
music, we find a dazzling variety—blues, rock, pop, jazz, rap, country, 
alternative, electronic, etc. 

It might come as a surprise, then, to learn that the musical structure 
of much of popular music is not complicated. (Likewise, some modern 
praise music sung in churches during Sunday worship service is referred 
to as 7-11 music: seven words repeated eleven times.) Chord sequences 
in popular music like classic rock are typically simple and are used by 
songwriters over and over (and over). A songwriter, whether human or 
AI, can choose one of these sequences as the structure for a song. 

One oft-used structure is the twelve-bar blues progression of chords 
(Blues guitarist Eric Clapton’s 2017 cinematic biography, Life in 12 Bars, 
is a play on this).5 In twelve-bar blues, three chords are used. In the key 
of A, the chords used in the twelve bars, often colored as sevenths or 
ninth chords, are A-A-A-A; D-D-A-A; E-D-A-E. Here’s an incomplete 
list of classic rock songs that follow the basic twelve-bar blues struc-
ture: “Folsom Prison Blues” by Johnny Cash; “Jail House Rock,” “Blue 
Suede Shoes,” “Heartbreak Hotel,” and “Hound Dog,” all sung by El-
vis Presley; “Boogie Shoes” by KC & The Sunshine Band; “Roll Over 
Beethoven,” “Johnny B. Goode,” and “Maybelline,” all by Chuck Berry; 
“Rock Around the Clock” by Bill Haley & His Comets (often identi-
fied as the first rock-and-roll hit); “I Got You (I Feel Good)” and “Papa’s 
Got a Brand-New Bag,” both by James Brown; and “Tutti Frutti,” “Good 
Golly Miss Molly,” and “Long Tall Sally,” all by Little Richard.
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A second common structure in classic rock is the so-called “Louie-
Louie” chord progression, named after the Kingsmen’s iconic recording. 
Four chords are repeated over and over ad nauseam. Variations, includ-
ing a guitar solo, are thrown in to distract from the chord monotony. 
In the key of A the repeated chords are A-D-E-D. Example recordings 
using the Louie-Louie chords include “Like a Rolling Stone” by Bob 
Dylan; “Wild Thing” by the Troggs; “Hang on Sloopy” by the McCoys; 
“Get Off My Cloud” by the Rolling Stones; and, of course, “Louie-Lou-
ie” by the Kingsmen. 

A third common structure is known as “Those Magic Changes.” 
You might be familiar with the movie Grease, starring John Travolta 
and Olivia Newton-John. “Those Magic Changes” is the title of a song 
dropped from the movie but performed in the Broadway musical ver-
sion. The song celebrates the many songs using the four chords C, A 
minor, F, and G7. In fact, reciting the sequence of chords is part of the 
lyrics of the song—“C–C–C–C–C–C / A–A–A–A-minor / F–F–F–
F–F–F / G–G–G–G-seven.” Here is a partial list of songs depending in 
whole or in part on the repeating of these chords: “Free Fallin’” by Tom 
Petty; “Runaround Sue,” “Donna the Prima Donna,” and “In the Still 
of the Night,” by Dion; “Crocodile Rock” by Elton John; “I Will Always 
Love You” by Dolly Parton; “Monster Mash” by Bobby Pickett; “Happi-
ness Is a Warm Gun” by The Beatles; “Heart and Soul” by Hoagie Car-
michael; “Donna” by Richie Valens; and “All I Have to Do Is Dream” by 
the Everly Brothers.

There are exceptions to chord progression simplicity in popular mu-
sic, of course. The Beatles’ songs “Yesterday”6 and “You Never Give Me 
Your Money”7 come to mind, and then there is the iconic pop-rock outli-
er “Bohemian Rhapsody” by Queen.8 But generally speaking, in terms of 
chords, popular songs typically have a very simple structure. The Beatles 
song “Paperback Writer” uses only one chord for the entire song. There 
are variations to the chord structure, like the song bridge, and the chords 
are often colorized, but the fundamental chord progression remains fun-
damentally the same.
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AC/DC’s Angus Young is an amazing guitar player, but he himself 
whimsically acknowledged the shallowness of his band’s music, saying, 
“I’m sick and tired of people saying that we put out eleven albums that 
sound exactly the same. In fact, we’ve put out twelve albums that sound 
exactly the same.”

Thinking Outside the Music Box
Such repetition would be easy for machine intelligence to capture 
as a foundation on which to build. Machine intelligence can write pop 
music hooks and melodies. If trained on a number of pop tunes, AI can 
produce another pop tune. Repetitive melodies and hooks around com-
monly used chord structures are not that big a deal. What makes such 
music a big deal is something AI can’t do.

Popular music’s popularity is due in large part not to the sophistica-
tion of the music, but to catchy melodies, melody and rhythm variations, 
fun lyrics, musical hooks, blues improvisation around the pentatonic 
blues scale, and—and course—the performer’s singing skills, stage pres-
ence, and emotionally charged performance, including such things as 
note bending by stretching guitar strings to convey emotion. 

In the 1960s I attended two concerts by the iconic rock group The 
Rolling Stones. Their terrible garage band live performance was off beat, 
clunky, and overall amateurish. Lead singer Mick Jagger sang flat and 
sharp at the same time. His vocals in the recording “I’m a King Bee” 
are so bad I cringed on first hearing.9 Yet the Rolling Stones are rock 
stars. They burst onto the scene with the so-called British invasion in the 
1960s, and their visibility blossomed into a brand. Mick Jagger’s terrible 
voice, heard everywhere during the last half century, became a norm. 

Why? On the positive side, the Rolling Stones’s songs are filled with 
memorable riffs and catchy melody hooks. Their performances were 
energetic. Mick Jagger’s gyrations and rock-and-roll facial expressions 
resonated with audiences. The band’s chords were simple—in my garage 
band days, everyone liked to play Rolling Stones songs because of the 
simplicity of the chords—but it wasn’t the chords that made the band 
great. It was a variety of particularly human factors.
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Music’s appeal is highly correlated between the emotional connec-
tion between the artist and the audience. In popular music, showman-
ship is mandatory. When bending a blues note string on his guitar, Ste-
vie Ray Vaughan’s guitar face adds a lot to the song’s presentation and 
the connection between the musician and the audience. Emotional per-
formances enhance enjoyment of music.

AI, however, can’t do emotion. Recent studies have shown that 
while AI can do well when it comes to cognitive-oriented advertising 
(ads appealing to consumer’s minds), AI is ineffective when it comes to 
emotional appeals. “Human rather than AI input is needed for creating 
emotion-oriented advertisements,” the authors of the studies conclude.10

But emotion is what makes music work—the emotion conveyed by 
the performers, the emotion the music evokes, the emotional connection 

Figure 4.1. My rock star guitar-playing friend Pat Kelley and some of his 
guitar faces.
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between audience and artist. Much of that emotion and connection rely 
on personality. And as software architect Brendan Dixon notes, “This is 
the blindspot of AI creativity: There’s no one home. There’s no ‘personal-
ity’ behind the ‘creation.’”11

Classical Music
What about more complicated types of music? Repetition is not char-
acteristic of artful music, including opera and the works of the masters. 
Nevertheless, AI is able to capture the styles of classical composers by 
way of “a mathematical model representation of what music is.”12 Re-
member, even when it comes to artistic endeavors, computers—unlike 
people—are algorithmic. AI can figure out the mathematical pattern of 
a certain type of classical music and produce a similar-sounding compo-
sition. 

But there’s a limit to what AI can achieve musically. As with all AI, 
music-generating AI is restricted to its input. Like a mockingbird, AI 
can only mimic the music it hears. AI trained on Bach will create music 
in the genre of Bach; it will never create a piece resembling the music of 
Richard Wagner or Igor Stravinsky. The style of Bach also excludes the 
atonal work of Arnold Schoenberg and the wonderful chaos of Charles 
Ives. Ives’s orchestra Symphony No. 413 is so multilayered, two conduc-
tors are required for its performance.14 Such structured complexity will 
not spring out of AI trained only on Bach. 

And of course this works both ways. AI trained on Wagner is need-
ed to generate Wagnerian music; AI trained on the music of Wagner 
will not generate baroque music. Machine intelligence is incapable of 
thinking outside the box.

“We’ve basically now got to the point where machines can —plagia-
rize is a somewhat harsh word, but virtually copy, say, Mozart,” Selmer 
Bringsjord says. “But where’s the machine that creates something brand-
new in music? New and coherent? And semantically meaningful? No-
where to be found.”15
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David Cope, a pioneer in the field of AI music, conducted what is 
known as his Experiments in Musical Intelligence (referred to as EMI or 
Emmy) and managed to get his machine to produce compositions in the 
styles of various composers.16 Cope has said repeatedly that computers 
are creative. But whether that is true comes down to the definition of 
creative. Bringsjord says, “To his credit [Cope] offers a definition of what 
he means by creativity. And for him, problem solving counts as creativ-
ity. Pretty much generic problem solving. I don’t count as creativity the 
solving of SAT quants problems.”17

Bringsjord’s right. AI can be a great mimic. Mimicry is said to be a 
form of admiration, but mimicry does not an artist make.

What about Jazz?
Jazz poses an insurmountable problem for AI. “You cannot reduce jazz 
to mere repetition or formula,” computer architect and jazz enthusiast 
Brendan Dixon says. “AI can’t do jazz because spontaneity is at jazz’s 
core.”18 

Jazz musician and music critic Ted Gioia is on the same page, say-
ing, “More an attitude than a technique, the element of spontaneity in 
the music rebels against codification and museum-like canonization.”19 
He says: “Some years ago I worked with an expert in computer analysis 
of rhythms, and together we tried to understand what was actually hap-
pening to the best in music that possessed a strong sense of swing. What 
we learned was that especially exciting performances tended to break 
the rules.”20 Breaking the rules is going outside the box—a necessity for 
creativity.

As we saw in the previous chapter, AI can’t break rules. And follow-
ing rules too carefully in jazz is fatal. Gioia says that at a “rudimentary 
level of performance, the musicians tend to rely repeatedly on a small 
number of rhythmic patterns in their phrases. Even if the notes they play 
are different, the rhythmic structures of the phrases are often identical. 
Such improvisers might sound convincing for a single chorus, but if the 
solo goes on long enough, even novice listeners will perceive an inescap-
able monotony in the proceedings.”21
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AI-generated jazz can be listened to on YouTube.22 The title of a 
Brendan Dixon article nicely assesses results of such efforts to generate 
jazz: “Fan Tries Programming AI Jazz, Gets Lots and Lots of AI.”23

As we with saw with popular music performances, with jazz there’s 
also something going on distinct from the musical composition. Gioia 
talks about the excitement that arises in watching or playing in a jazz 
band when all the different musicians involved collectively hit their 
stride and cohere into a single perfect organism, in synch, in what Gioia 
calls a “collective pulse.” The joy felt at such a time is a joy of communica-
tion, of community. When this happens, he says, “the confidence of the 
performers will translate itself into a visceral sense of rightness among 
the audience. This is more than a subjective response.”24

Such performances are more than the sum of their parts, but that’s 
all AI music is—a mathematical formula, an aggregation.

Like much of AI, machine-generated music can be used as a tool by 
songwriters. A smorgasbord of AI-generated hooks and tunes can be 
mined and enhanced by the composer interacting with the AI. But the 
creativity involved belongs to the programmers and to the composers 
whose works were fed into the AI as training. It does not belong to the 
machine itself. Nor can a machine meaningfully participate in that most 
human of artistic enjoyments, the live performance, with its myriad hu-
man connections.

AI and the Visual Arts
Like music composition and writing, painting can be reduced to an al-
gorithmic level.

As you might expect, it’s not hard to generate abstract paintings. 
Landscapes, too, provide little difficulty for AI programmers. There’s 
an interactive app called GauGAN that can take simple doodles and 
turn them into landscapes based on the millions of images it was trained 
with.25 GauGAN is fun, but as is so often the case with AI, its creativ-
ity gets overhyped. One of the developers boasted, “This technology is 
not just stitching together pieces of other images, or cutting and pasting 
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textures.... It’s actually synthesizing new images, very similar to how an 
artist would draw something.”26 

If you like, you can submit your own photo to AI Ghuku, a Japa-
nese AI art generator that will turn your image into a Renaissance-style 
painting. More or less. As one reviewer says:

Some of the AI-generated art are faithful recreations of the source 
images; the results look like the photographs—except now they are 
crafted with paint strokes. But other portraits didn’t fare so well. De-
pending on the photo, the output might have distorted features, er-
rant facial hair, and it may be in need of some serious dental work. 
These glitches are often amusing (and not totally unexpected) from 
AI, as machine learning improves the more that users input data.27

But new things can’t be generated without creativity. The reality 
comes out in that word synthesize. GauGAN can only produce visuals 
from the images and orders it has been given, so that’s exactly what it 
does. It doesn’t have an idea in the way an artist might; it doesn’t imbue 
its products with its own thoughts, history, or emotion.

Portraits are harder than landscapes or abstract paintings, but AI 
can generate those too. An AI-generated painting titled Edmond de Be-
lamy28 sold at a Christie’s auction for $432,500.29 The painting, signed by 
an equation, is the image of a well-dressed chubby man with jowls and 
a tiny mouth. The top of his head is cut off by the top of the canvas. As 
far as skillful painting goes, it does not impress. I doubt anyone would 
choose to hang it on a wall based on its appearance. The painting’s fi-
nancial success had to do with its novelty in being the first AI-generated 
painting, not with any artistic merit.

To no one’s surprise, a glut of other AI-generated paintings soon hit 
the auction market in hopes of duplicating the financial success of AI-
generated Edmond de Belamy, but with the novelty waning, subsequent 
paintings sold for far less.30 

And no, the machine that “created” Edmond de Belamy was not cre-
ative except in the sense of spitting out a product made from data it had 
been given. “We fed the system with a data set of 15,000 portraits paint-
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ed between the 14th century to the 20th,” says Hugo Caselles-Dupré, 
who programmed the AI.31 Then the AI created Edmond de Belamy by 
interpolating among its trained images. 

I will wager the thousands of portraits used to train for the genera-
tion of Edmond de Belamy contained none of Picasso’s cubist works nor 
paint-splashing Jackson Pollock’s abstract expressionist paintings. Do-
ing so would muddy the interpolation pool. Placing such outliers in a 
training data set is called poisoning and has been used in cyberattacks on 
AI training.32 I also suspect that Edmond de Belamy was cherry-picked 
by humans from a large number of the portraits generated by the AI.

Figure 4.2. The AI-generated portrait Edmond de Belamy (original is in 
color).
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Any emotional component of art can’t be provided by a machine. “If 
you define art more broadly as an attempt to say something about the 
wider world, to express one’s own sensibilities and anxieties and feel-
ings, then AI must fall short,” the author of a Christie’s article notes.33 
Caselles-Dupré agrees. “The machine did not want to put emotion into 
the pictures,” he says. Nor, he concludes, did the machine “create” in any 
meaningful sense: “If the artist is the one that holds the vision and wants 
to share the message, then that would be us.”34 

Removing the emotional meaning of art diminishes its value. Imag-
ine one hundred copies of the Mona Lisa. Assume the duplications are 
exact down to the molecule. On the back of each duplicate painting 
is stamped the word “COPY.” The copies and the original Mona Lisa 
are auctioned at Christie’s. Although all the paintings are identical, the 
original painting will sell for much more than any of the copies. The 
original’s history, including the tracing of its origin to Leonardo da Vin-
ci, makes it much more valuable. The value of art is related to its story. 
Removing the story diminishes its value. Edmond de Belamy sold for a 
high price because it was the first AI painting and therefore novel. To-
day, an AI-generated painting can be ordered online for less than $140. 
The choices for AI paintings are limitless. Thousands of different image 
options can be generated immediately on the site 1SecontPainting.com. 
Many of the AI-generated paintings would display well in hotel rooms 
and offices where art appreciation is of secondary concern.

A Brief History of Portrait Generation
The idea of using neural networks to learn and then create new images 
itself is over thirty years old.35 In 1991, Dennis Sarr trained an alternat-
ing projection neural network on a number of portraits, including those 
of Sarr’s two daughters. What would happen if Sarr asked the neural 
network to fill in eyes after the top of one of the daughter’s pictures was 
input into the neural network along with the bottom of the portrait of 
the other daughter, with neither partial image containing the eyes of the 
girls. How would the neural network interpolate so as to fill in eyes? The 
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neural network constructed a picture of a creepy little girl with hollow 
black eyes.36

A more interesting example from my book on Fourier analysis37 uses 
the same alternating projection neural network trained now with fifty-
six portraits of famous scientists and mathematicians. Only faces of sci-
entists are used to train the neural network. No dog, cat, pig, or horse 
pictures were used because doing so would muddy the pool. This is far 
short of the thousands of images used to train AI portrait generators 
today but still gives rise to interesting results. 

 What happens if the neural network trained on the mathemati-
cians/scientists is further supplied the image of my right eye and asked 
to synthesize a prototypical scientist face? There is no picture of my face 
in the database, so the neural network will have to interpolate around 
what it has been trained with. How well will the neural network manage 
to generate a face that meshes aesthetically with the picture of my eye? 
The neural network popped out a strange face we will call Spooky Dude.

So you be the judge. Shall I auction off my AI-generated portrait? 
Maybe Spooky Dude’s income will rival the $432,500 painting Edmond 
de Belamy. Of course, Spooky Dude will not do as a portrait title. The 
image needs a new name to rival the seductive semantics radiated by Ed-
mond de Belamy. The spooky dude looks like he is wearing headphones, 
so how about, instead of Spooky Dude, we call the portrait Günter Kraus 
Endures Rap. That title fits with Günter’s grimace. I’ll start the bidding 
at $500. Any takers?

Figure 4.3. From left to right: daughter one; daughter two; composite 
with portions from both daughters; AI-generated portrait with creepy 
hollow eyes. (These images are the best resolution available for computers 
used at the time.)
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Today’s AI image synthesis software is faster and more sophisti-
cated than a neural network from thirty years ago, but the old and new 
AI do share the property that the AI result is nothing more than an 
interpolation of the images used to train the AI. AI cannot be creative 
beyond what it is taught.

Fake Photos
Now let’s turn to the potentially more alarming topic of AI-generated 
fake photos. 

Staged Photos
Fake photos have been around for a long time. In 1917 two cousins in 
England, Elsie Wright and Frances Griffiths, released pictures of them-

Figure 4.4. Spooky Dude, bottom right.
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selves with eight-inch-tall winged fairies. The photos became famous 
after being popularized by Sir Arthur Conan Doyle. Yes—the same Ar-
thur Conan Doyle who created Sherlock Holmes. Doyle was a spiritual-
ist and wanted to believe what he saw in the photos. In a 1920 article for 
the Strand, he wrote, “I consider, after carefully going into every possible 

Figure 4.5. Elsie Wright and a Cottingley Fairy.
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source of error, that a strong prima facie case has been built up” that the 
fairies in the photos were real.38

Had the photos been manipulated? Photograph experts examining 
the photos declared there was no tinkering with the images. 

Over sixty years later, the cousins who took the pictures confessed 
the photos were fake. They used cutout fairy images copied from the 
children’s book Princess Mary’s Gift Book, published in 1914. Wings were 
added. In the photos, the fake fairies were fixed in place by hatpins. The 
cousins took turns posing with the carefully positioned cutouts. So the 
photograph experts were right—there was no tinkering with the image. 
The deception was in the posing of the paper fairies.

The fake fairy photos have been called “one of the biggest hoaxes of 
the twentieth century.”39 Even so, two of the original photos, collectively 
known as the Cottingley Fairies, were each auctioned in 2018 for over 
£20,000 (about $28,000).40

Figure 4.6. Frances Griffiths and Cottingley fairies.
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Figure 4.7. Montana’s giant grasshopper.
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Manipulated Photos
Faked photos continued. In 1937 a photo was released of a man posing 
with a shotgun and a four-foot-long dead giant grasshopper.41 The photo, 
printed on a postcard, became a bestseller. Unlike the Cottingley Fair-
ies, the photo was clearly doctored. The biggest tell was inconsistency of 
shadows. The grasshopper should have cast a shadow on the man’s pants 
leg, just as his left arm casts a partial shadow on his leg. Doctoring pho-
tos in those days was difficult but not impossible.

Then came the era when images were faked by Photoshop pixel 
pushing. Images from one image could be digitally copied and pasted 
to another. To look authentic, the pasted images needed to match in 
contrast and blend at the copied image’s edges. I became decent at this. 
My projects included pasting my head in publicity photos for television 
shows like Gunsmoke and The Andy Griffith Show.42

Deep Fake People Pictures
Today’s deep fakes generated by AI have taken the fake-photo and fake-
video game to another level. The results are impressive. AI can take a 
person in an existing image and seamlessly replace them with someone 
else. There is no copy and paste action. AI can also take a video of a real 
person and alter the video to make them say or do things they didn’t say 
or do. In many cases it is extremely difficult, perhaps impossible, to tell 
whether the photos or videos are fake.43

At this writing, forensic diagnosis to determine whether a picture 
is fake or not is still an open field. In September 2019, Microsoft, Face-
book, and Amazon issued a challenge to detect deep fake videos and 
photos. It’s an important area of study, because “deepfakes might be used 
to sway public opinion during, say, an election, or to implicate someone 
in a crime they didn’t commit,” among other nefarious uses.44 At this 
writing, a general method to detect deep fakes has not yet been reported. 

To see how well AI can convincingly create human faces, first take 
a break from reading this book. Get some coffee and visit the website 
ThisPersonDoesNotExist.com. Every time you hit the refresh button 
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on the browser, a new face will appear—and none of the people exist. 
All the faces look remarkably real with no evidence that they are syn-
thesized.

How does AI do this? 
Picture a set of all possible images. It’s a big set including pictures 

of dogs, trees, noise, eyeballs, x-rays, maps, politicians, Uncle Ray, flags, 
clouds, and toe fungus. A very small subset of all these images is the set 
all human faces. To identify this subset, a large number of human face 
pictures are gathered. This training data is then used to find the location 
and extent of the subset of human faces in the bigger set of all images. 
The training set obviously does not include all the faces in the world, nor 
all possible faces. Nevertheless, the training data’s location of the sub-
set is enough. An AI algorithm called the generative adversarial network 
(GAN) is used to find other members in this subset that are, in some 
sense, close to the original training data.45 Using the GAN, this region 
of space is cleverly interpolated to generate new faces that do not exist. 
This is the simplistic description of how the faces in ThisPersonDoes-
NotExist.com are generated. 

Identification of the subset of human face pictures must not be con-
taminated with images outside the subset of human faces. The human 
face training data contained no pictures of horses, cats, pigs, or dogs. 
If deep fake pictures of dogs-that-don’t-exist were desired, the training 
data would consist totally of images of dogs. Using data outside of the 
target subject subset muddies the performance of the resulting AI.

On ThisPersonDoesNotExist.com, the results are remarkable, but 
they are exactly what the computer programmer wanted to accomplish. 

Almost.
Anomalies can pop up. Keep hitting refresh on ThisPersonDoes-

NotExist.com and some strange images can result. In one instance, a 
young girl with painted cheeks is accompanied by a weird fleshy blob 
with a distorted eye. The blob looks like a severely deformed human 
with a slug on her face. But a number of refreshes are required to gener-
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ate more such strange anomalies. Most of the images on the site look 
flawless. Can additional programming be applied to avoid such outliers? 
I suspect the answer is yes.

Deepfake photos and videos can be used in positive and negative 
ways. AI is neither good nor bad. It’s how it’s used. A fake person in-
stead of a real one could be used in an ad for an embarrassing personal 
product, for instance. Plus, no modeling fees would need to be paid to 
humans. 

 Is the GAN producing these deep fake photos creative? Do these 
images pass the Lovelace test? No. Like other examples of AI-generated 
art, the generated images are impressive but not creative. The AI is doing 

Figure 4.8. A non-existent child with face paint accompanied by a non-
existent mutant companion.
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what the programmers programmed it to do. Even the glitches produc-
ing deformed-looking faces are the result of programmer decisions. Any 
creative credit belongs to the programmer, not to AI. 

When we talk about AI and creativity, or AI and art, in part what 
we’re discussing is technical skill. The photos generated by ThisPerson-
DoesNotExist are skillfully rendered; some of the music generated by 
AI is skillful. Skillful, but derivative.

Connection and Manipulation 
Your estimation of the ditty “Twinkle, Twinkle, Little Star” is prob-
ably enhanced when you’re told the melody was composed by Mozart as 
a child prodigy.46 The degree to which art is held in high regard can be 
affected by external factors, and not just by our clear-headed assessment 
of the art itself. 

Consider the Beatles. They wrote some amazingly catchy songs, but 
remove the Beatles’s “brand”—carefully cultivated via intense promo-
tional campaigns including mop-top haircuts, Beatles boots, and British 
slang like “fab”—and their songs lose a lot of pizazz. The movie Yes-
terday is deeply flawed because its writers didn’t understand this. The 
movie is about an out-of-luck pop musician who, through strange cir-
cumstance, is the only person in the world who remembers songs by the 
Beatles. This musician begins to record Beatles songs and is celebrated 
as a genius songwriter. Yesterday ignores the brand connection between 
listener and performance and incorrectly assumes the group’s songs were 
great independent of the Beatles brand. To human listeners, the heritage 
of art matters (though occasionally we’re okay with, for instance, restful 
background music devoid of history or human connection).

Another great example of how human connectivity can influence 
our evaluation of art can be seen in a practice that existed as far back 
as Nero and which was named and systematized as “claqueing” in eigh-
teenth-century French theater and opera houses.47 

Leaving nothing to chance, professional paid claqueurs would be 
sprinkled throughout the audience and enthusiastically applaud the per-
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formance. At the end of a performance, one claqueur would spring to his 
feet, clap loudly and enthusiastically yell “Bravo!” One enthusiastic “Bra-
vo!” was quickly echoed by another standing claqueur and then another. 
Soon non-claqueurs would stand and join in the chorus of accolades. 
Claqueing affected the perception of the quality of the performance and 
those penning reviews were more positive in their assessment than they 
otherwise might have been. 

The claque was so successful that agents soon coordinated the prac-
tice.48 Tell the agent how many claqueurs you need, pay an appropriate 
fee, and claqueing would be scheduled for your performance. The prac-
tice was so successful, specialists emerged. The chef de claque (leader of 
applause) organized the claqueurs. Bisseurs were in charge of clapping 
and yelling “Bis, Bis!” (Encore, Encore!). Commissaires (commission-
ers) engaged in enthusiastic conversation with those sitting nearby. For 
sad sections of a performance, pleureurs (criers) would bury their faces 
in handkerchiefs and sob loudly. At happy moments, rieurs (laughers) 
erupted in belly laughs at jokes. 

Claqueurs have been replaced today by agents, promoters, and pub-
licists. Ad agencies specialize in making artful products appealing. So-
cial media specialists claque their client’s creations to influencers and the 
public. Will a song ever be popular without modern claqueing? How 
about a self-published book? Is there any chance a work today will go 
viral without promotion and publicity? Sure.49 But it’s about as likely as 
being hit by space debris while juggling. 

Claqueurs direct attention towards the glitter, away from the 
warts and towards an illusion of greatness beyond the reality that is. 
Claqueurs ooh and ahh at the output generated by AI and focus credit 
on the computer, not on the human minds behind the machines.

Claqueurs also play on people’s emotions. In our next chapter, we 
will look at some modern-day claqueurs and their role in ginning up 
both unwarranted excitement and unwarranted fear about the future 
of AI.





Part Two:  AI Hype





5. The Hype Curve
By far, the greatest danger of Artificial Intelligence is that people 
conclude too early that they understand it.

—AI researcher Eliezer Yudkowsky1

Artificial intelligence indisputably rocks! Deep Blue beats 
Garry Kasparov at chess, IBM’s Watson beats all comers in Jeopar-

dy, OpenAI’s GPT-3 writes fascinatingly coherent prose in short bursts,2 
an AI drone beats Top Gun fighter pilots in dogfights,3 the AI program 
Pluribus beats the world’s top Texas Hold’em poker players,4 Google’s 
DeepMind wallops world champions at the difficult Asian board game 
GO, and DeepMind’s AlphaStar masters the difficult interactive video 
game StarCraft II.5 And get this: AI learns to beat arcade games by only 
observing the pixels on the display screen. Wow! And can you imagine 
the future? Level 5 self-driving cars (I want one once all the glitches are 
ironed out!), AI chips in our iPhones and in our brains (think I’ll skip 
that one), and humanoid robots everywhere.

To some, this might seem a little scary. And indeed several lead-
ing scientists and tech leaders, filling the role of Chicken Little, warn 
us we’re in grave danger. The late physicist Stephen Hawking said the 
emergence of artificial intelligence could be the “worst event in the his-
tory of our civilization.”6 Bill Gates says of future AI that “I don’t under-
stand why some people are not concerned.”7 Elon Musk says AI “is hu-
manity’s biggest existential threat.”8 And Henry Kissinger, who served 
as the United States Secretary of State and National Security Advisor 
for both Presidents Richard Nixon and Gerald Ford, says, “Philosophi-
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cally, intellectually—in every way—human society is unprepared for the 
rise of artificial intelligence.”9

If you read speculative statements like these, often summarized in 
trumpeted daily news headlines, you are experiencing a leg of the hype 
curve in action. The term “hype curve” refers to the overall reaction to 
new technologies.10 Development of any new technology like AI re-
quires research to tease apart capabilities from limitations; speculative 
hype amplifies interest in areas not yet explored by the new technology. 
Such speculative hype comes in various flavors. Many worship at the feet 
of the exciting new technology and without foundation predict all sorts 
of new miraculous applications; others preach unavoidable doom and 
gloom in the future.

 We have surfed the hype curve many times. The best way to deal 
with the curve is to remain sober and recognize the hype curve as it’s 
playing out. 

Stages of the Hype Curve
Here are the stages of the ubiquitous hype curve.11

 • The launch phase. In the beginning of the hype curve, newly 
introduced technology spurs expectations above and beyond 
reality. Poorly thought-out forecasts are made. 

 • The peak-of-hype phase. The sky’s the limit. Imagination 
runs amok. Whether negative or positive, hype is born from 
unbridled speculation. 

 • The overreaction-to-immature-technology phase. As the new 
technology is vetted and further explored, the realization sets in 
that some of its early promises can’t be kept. Rather than calmly 
adjusting expectations and realizing that immature technology 
must be given time to ripen, many people become overly 
disillusioned.

 • The depth-of-cynicism phase. Once the shine is off the apple, 
limitations are recognized. Some initial supporters jump ship. 
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They sell their stock and go looking for a new hype to criticize, 
believe in, or profit from. 

 • The true-user-benefits phase. The faithful—often those whose 
initial expectations included the realistic possibility of failed 
promise—carry on and find ways to turn the new technology to 
useful practice.

 • The asymptote-of-reality phase. The technology lives on in 
accordance with its true contributions. 

Triggering the Hype Curve
What causes all this often-unnecessary drama? There are many con-
tributing factors. 

For a start, media reports by well-meaning but technologically ig-
norant journalists are a key accelerant. The lay journalist often not only 
incorrectly explains a researcher’s work, but also does so with exagger-
ated exuberance and decorative embellishment. 

 Figure 5.1. The hype curve.
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Why? To sell papers, increase blog clicks, raise the number of social 
media shares, or increase viewership of broadcast journalism. Sensation-
alism sells. It always has. In the 1890s, the term “yellow journalism” was 
coined to describe the lurid and sensationalistic headlines used to at-
tract readers during a territorial competition between two New York 
City newspapers.

Today’s hype is amplified by ubiquitous media availability. 
But reporters, whether greedy or simply ignorant, don’t carry all the 

blame. Some media-savvy researchers in search of visibility don’t need 
journalists. They become their own promoters and use creative hype in 
their networking and marketing. These entrepreneurial nerds are given 
to coining seductive semantics describing their technology. Press releas-
es are issued, journal papers are published, and federal funding propos-
als are submitted and awarded. 

Just as only wealthy countries can support poets, often only cash-
rich tech organizations like Google, Microsoft, and the Government can 
afford research groups whose work is made visible by marketers. These 
companies have solid political or bottom-line reasons to join the band-
wagon and surf the hype wave. Investing in research with potentially big 
rewards is reasonable. The limitations and potentials of new technolo-
gies are understood only after vetting.

Hype can build on itself. The novice reporter extravagantly prais-
es the research and the researcher; the researcher gets carried away by 
the flattery and praise; and before you know it, the researcher’s deci-
sion-making capacity and therefore the integrity of the project have 
been compromised. As the book of Proverbs says, “Pride goes before 
destruction.”12 

It takes a remarkably cool head to not believe your own press—es-
pecially if you have any sort of normal competitive urge of the sort that 
spurs progress and innovation. 
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The Competitive Mob
Hype-prone mobs accumulate around trends and money. If a govern-
ment organization like the NSF announces a multimillion-dollar grant 
program in left-handed squeegees, the number of experts in left-handed 
squeegees increases dramatically. Mobs also accumulate around new 
trending technologies. AI is intellectually sexy and attracts a lot of suit-
ors. 

Trends in research have been compared to young grade-schoolers 
playing undisciplined soccer. Everyone takes their proper places on the 
soccer field, lining up in an orderly fashion. But as soon as the ball is 
kicked, everyone forgets the drills. Kids from both teams run yelling 
toward the ball. All the players try to kick the ball and end up kicking 
each other’s shins. The ball eventually pops out of the mob and bounces 
down the field, and all the kids run to the ball’s new location and repeat 
the yelling and kicking until the ball squirts out and again rolls some-
where else. 

This is not the most elegant way to play soccer. But with research it 
can be effective, in a way. Good and bad, progress and hype, grow out of 
uncertainty regarding the capabilities of the technology. Many kicking 
the soccer ball are honestly interested in knowing what the technology 
can and can’t do. Many others are mostly interested in the glory, prestige, 
money, and power that originate from being recognized as a leader in the 
fledgling field. 

As you may recall, everyone once gathered around the soccer ball 
of superconductivity technology. The promise of electronics with no 
heat-generating resistive loss was compelling. Government money was 
thrown at research. Funding agencies like the National Science Founda-
tion (NSF), the National Institutes of Health (NIH), the Department 
of Energy (DOE), and the US Department of Defense (DOD) all gave 
grants. 

The advantages and limitations of the technology were discovered 
as funded academicians rushed to be the first to publish in journals and 
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at conferences. Those in industry publish at the patent office. The soccer 
ball got kicked a lot, plenty of shins got walloped, and the residual hype 
contributed to the “Overreaction to Immature Technology” portion of 
the hype curve.

Eventually researchers discovered that superconductivity, although 
free from resistive losses, still suffers from troublesome reactance—a 
bothersome non-resistive effect that is still resident in superconductive 
circuits. That realization has led to a more sober and clear-eyed assess-
ment of the technology. 

The asymptote of reality for superconductivity on the hype curve is 
today mildly in the black. 

The Bigger They Are, the Harder They Hit
As any engineering student who has taken a course in control theory 
knows, the bigger the overshoot, the greater the undershoot that follows. 
So the greater the unsubstantiated hype on the hype curve, the greater 
the depth of cynicism that follows when the technology does not live up 
to the hype. The depth-of-cynicism dip on the hype curve results from 
an overreaction upon realizing the previously unacknowledged limita-
tions of the technology. Artificial intelligence, which has been hyped to 
the moon, likewise faces an extreme plunge into the trough of cynicism.

In the case of AI, the hype can be utopian, but it can also be dysto-
pian. Consider Elon Musk’s warning: “I think we should be very careful 
about artificial intelligence. If I had to guess at what our biggest existen-
tial threat is, it’s probably that. So we need to be very careful.”13 That’s 
quite an eyebrow-raising assertion. Really? Most would rank thermo-
nuclear bombs riding on supersonic missiles as a bigger existential threat 
than AI. Even the hedge word “probably” doesn’t outweigh the dramatic 
and hyperbolic “biggest threat.”

Musk’s assertion reminds me of the bestselling book Unsafe at Any 
Speed,14 in which Ralph Nader claimed that the Chevrolet Corvair was 
the most dangerous car on the road. But Nader had no answer when 
asked, “What is the second most dangerous car on the road?” I suspect 
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Elon Musk would likewise be initially stumped if asked to name the 
world’s second biggest existential threat. Why? Because when people say 
things like this, generally they haven’t really considered and ranked all 
threats, whether vehicular or existential. They’re overstating to make a 
point. 

But Musk is right to the degree that threats do come from all new 
technology. There were threats from the introduction of the microwave 
oven, the automobile, and home electricity. Consider electricity: Yes, 
electricity powers our computers, lights the night, and keeps the refrig-
erator cold. But shorted wires can burn down houses. Downed electric 
lines in a storm can electrocute passersby. And the electric chair has 
ended the lives of many convicted criminals. 

Like electricity, AI inherently carries benefits and risks. It is a tool 
that can be used for good or evil. And, yes, we would do well to con-
sider the possible ramifications of any new technology, rather than being 
blindsided by the unintended consequences of our actions. 

Once a new technology has been vetted and the hype smoke dis-
sipates—only when we reach the “asymptote-of-reality” on the hype 
curve—can we see what we’re actually dealing with. For engineering and 
computer science disciplines, this asymptote is reached when the tech-
nology is reduced to useful application in industry, commercial prod-
ucts, or in the military. On the asymptote-of-reality, there is no arguing 
with the success of the technology. It does what it does.

Learning from Historical Hype Curves 
Can reasonable prophets squint and peer through the peak-of-hype 
on the hype curve, over the depth-of-cynicism valley, and see the asymp-
tote-of-reality in the future?

One of the best tools we have for such foresight is hindsight. Finan-
cial bubbles in the market are examples of peaks-of-hype. Although they 
never last, many investors fool themselves into believing this time it will 
be different. But bubble bursting is inevitable. 
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So the takeaway is this: knowing history helps us to not repeat it, 
as does a little humility. And simply being aware of the hype curve can 
provide a steadying effect.

So we will now take a brief detour from specific discussion about 
AI and AI hype to examine some historical examples of the hype curve.

Hype Curve Example 1: The Segway 
A classic example of traveling the hype curve concerns the Segway per-
sonal transportation vehicle. In the television series Arrested Develop-
ment, arrogant Gob Bluth rides around on one. The orchestrated hype at 
Segway’s introduction was enormous. The makers claimed the Segway 
would “be to the car what the car was to the horse and buggy.” After a se-
cret first viewing, Steve Jobs said the Segway would be as big a deal as the 
personal computer. A supporting venture capitalist who had previously 
backed Amazon said the Segway might be bigger than the Internet!

We know today that the Segway did not live up to its hype. Its 
asymptote-of-reality was positive but modest. 

In the rearview mirror, yesterday’s marketing hype borders on the 
comical. In fact, the television show South Park devoted an episode to 
making fun of the publicity campaign surrounding the Segway launch.15 
Someday, I suspect we will look back on some AI hype and be similarly 
amused.

Hype Curve Example 2: Cold Fusion
Another classic example of a short-lived hype curve starts with the an-
nouncement in 1989 by leading electric chemists Martin Fleischmann 
and Stanley Pons that they had achieved cold fusion. Cold fusion was 
incredible news! With cold fusion, power can originate from the same 
physical process used by our sun to produce heat and light but can be 
done cheaply at room temperature. Forget about clean-burning hydro-
gen powered cars and solar power. The energy generated by cold fusion 
is cleaner and cheaper. No more big electric bills! The same physical pro-
cess generating the hydrogen bomb’s energy could be harnessed without 
heating things up to temperatures exceeding that of the sun’s core. 
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And thus the cold fusion hype curve was launched. Rushing towards 
the soccer ball of hyped research, groups at Stanford, Georgia Tech, and 
Texas A&M repeated the cold fusion experiments, ran to the media, 
and reported that their experiments corroborated cold fusion. Their un-
stated goal was to appear on the historical list of those who verified cold 
fusion. Their names would be in Wikipedia under the topic of “cold fu-
sion history,” and their fame would live forever.

During the peak of cold fusion hype, I saw the seductive draw of 
fame firsthand. I was at the University of Washington at the time, and I 
remember a nuclear engineer colleague of mine expressing anger at our 
dean because the dean wouldn’t cough up the modest funds to verify 
the cold fusion experiment. The experiment replication, my colleague 
argued, would put the University of Washington in the news. Silly dean. 
He apparently didn’t want our university to be part of cold fusion his-
tory.

So what happened? Well, at the top of the cold fusion hype peak, 
researchers from Caltech, after detailed attention and careful analysis, 
reported that cold fusion didn’t work. Other negative reports soon fol-
lowed. The bubble popped. Cold fusion was a bomb, so to speak.

Stanford, Georgia Tech, and Texas A&M wiped the egg off their 
faces and the hype curve took a nosedive, never to recover. Cold fusion 
was soon thereafter declared dead by the New York Times. Since cold 
fusion was not realizable, its asymptote-of-reality on the hype curve was 
well into the red. 

The original cold fusion perpetrators, Fleischmann and Pons, were 
professionally ruined. They resigned their professorships at the Univer-
sity of Utah. Fleishmann returned to England and Pons fled to France.16 
Were they wrong to attempt something new and grand? Of course not. 
Where they went astray was in choosing to prematurely fan the flames 
of hype instead of settling for cautious optimism and further vetting.
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Hype Curve Example 3: Information Theory
Claude Shannon was a genius on par with Einstein, but Shannon re-
mains relatively unheralded in popular culture. That’s particularly 
strange considering that Shannon’s work impacts us directly more than 
Einstein’s. 

In 1948, while at Bell Labs, Shannon published a paper that revolu-
tionized communication. In the paper, he first used the word “bit” and 
showed that information could be effectively stored and transmitted 
digitally. Streaming video and the audio on your cell phones are digital. 
I wrote a whole book, Introduction to Shannon Sampling and Interpolation 
Theory,17 expanding on one little part of Shannon’s 1948 paper where he 
showed that continuous signals like speech can be represented digitally 
by sampling. Surprisingly, signal samples can be used to reconstruct con-
tinuous signals without losing information.

Even more important than digitizing, Shannon showed in his pa-
per it was possible to transmit over a noisy channel almost without er-
ror. Shannon proved this possible, but never showed how. It wasn’t until 
1990, forty years later, that codes were discovered that efficiently use 
channel capacity for near errorless communication, as Shannon predict-
ed. The first generation of these were dubbed turbo codes. Variations of 
turbo codes are used today by your cell phones. That’s why, even if you 
have only one bar and there is a thunderstorm outside screwing with 
your cell phone microwave signal, you can still receive perfect text and 
pictures.

Shannon’s paper spawned professional societies and journals that 
are today still exploring applications and extensions of Shannon’s origi-
nal ideas. In the graduate course I teach in information theory, the first 
few weeks of the class are dedicated to covering Shannon’s original 1948 
paper.

After publication of the paper, Shannon’s work caught the attention 
of amateur soccer player researchers in other fields who began exuber-
antly kicking the information theory soccer ball. Everyone on the soc-
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cer field ran to the ball and wanted to apply Shannon’s theory to their 
discipline. 

Shannon saw that research was running uphill to the peak of the 
hype curve. It bothered him. Half a decade after his classic paper was 
published, Shannon became concerned enough to address the hype peak 
directly. In an article titled “The Bandwagon,” he wrote: “Information 
theory has, in the last few years, become something of a scientific band-
wagon. Starting as a technical tool for the communication engineer, it 
has received an extraordinary amount of publicity in the popular as well 
as the scientific press.”18

Shannon refused to succumb to the seduction of ego. He said, “Al-
though this wave of popularity is certainly pleasant and exciting for 
those of us working in the field, it carries at the same time an element 
of danger.” He even talked about the hype of seductive semantics and 
the coming depth-of-cynicism on the hype curve: “It will be all too easy 
for our somewhat artificial prosperity to collapse overnight,” he wrote, 
“when it is realized that the use of a few exciting words like information, 
entropy, redundancy, do not solve all our problems.” 

With this warning, Shannon helped lessen the impact of the infor-
mation theory’s crash into the overreaction-to-immature-technology 
portion of the hype curve. 

As witnessed in every area of communication today, including your 
cell phones and all things digital, the asymptote-of-reality for Shannon 
information theory is well in the black. 

Hype Curve Example 4: Theranos’s Bad Blood
The hype curve can be fueled by healthy speculation, media ignorance, 
and exuberant promotion. Such was the hype that launched the com-
pany Theranos vertically on the hype curve. 

The goal of Theranos was to develop rapid blood tests that could use 
a single drop of blood from a finger prick rather than the conventional 
larger blood draw from a longer vein-probing needle stuck into the arm 
at the fold of the elbow. A laudable goal, I think we can all agree.
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As detailed in investigative journalist John Carreyrou’s book, Bad 
Blood,19 the charismatic entrepreneur Elizabeth Holmes, aided by her 
bullying boyfriend Ramesh Balwani and a stable of attack-dog attor-
neys, kept Theranos at the top of the hype curve for a long time. The 
hype attracted the support of influential people like Henry Kissinger, 
Bill Clinton, former US Secretary of State George Shultz, former US 
Secretary of Defense Secretary General James “Mad Dog” Mattis, and 
US Secretary of Education Betsy DeVos.

But in this case, Theranos-generated publicity overflowed with dis-
honesty. Carreyrou wrote a Wall Street Journal exposé that prompted 
federal scrutiny of the company, and it was discovered that contrary to 
claims, the Theranos technology did not work. Many of the claims, in 
fact, were bold-faced lies.

The hype curve took a steep dive, from which it never recovered. 
As one reporter notes, “While the Theranos debacle is juicy from a by-
stander standpoint, it’s clearly been financially devastating for those who 
bought into the hype.”20

The value of both Theranos and Elizabeth Holmes’s personal wealth 
fell from billions of dollars to zero. Ultimately, Holmes and Balwani 
were charged with fraud by the Securities and Exchange Commission, 
and indicted on charges of wire fraud and conspiracy. In 2022, a  jury 
convicted Elizabeth Holmes on four counts of fraud. At this writing, 
Balwani awaits trial.

Hype Curve Example 5: The Piltdown Man
The Piltdown Man was a hoax on evolutionary science orchestrated by 
Charles Dawson. (Note that it’s Dawson—not Darwin). 

Dawson, who worked as a lawyer for his day job, claimed he had 
discovered the “missing link” between ape and man in the gravel beds 
near Piltdown, East Sussex, England. It was a small portion of a skull. 
In 1912, Dawson took this finding to Arthur Smith Woodward, Keeper 
of Geology at the Natural History Museum. The two men then claimed 
to discover at the same site more bones, teeth, and primitive tools. Smith 
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Woodward reconstructed an entire skull from the fragments, hypoth-
esized that it belonged to a human ancestor, and voila! The Piltdown 
Man was born.

Talk about hype! Over seven hundred papers were published about 
the Piltdown Man, purporting to substantiate the validity of Darwinian 
evolution. Artists rendered drawings of a hairy ape-man carrying a tool 
or weapon.21 The theory, it seemed, now sat on a firmer foundation.22 

Dawson claimed that he found the Piltdown fossil in 1908. Al-
though there were reports of fraud even at the time, they were largely 
ignored until, in 1953, researchers inarguably exposed the hoax. That’s 
forty-five years of hype. 

Deeper scrutiny continued and, in 2016, investigators pointed a de-
cisive finger at Dawson for fraud,23 and the Piltdown man’s hype curve at 
last came to its resting place, deep in the red.

Hype Curve Example 6: String Theory
The jury is still out on string theory. As Ethan Siegel puts it in an article 
titled “Why String Theory is Both a Dream and a Nightmare,” string 
theory “is simultaneously one of the best ideas in the entire history of 
theoretical physics and one of our greatest disappointments.”24

In physics, string theory replaces point particles with one-dimen-
sional objects called strings. The implications of string theory are aston-
ishing and numerous. String theory potentially provides the solution to 
the Theory of Everything (TOE), wherein all of physics is explainable by 
one physical theory. It also offers a bridge to the unsubstantiated weird 
world of parallel universes.25 Because of this, “for perhaps the last 35 
years, string theory has been the dominant idea in theoretical particle 
physics,” Siegel says, “with more scientific papers arising from it than any 
other idea.”26

The problem is this: There is at this writing no experimental verifi-
cation of string theory.27 None. It has not produced a single confirmed 
prediction. 
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Does that mean it’s a failure? Not necessarily. It’s exceedingly dif-
ficult to investigate anything as tiny as the strings the theory posits. For 
comparison: Protons in the nucleus of every atom are small, but strings 
are far smaller. If a string were magnified to be an inch, a proton similarly 
scaled would have a diameter of several light-years. 

I had a PhD candidate in physics confide in me that string theory 
is so beautiful that if string theory were not true, it should be. Indeed, 
concise elegance is a property of many of our most cherished physical 
models. Consider all the major theories of physics: Newton’s laws for 
classical physics, Schrödinger’s equation for quantum mechanics, Ein-
stein’s relativity field equations, Maxwell’s equations for electrodynam-
ics, the four laws of thermodynamics, and the Naiver-Stokes equations 
for fluid dynamics. All have simple beautiful equations that blossom into 
descriptive disciplines that wonderfully describe reality.

All of these equations fit nicely on one side of a single sheet of paper. 
The string theory equations will also fit on the same page with all of the 
other equations. There is room. How nice! 

The poet John Keats proclaimed, “Beauty is truth, truth beauty.” 
One alluring property of string theory is its simple elegance. But con-
trary to Keats’s claim, beauty need not be truth. The beauty of string 
theory and its theoretical ramifications keep physicists searching for 
evidentiary proof. Thus far, however, all attempts to experimentally sup-
port string theory have failed. The dream is turning into a nightmare.

But it’s too early to tell for sure if it’s a bust. Where the theory’s real-
ity line is remains to be seen. 

Learning from the Past
We can learn a lot from historical hype curves across a wide variety of 
fields. We can also learn from the history of AI’s own hype curve—for 
hype about AI is nothing new. It has been with us a very long time—so 
long, in fact, that the hype curves of AI begin to seem reincarnated!

Cinematic science fiction accounts of artificially intelligent robots 
were introduced in the 1927 silent film Metropolis. (Some claim this is a 
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classic. I keep dozing off.) Later, the invention of the computer sparked 
a flurry of science fiction robots, including the one in the 1951 movie 
The Day the Earth Stood Still and the human-like nanny robot everybody 
loved in Ray Bradbury’s “I Sing the Body Electric,” a 1962 Twilight Zone 
episode that later turned into a short story. 

Robots had captured the public’s imagination. When that happens, 
overblown hype is sure to follow.

Consider this headline and the accompanying opening lines from an 
article that appeared in the New York Times: 

NEW NAVY DEVICE LEARNS BY DOING; Psychologist 
Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI)—The Navy revealed the embryo of 
an electronic computer today that it expects will be able to walk, talk, 
see, write, reproduce itself and be conscious of its existence.28

Note the hype. Here we have unwarranted hyperbolic forecasting, vague 
semantics in the use of the terms “embryo” and “conscious,” and—by 
extrapolating great results at some vague point in the future—the handy 
avoidance of here-and-now scrutiny.

Though this article would fit right in today, it appeared on the front 
page of the New York Times on July 8, 1958. That’s right—more than six 
decades ago. The media megaphone wasn’t as big in those days, but the 
hype was there.

Thirty years later, in 1989, the Associated Press released a story 
titled “Portland Firm Ships Brainlike Chip,” which breathlessly an-
nounced that “Syntonic Systems Inc. has shipped the first commercially 
available ‘neural network’ computer chip, a type of chip that mimics the 
brain in a way that may change the entire industry.”29

Since then, thirty more years have passed, and guess what? The 
Portland neural network has had precious little effect on “the entire in-
dustry.”

Today, once again, AI neural network chips are being enthusiasti-
cally lauded as the Next Big Thing. A 2020 article in the Wall Street 
Journal is titled “New Computer Chips Could Power AI to Next Level.” 
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The article begins: “A generation of computing chips designed specifi-
cally for artificial intelligence could enable a host of new applications for 
the technology.”30

But as we’ve seen, promises of future success do not equate to suc-
cess. In AI, we’ve seen the same promises repeated again and again, sepa-
rated by decades. The hype curve keeps chugging away, ever hopeful.

Based on the examples from 1958, 1989, and 2020, expect yet an-
other breathless announcement, around 2050, that AI’s dramatic com-
ing of age is, once again, just around the corner.

The True Test for AI Success
An accurate assessment of the success of artificial intelligence isn’t 
found in theatrical hype or dire warnings. The true test of artificial intel-
ligence boils down to reduction to practice.

Reduction to practice, whether in the military or in the market, 
means the new technology has marked advantages over other approach-
es. It has to have significant advantages—not just marginal or incremen-
tal ones—to overcome the inertia of using older technologies. Partly this 
inertia is psychological—people become habituated to a certain way of 
doing things—and partly it’s financial, because the cost of retooling can 
be high. So for a new technology to succeed in practice, it must bring to 
the table substantial advantages over existing technology.

An unamplified version of the hype curve is natural in the develop-
ment of technology. When introduced, no one knows what the tech-
nology will do. Informed speculation drives legitimate vetting research. 
Some researchers jump ship as limitations become evident, while oth-
ers persevere to reduce the technology to practice. This pushes the hype 
curve to its asymptote of reality. This is a legitimate and necessary path 
of research. But in the mold of the hype-addicted yellow journalism of 
the 1890s, today’s 24/7 media providers, rabid for bigger audiences and 
more clicks, inflate the hype curve with attention-grabbing headlines 
and content. This is especially true for the sexy topic of AI. 

 There are, fortunately, ways to look through the fog of hype to see 
bare truth. We will discuss this next.



6. Twelve Filters for 
AI Hype Detection

Do not bear false witness.
—Mark 10:19

AI can do amazing things, and developers are applying cut-
ting-edge programming and technology in a myriad of interesting 

ways. We’ve talked about some wonderful applications in these pages, 
and we’ll talk about more as we go along. We’ve also talked about what is 
not possible for AI, despite reports to the contrary. How can you tell one 
from the other? How can you know what’s happening, and what’s just 
empty hype? Fake news is rampant and is often hard for the non-expert 
to detect.

Here are some AI hype filters to help you separate stories about real 
progress from stories containing empty boasts or unwarranted fears. In 
many cases these hype filters can also be applied to other areas in addi-
tion to AI.

Hype Filter #1: Outrageous Claims 
Outlandish AI claims are red flags. Deeper scrutiny is required to 
separate the truly astonishing from the snake oil.

Sometimes tabloid headlines are so outrageous we immediately rec-
ognize them as fake. One headline from a trash tabloid reads, “The Only 
Known Signature of God Auctioned for Over Six Million Dollars.” An-
other is “DNA Tests Show bin Laden was a Woman!” These headlines 
are so ludicrous most of us immediately discount them. We’re more apt 
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to fall for fake news that contains a pinch of truth and a lot of titillating 
overstatement. 

Media outlets want to get clicks and make sales. Authors want a big 
reading audience. (I do!) The result is that some writers make hyperbolic 
claims to get greater attention, and then the headline writers exaggerate 
even more. They seem not unlike a child jumping up and down, hands 
raised, shouting, “Pick me! Pick me!” 

Bear in mind, some authors believe the hype they write. Such is 
Stanford biology professor Paul Ehrlich, who in 1970 wrote, “Most of 
the people who are going to die in the greatest cataclysm in the history of 
man have already been born.”1 Here’s another Ehrlich doozy from 1970: 
“Population will inevitably and completely outstrip whatever small in-
creases in food supplies we make…. The death rate will increase until at 
least 100–200 million people per year will be starving to death during 
the next ten years.” Ehrlich was partial to terms like the “Great Die-
Off.”2 

Ehrlich’s famine claim did not come true in the ensuing ten years, 
nor since. The years 2010–2019 had the lowest starvation death rate by 
famine since 1860,3 even as global population continued to increase. Eh-
rlich’s dramatic forecast of a terrible negative turned out to be exactly 
the opposite. 

And that’s not because Ehrlich’s dramatic predictions changed our 
behavior. His over-the-top claims simply were wrong. Not long after Eh-
rlich issued his dire predictions, economist Julian Simon challenged Eh-
rlich, arguing that humans are resourceful and that free-market forces 
inspire them to innovate.4 They made a bet. Simon won, and Ehrlich 
mailed a check.5

But when Ehrlich made his predictions, their dramatic nature suc-
ceeded in garnering widespread attention. Outrageous claims tend to 
do that, but they should also raise our suspicions. So immediately raise 
a shield of skepticism when reading headlines like “The AI Cold War 
That Threatens Us All”6 (an article whose URL contains the words 
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“AI Cold War China Could Doom Us All”) or “How Can We Prepare 
for Catastrophically Dangerous AI—And Why We Can’t Wait.”7 The 
writers might believe what they’re saying, or they might merely be trying 
to get clicks. Either way, they are like carnival barkers enticing you to pay 
to see the world’s fattest woman who, in reality, turns out to weigh less 
than your Aunt Pearl.

Life is rarely as outrageously dramatic as writers (and teenagers, and 
politicians) would have us believe.

Hype Filter #2: Hedging
Instead of making outrageous claims, it’s usually more appropriate 
for writers to use measured language and qualifiers such as “eventually,” 
“maybe,” “if,” and “perhaps.” That’s responsible reporting. But sometimes 
qualifiers are used in a sneaky way, as wiggle words. Sometimes delib-
erately imprecise language is also used. These methods let the author 
hedge his bets. Hedging gives him an out.

Your hype antennae should make note of qualifiers and imprecise 
language. Are they being used responsibly, or are they being used to 
hedge?

Consider this example regarding Army research into an AI squid-
like robot. The article reads, “In case you weren’t already terrified of ro-
bots that can jump over walls, fly or crawl, Army researchers are devel-
oping your next nightmare—a flexible, soft robot inspired by squid and 
other invertebrates.”8 

The wiggle term here is “developing.” The technology is not totally 
developed. Maybe it will be sometime in the future. But not now. If you 
weren’t reading carefully, though, you might not notice the implication 
of “developing,” especially because it’s surrounded by dramatic, atten-
tion-grabbing words like “terrified” and “nightmare.”

Still, this reporter is more honest than many. Eventually, at the very 
end of the article, he quietly points out, “The material is still in early de-
velopment stages, so don’t expect to see a robot squid in the foxhole next 
to you tomorrow.” Be sure to read the fine print!
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Even the brilliant MIT mathematician Claude Shannon, the “fa-
ther of information theory,” hedged during his forecast of the future of 
AI in 1961. He said, “I confidently expect that within ten or fifteen years 
we will find, emerging from the laboratories, something not too far from 
the robot of science fiction fame.”9

What did he mean by “the robot of science fiction fame”? If he meant 
sentient, conscious, or creative robots, Shannon was wrong. But because 
he was vague, he avoided the risk of rigorous assessment. From surviving 
documents I have read, including his biography,10 Shannon was an hon-
orable man. He was asked to make a prediction for a news program and 
called it as accurately as he could.

In contrast, consider the previously mentioned 1958 New York 
Times article about AI, which reads, “The Navy revealed the embryo of 
an electronic computer today that it expects will be able to walk, talk, 
see, write, reproduce itself and be conscious of its existence.”11 Do you 
see the subtle hedges here? An “embryo” is “expected” to mature. In oth-
er words, the AI has thus far done nothing, but the Navy “expects” it to.

The lesson here? Pay attention to the precise (or imprecise!) wording 
of claims. Hedges of this sort mean that nothing remarkable is happen-
ing now, but may in the future. 

Hype Filter #3: Avoiding Scrutiny 
Another commonly used hype tool is making claims in a way that 
avoids scrutiny. A handy way to do this is to prophesy something well 
into the future. A forecast ten, twenty, thirty, or a hundred years out 
can’t be readily verified or falsified, and will probably be forgotten by the 
time the sell-by date rolls around. 

Since immediate pushback is difficult, these forecasts can be boldly 
hyperbolical. Consider the current far-future forecast celebrated AI fu-
turist Ray Kurzweil made in 2000: “Before the next century is over,” 
he said, “human beings will no longer be the most intelligent or capable 
type of entity on the planet.”12

This prophecy will come true—or be falsified—after we are all dead.
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This is not to say people can’t make valid predictions about some far 
future event. There are futurists who have done so, such as George Gild-
er, co-founder and senior fellow of Discovery Institute. Among other 
things, Gilder anticipated the proliferation of fiber-optic cable, common 
use of “telecomputers” (cell phones), and digital camera imaging chips.13 
No futurist bats a thousand, but Gilder’s accuracy has been impressive. 
His predictions are based on a clear understanding of the limits and pos-
sibilities of technology.

On the flip side is the Amazing Criswell, a futurist who earned a liv-
ing making far-out claims in the 1960s. Criswell was a quack forecaster 
most famous for his appearance in what many consider the worst movie 
ever made: Ed Wood’s Plan 9 from Outer Space. Fond of striking a pose 
as a deep-thinking intellectual, Criswell offered up such gems as, “We 
are all interested in the future, for that is where you and I are going to 
spend the rest of our lives.”14 In 1968 the Amazing Criswell published a 
book titled Criswell Predicts: From Now to the Year 2000.15 Among other 
things, Criswell predicted that Denver, Colorado, would be struck by a 
ray from space causing all metal to become like rubber. As a result, metal 
in carnival rides would be compromised and horrific accidents would 
follow. Criswell also predicted mass cannibalism and the end of planet 
Earth by 1999.16 Random, outrageous, attention-grabbing claims were 
Criswell’s bread and butter, and he set most of them conveniently far 
into the future. If he’d said that “tomorrow all metal will become like 
rubber,” few if any would have considered believing him. But projected 
far enough into the future, all things seem possible, at least to the gull-
ible.

Interestingly, Criswell did get one short-term prediction right. He 
predicted on the Jack Parr show in March 1963 that President John 
F. Kennedy would not run for re-election in 1964 because something 
was going to happen to him in November. Kennedy was assassinated 
in Dallas on November 22, 1963.17 Then again, Criswell also predicted 
Mae West would become president.18 Making lots of predictions is like 
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throwing darts while blindfolded—if enough darts are thrown there will 
surely be an occasional bull’s-eye.

But the vast bulk of Criswell’s predictions were dead wrong. He was 
an entertainer with a television show, Criswell Predicts, that needed to 
keep its ratings up. Outrageous far-distant predictions ginned up inter-
est without making Criswell accountable. 

Unlike Criswell, some people who make distant predictions do have 
scholarly credentials and are taken seriously. Consider ecologist Ken-
neth Watt, a professor at the University of California-Davis, who in 
1970 made a chilling prediction of the then-distant future. In a speech 
at Swarthmore College he said, “The world has been chilling sharply for 
about twenty years…. If present trends continue, the world will be about 
four degrees colder for the global mean temperature in 1990, but eleven 
degrees colder in the year 2000. This is about twice what it would take to 
put us into an ice age.”19 Watt’s prediction was far enough into the future 
to avoid quick falsification. 

 Looking in the rearview mirror reveals the difficulty of long-range 
forecasting. Imagine living in the year 1900 and trying to accurately fore-
cast life in the year 2000. In 1900 there were no movie houses, commer-
cial radio was twenty years away, and Ford’s Model T was not yet avail-
able. In 1900 transportation power over roads was provided by horses. A 
statistical analysis of horse proliferation would forecast that by 2000 the 
United States would on average be two feet deep in horse poop. 

 Even reputable scientists get things wrong when they look too far 
forward. Some classic forecasting bloopers were made by Lord Kelvin, 
who lived in the 1800s. You might recognize his name because absolute 
temperature is measured in degrees Kelvin. Kelvin said heavier-than-air 
flight was not possible; airplanes could not fly. He wrote, “I have not the 
smallest molecule of faith in aerial navigation other than ballooning or of 
expectation of good results from any of the trials we hear of.”20 In 1898 
Kelvin also warned that Earth’s oxygen supply would be depleted, and a 
future generation would die of asphyxia.21 
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Let’s apply all this to AI predictions. How do we separate good far-
future predictions from bad? Selmer Bringsjord has an effective method 
of doing so by testing the sincerity of the source of a claim. To those 
making hyperbolic claims about the future of AI, Bringsjord offers a 
substantial wager that the forecast will not come true.22 If the delayed 
scrutiny is so far in the future that one or both involved in the wager 
will probably be dead, Bringsjord suggests the wager can be part of each 
person’s estate. Bringsjord asks the AI prophets of the impossible to put 
their money where their mouth is. No one has thus far accepted his wa-
ger. Hyperbolic AI claims wither in the bright light of the Bringsjord 
challenge. 

At this writing I am into year four of a five-year wager about level five 
self-driving cars. At level five (the highest level), self-driving cars will be 
able to traverse winding single-lane country roads in rural West Virgin-
ia. These are the country roads sung about by John Denver. Single-lane 
country roads in West Virginia are notched out of the sides of moun-
tains. On one side is a rock wall, on the other a steep drop-off. I have 
driven on these one-lane roads where I meet a humongous fully loaded 
logging truck coming towards me. We both slow to a crawl. I edge my 
car to the precipice of a cliff on one side while the logging truck hugs 
the mountain on the other. Our rear-view mirrors almost touching, we 
slowly make our way past each other. West Virginians are friendly, so as 
we pass, the truck driver and I wave to show we see this is a part of West 
Virginia life and neither of us holds any hard feelings towards the other. 

I cannot imagine a level five self-driving car driving on these one-lane 
roads. Maybe someday, but not in the immediate future. Despite implied 
promises from Elon Musk, I made a wager four years ago that level five 
self-driving cars would not be perfected in five years. So far so good for 
my prediction. And kudos to the person on the other side of this wager 
for putting his money where his mouth is and making a concrete predic-
tion near enough in time that he could not escape a day of reckoning. 
Neither of us, though, is as bold as Bringsjord. Our wager is for a cup of 
coffee.
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Hype Filter #4: Consensus Claims
Another red flag for hype is an appeal to consensus. Consensus says 
everyone believes something will happen; therefore, it must be true. 
Kowtowing to consensus assumes the truth of the future can be deter-
mined by majority vote today.

Michael Crichton, physician and author of numerous sci-fi classics, 
including Jurassic Park, delivered a no-holds-barred lecture in 2003 at 
CalTech that addressed the folly of an appeal to consensus in science. 
Crichton said: 

Historically, the claim of consensus has been the first refuge of scoun-
drels; it is a way to avoid debate by claiming that the matter is al-
ready settled. Whenever you hear the consensus of scientists agrees 
on something or other, reach for your wallet, because you’re being had. 

Let’s be clear: the work of science has nothing whatever to do with 
consensus. Consensus is the business of politics. Science, on the con-
trary, requires only one investigator who happens to be right, which 
means that he or she has results that are verifiable by reference to the 
real world. In science consensus is irrelevant. What is relevant is re-
producible results. The greatest scientists in history are great precisely 
because they broke with the consensus. There is no such thing as con-
sensus science. If it’s consensus, it isn’t science. If it’s science, it isn’t 
consensus. Period.23

Crichton is spot on. Creativity requires thinking outside the box. 
Consensus is inside-the-box thinking. Recall that Einstein discarded the 
consensus hypotheses of the need for ether as a medium for light propa-
gation. Likewise, genius Kurt Gödel blew away foundational assump-
tions in math with the introduction of his incompleteness theorem. I 
could go on and on with examples. So be aware of Crichton’s “first refuge 
of scoundrels.” 

Consensus is often used to defend an argument. An example is from 
Peter Gunter who, in 1970, defended the following claim with an appeal 
to consensus: “Demographers agree almost unanimously on the follow-
ing grim timetable.... By the year 2000, or conceivably sooner, South and 
Central America will exist under famine conditions…. By the year 2000, 



6� Twelve Fi lters for AI Hy pe Detect ion  /  125

thirty years from now, the entire world, with the exception of Western 
Europe, North America, and Australia, will be in famine.”24

World famines have been at an all-time low in recent years. So much 
for consensus. 

 Yes, there are cases where consensus is useful and accurate. All 
agree that tobacco use causes cancer and driving drunk increases car ac-
cidents. Such consensus is backed by accumulated mounds of evidence. 
But when consensus is appealed to in a young and developing field like 
AI, beware. Any appeal to consensus to support an argument must be 
questioned. 

Hype Filter #5: Entrenched Ideology
Pay attention to claims that conveniently bolster a certain ideology.

Foundational ideology shapes the filter through which life is ob-
served. The ideology of materialism assumes all phenomena, including 
natural intelligence and the beauty seen in the world, can be explained by 
a naturalistic viewpoint. Those who worship at the feet of materialism 
often don’t admit to the limitations imposed by their narrow core belief.

The religion of materialism dominates science in the academy. In 
a TedX talk, biochemist Rupert Sheldrake says the presupposition of 
materialist science is an unhelpful limitation on science. “The worldview 
aspect of science has come to inhibit and constrict the free inquiry, which 
is the very life blood of the scientific endeavor,” he says. “Since the late 
nineteenth century, science has been conducted under the aspect of the 
belief system or worldview that is essentially materialism—philosophi-
cal materialism. And the sciences are now wholly owned subsidiaries of 
the materialist worldview. I think as we break out of it, the sciences will 
be regenerated.” He calls this view and its subsidiary dogmas “the sci-
ence delusion.”25 

In an ironic twist, two staunch materialists reportedly protested the 
talk, and in response, “the talk was taken out of circulation by TED, 
relegated to a corner of their website and stamped with a warning label.” 
The unstated message: Never question scientific materialism.26
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But materialism is a just presupposition. Such an untested ideologi-
cal constraint is not science. Materialism is a roadblock that hides paths 
of investigation down which enlightening evidence might be found. For 
instance, presupposition throws up blinders in the investigation of the 
mind/brain problem, leading many to assume, or even insist, that the 
brain is just a meat computer. Philosopher John Searle rightly noted that 
“to deny that the brain is computational is to risk losing your member-
ship in the scientific community.”27 Some claim that a theistic/deistic 
perspective narrows discussion. They are wrong. The opposite is true. A 
broader perspective results than if a totally materialistic viewpoint is as-
sumed. Theists in particular are free to conclude that the cause of a given 
phenomenon is material/mechanical, or that the cause is at least partly 
immaterial. A materialist has no such freedom. He is forced to consider 
only materialistic hypotheses.

The materialist view underlies the forecasts of some AI prophets. 
Agnostic Ray Kurzweil subscribes to materialism and famously said, 
“Does God exist? I would say, ‘Not yet.’”28 

Kurzweil claims, “Artificial intelligence will reach human levels by 
around 2029. Follow that out further to, say, 2045, we will have multi-
plied the intelligence, the human biological machine intelligence of our 
civilization a billion-fold.”29 Similarly, Nick Bostrom—echoing Stephen 
Hawking—argues that AI will someday be able to write more power-
ful AI and start a never-ending intelligence explosion. As one reviewer 
notes, Bostrom thinks AI “might pose a danger that exceeds every previ-
ous threat from technology—even nuclear weapons—and that if its de-
velopment is not managed carefully humanity risks engineering its own 
extinction.”30

The viewpoint espoused by Hawking, Bostrom, and Kurzweil that 
AI can achieve and exceed all human capabilities is built on a founda-
tion of materialism. Humans, according to materialists, are innovative, 
and humans are but an arrangement of atoms; therefore, humans can be 
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functionally replicated via computers, including the human capacity to 
innovate.

But of course, as we have seen, that isn’t true. Alan Turing, an athe-
ist and the father of modern computer science, tried to demonstrate that 
man is a materialistic computer. Ironically, his computer science math-
ematics, including the non-computability of the Turing halting problem 
(which we will examine in another chapter), opened the door for illus-
trating that humans display attributes unachievable by computers.

The view that there are human attributes above and beyond that of 
the computer, and indeed beyond the purely material, requires a world-
view outside of pure materialism.31 Is the functioning of the mind con-
strained by the functioning of the brain in regard to human characteris-
tics like consciousness and creativity? A strict materialist must conclude 
the mind is an emergent property of the brain. 

An alternative for those who refuse to consider theism is panpsy-
chism. Panpsychism posits that human properties like consciousness are 
properties of nature in the same way that mass is a property of a rock 
or energy is a property resulting from nuclear fusion. Neurosurgeon 
Michael Egnor thinks such a position is foolish. He says, “Of course, 
electrons are not conscious.” He then quips: “Even if they were, Heisen-
berg’s Uncertainty Principle means that they could never make up their 
minds!”32

Unproven properties of emergence from brain complexity and wild-
ly speculative theories like panpsychism seem to spring from a dogmatic 
refusal to entertain theism. As with discussions of matter and energy, 
discussions about panpsychism rarely consider its origin. Materialists 
avoid going deep into the question of the origin of matter, energy, and 
hypothesized panpsychism. Whatever the origin, human properties like 
consciousness, creativity, and qualia must be the result of purposeless, 
as-yet-unidentified physical phenomena. Materialism allows no other 
alternative. 
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 So if you read an AI article that seems almost religious in its fervor, 
slow down and take a closer look. Your hype sensors should be flashing 
if an author is drawing conclusions based on ideology rather than on 
plain old logic, and seems incapable of calmly answering questions and 
objections. Heightened defensiveness often indicates that ideology, not 
truth, is under threat. 

And while we have focused on materialist ideology, theistic and 
pantheistic ideologies must not be treated as a sacred cows either. If our 
commitment is to truth, the spotlight of evidence must be followed no 
matter where it shines, regardless of what it may happen to challenge.33 
If a particular worldview is indeed true, then it will have nothing to fear 
from following the evidence.

Hype Filter #6: Seductive Semantics
The art of product branding requires creative, clever slogans. An ex-
ample is the New York Times’s motto that they report “all the news that’s 
fit to print.” Other examples are DeBeer’s “a diamond is forever” and 
KFC’s “finger lickin’ good.” The appeal of a slogan is often its association 
with images beyond the product itself. Nike’s “ just do it!” and the US 
Army’s “be all you can be” associate their brand with rugged individual-
ism. In other cases the slogan promises the moon, as with Disneyland’s 
“the happiest place on earth.”

Slogans can blur seamlessly into culture. The claim that “breakfast 
is the most important meal of the day” did not originate from a nutri-
tionist or other medical authority. John Harvey Kellogg popularized the 
phrase in order to encourage eating his cereals for breakfast.34

The sale of AI makes use of such seductive semantics by associat-
ing AI with biological and psychological attributes. Often the associa-
tion is superficial. In the 1960s, Stanford’s Bernard Widrow named his 
groundbreaking AI ADALINE. The name was short for “adaptive lin-
ear neuron.” Widrow’s circuit and biological neurons were loosely linked 
by Hebb’s law that says neurons that fire together wire together. Wid-
row’s use of the term “neuron” attracted media attention. This must be, 
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they reasoned, a big step towards the AI we read about in science fiction. 
This was news! 

But what if Widrow had christened his invention with less exciting 
terminology? Over forty years later, Widrow addressed his use of seduc-
tive semantics in AI:

After my original work in the neural network field, I did some de-
velopmental work in the adaptive filter area. I still believe that if an 
electrical engineer had developed the back-propagation algorithm [for 
training neural networks], we’d be working with ‘massively parallel 
adaptive filters’ instead of neural networks. Oh, well.35 

Would his invention have been greeted with the same degree of exuber-
ance if his “neural network” had instead been christened a “massively 
parallel adaptive filter”? I think not. Few people even know what the 
phrase means. But most know a neuron has something to do with the 
brain.

Using seductive words to entice readers’ interest is characteristic of 
great writing. Skillful rhetoric places topics in their most favorable light. 
At times, though, seductive semantics can be purposefully misleading. 
Recall the line, “Army researchers are developing a self-aware squid-like 
robot you can 3D print in the field.”36 Author Todd South helpfully adds 
this is “your next nightmare.” The thrill of fear invites the reader to ac-
cept as a literal fact the claim that the robot will be “self-aware.” 

Although we could, for technical reasons, quibble with the claim 
that the robot squid will be printed in 3D, we won’t just now. Let’s focus 
instead on the seductive semantics of the term “self-aware.” Oxford tells 
us self-aware means “having conscious knowledge of one’s own character 
and feelings.”37 But computers have no character and no feelings. So we 
can rule that definition out for anything to do with AI.

In a more general sense, “self-aware” could mean being aware of 
our surroundings. Could mechanisms be self-aware in that sense? Does 
placing sensors on a car cause the car to be self-aware? A sensor in my 
gas tank tells me when I need gas. When I back up the car, it beeps 
when I get too close to an obstacle. Automatic parallel parking requires 
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similar sensors. All of these are examples of cars being “aware” of their 
surroundings. This is apparently what the robot squid’s developers mean 
to imply when they use the term “self-aware.” Their semantics are mis-
leading. My car is not “self-aware.” There is no self in the car that ex-
periences awareness. Electronic sensors generate information about the 
car’s position, but the car is not experiencing it. The same is true of the 
squid-like robot.

Seductive semantics often live in a definition vacuum. Consider the 
remark by Kurzweil that by 2045 “we will have multiplied the intelli-
gence, the human biological machine intelligence of our civilization a 
billion-fold.”38 What is “human intelligence”? Does it mean our brains 
will have instantaneous access to all of Wikipedia and more? 

In a way, our minds already have access to Wikipedia through our 
fingertips and a computer keyboard. Even so, what will the advantage be 
of directly connecting the brain to something like Wikipedia? A pho-
tographic memory does not imply intelligent use of knowledge. And 
even if our brains did have wired access to Wikipedia, our minds can 
only process singular attention to information at any given moment. Try 
multiplying 348 by 853 in one mental step without using a calculator. I 
certainly can’t do it. I have to break it up into small pieces, each a single 
individual thought. “Let’s see, 8 times 3 is 24. Write down the four and 
carry the two,” etc. Even here, I need pen and a piece of paper to keep 
track of the intermediate answers to augment my short-term memory. 
There are those savants who can multiply large numbers in their heads, 
but not me. When doing arithmetic in my head, I have the long-term 
memory of a goldfish, which is reportedly about three seconds. 

If easy tasks like multiplying are rough, assimilation of knowledge 
from all Wikipedia will not be possible from a fire hose of information 
fed directly into our brains. It will be quicker only in the sense that typ-
ing for a Wikipedia search and communication latency slow us down.
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But maybe this is not what is meant by Kurzweil’s claim that “we’ll 
be able to multiply human intelligence a billion-fold.” Maybe intelligence 
refers to our creativity being increased. But creativity is not computable. 

Maybe creativity can be addressed indirectly. Maybe we will find a 
knob to turn in our brains to increase creativity. Is that what is meant 
by increasing “human intelligence” a billion-fold? Kurzweil doesn’t say.

The problem is clear. Because Kurzweil uses the term “human in-
telligence” without defining it, we are left with all sorts of interpretive 
speculation. Some will define “human intelligence” to fit some precon-
ceptions and then embrace the claim. Because the term “human intel-
ligence” is not defined with any certainty, Kurzweil’s claim means noth-
ing. It’s just seductive semantics—it draws our interest and lets us fill in 
the blanks to suit ourselves.

“Consciousness” is another oft-used word in AI that is rarely de-
fined. To a high degree of certainty, I know I am conscious. To an only 
slightly lesser degree, I believe via evidence that people I meet are con-
scious. To make any further claims about consciousness in general, the 
term needs to be defined. There are dictionary definitions but there are 
none that I have seen that allow definitive testing of whether someone or 
something is conscious.

Sir Roger Penrose believes consciousness is non-algorithmic and 
therefore not able to be replicated on a computer. “I argue that some of 
the manifestations of consciousness are demonstrably non-algorithmic,” 
he says, “and I am therefore proposing that conscious mental phenom-
ena must actually depend upon such non-computational physics.”39

Penrose does not offer a definition of consciousness but refers to 
its non-computational manifestations. Philosopher J. P. Moreland like-
wise indirectly defines consciousness by its properties: “Consciousness is 
what we are aware of when we introspect. It consists of sensations (pain, 
the taste of a lemon), thoughts, beliefs, desires, memories, acts of free 
choices, and so on.”40
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The difficulty of defining consciousness does not keep rogue think-
ers from speculating about panpsychism.41 Panpsychism, as has been 
discussed, purports that everything material has an element of individu-
al consciousness, and that consciousness is as much a part of the universe 
as gravity. Philosopher Philip Goff makes the case: “The panpsychist of-
fers an alternative research programme: Rather than trying to account 
for consciousness in terms of utterly non-conscious elements, try to ex-
plain the complex consciousness of humans and other animals in terms 
of simpler forms of consciousness which are postulated to exist in sim-
pler forms of matter, such as atoms or their sub-atomic components.”42

The idea that my pencil is conscious is preposterous. And I agree 
with Penrose that consciousness is not computable and therefore can-
not be resident in computer-implemented AI. Materialists that disagree 
have the difficult or even impossible task of proving otherwise.

Again: Watch out for seductive words. They seem to offer a lot, but 
may be only cue cards that prompt you to fill in whatever you want to 
hear. 

Hype Filter #7: Seductive Optics and 
the Frankenstein Complex
Wrapping AI in an impressive physical package can magnify the per-
ceived impact of new technology. Doing so uses seductive optics. 

The confusing of AI packaging with AI content was evident in me-
dia excitement about a Buddhist robot who delivers messages to the 
faithful. “The world’s first sutra-chanting android deity, modeled after 
Kannon the Buddhist Goddess of Mercy, was introduced to the public 
last week,” the report reads. The robot can “move its eyes, hands, and 
torso, make human-like gestures during its speech, and brings its hands 
together in prayer. A camera implanted in the left eye to focus on a sub-
ject gives the impression of eye contact.”43

Technologically speaking, nothing special is happening here. The 
messages from the Buddhist robot are pre-recorded and not the product 
of AI. The mouth movements are synced to the recording. This technol-
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ogy dates back at least to the Disney Hall of Presidents, launched in 
1971. All the US Presidents in Disneyland give presentations akin to the 
Buddhist robot. Their mouths move and they gesture. The technology, 
dubbed Audio-Animatronic, was trademarked by Disney in 1964.44 

But the packaging and context made this robot seem special. Monks 
gathered at the robot’s opening ceremony and performed with “chanting, 
bowing, drumming, and the ringing of bells.” The robot, named “Min-
dar,” was designed to look like an androgynous human, with “special 
features designed to evoke both feminine and masculine qualities.... the 
plain facial features give room for visitors to use their own imagination 
in how they’d like the deity to appear.”45

Sound familiar? Like seductive semantics, here we have seductive 
optics. The AI looks generally human, but also leaves space for people to 
impose their own preferences.

The media obsession with the Buddhist robot story is due to seduc-
tive optics. 

Some of the panicky AI-will-take-over-the-world talk grows out 
of seductive optics—that is, the AI packaging. Author and poet Diane 
Ackerman confesses, “Artificial intelligence is growing up fast, as are ro-
bots whose facial expressions can elicit empathy and make your mirror 
neurons quiver.”46

Another factor contributing to fear of AI is the so-called Fran-
kenstein complex.47 The term, coined by science fiction writer Isaac 
Asimov,48 originally described the fear of the mechanical man in science 
fiction of old. Frankenstein refers to Mary Shelley’s 1818 novel Franken-
stein, or The Modern Prometheus. A young scientist, Dr. Victor Franken-
stein, sews together dead body parts to create a monster. (In the book 
Frankenstein is the doctor’s last name, but today Frankenstein’s monster 
is often referred to as simply Frankenstein.)

Thomas Edison first put the story to film in a silent 1910 movie. 
Some of us are familiar with Boris Karloff’s depiction of the monster 
in the 1931 motion picture classic Frankenstein.49 Today’s film monsters 
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are typically a lot scarier than those depicted in 1930s movies with their 
clunky special effects. But even today, Karloff’s Frankenstein monster 
makes one’s skin crawl. The question is, why? After all, he moves clum-
sily in slow motion; even someone on crutches could avoid him. He’s tall, 
sure, but the smaller, fast-moving, hard-punching Mike Tyson could no 
doubt take him in the ring. The monster is less dangerous than a bobcat 
or alligator, and yet we get chills just looking at Karloff’s Frankenstein 
monster, and we don’t when thinking about alligators or bobcats. What’s 
going on here? 

The Frankenstein complex is explained by a related idea dubbed 
the uncanny valley.50 The hypothesis is named after a dip in a regression 
curve. For the most part, and all other things being equal, as an object 
comes to resemble a human more and more, our reaction to the object 
becomes increasingly positive. But if the likeness is a near miss, we ex-
perience the uncanny valley. Anything not human but that appears very 
nearly human is scary. 

The Frankenstein complex/uncanny valley contributes to fears of 
(and fascination with) AI. Consider the chatbot Sophia the Robot.51 So-
phia has its own Facebook page52 and has been awarded citizenship in 
Saudi Arabia.53 Its speech is augmented by facial expressions using small 
feature changes akin to those used by cartoonists (which we will discuss 
in just a moment). Sophia’s human-like container, its seductive optics, 
has little to do with its chatbot AI. (If you want to brave the revenue gen-
erating ads, there are many interesting videos of Sophia on YouTube.) 

Sophia is bald and the back of its head is clear plastic that reveals 
electronics inside its head. The Frankenstein complex/uncanny valley 
reaction might diminish if Sophia wore a wig, or this might plunge the 
robot deeper into the uncanny valley, since it still wouldn’t look fully 
human. I suspect AI optics will get better to the point of being visually 
indistinguishable from humans when not closely examined. Currently, 
though, seamless human form representation in robots is not well devel-
oped. It’s close enough, however, that marketers of Sophia the Robot and 
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other AI can grab our attention via the uncanny valley. Today more than 
ever the goal in promotion is to get the attention of the reader and the 
media. Making things look almost human and, therefore, a little creepy 
does this.

Bear in mind this only works because of the amazing human sensi-
tivity to small variations in faces and facial expressions. Baby brains are 
prewired to recognize faces to discern mommy from others, and from 
very early on we can distinguish nuances of emotion as revealed in facial 
expression. 

Cartoonists use this in their art. Consider cartoons where, just by 
changing the eyebrows and the mouth, a plethora of different emotions 
are displayed. In Figure 6.2, each of the three columns of faces has a dif-
ferent mouth shape, and each of the three rows has different eyebrows. 
The nine different combinations of these simple features are strikingly 
different—and all from only changing the angle of the eyebrows and the 
curve of the mouth.

Figure 6.1. Sophia the Robot.
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Further, we see faces everywhere we look, and assign personality 
to those faces. Look at any wall socket. The three holes resemble a face 
that displays emotion. We might see a water faucet that reminds us of a 
puzzled face, a Kleenex box with a big open mouth, or a chest of drawers 
whose open drawer looks to be a big hungry mouth saying “feed me!”

But our emotional response to face recognition is not always one of 
amusement. Some faces evoke a feeling of eeriness. Bubbles in a coffee 
cup can have gaps that overall resemble the face in Edvard Munch’s 1893 
iconic painting The Scream.

In sum: Those who market AI make use of our predisposition to 
personify objects. They know we will endow human-looking objects with 
human characteristics—intelligence, consciousness, various emotions—

Figure 6.2. Simple tweaks allow for widely diverse facial expressions.
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so they embed their software in human-appearing containers to hype 
their wares. 

So when filtering AI hype, beware of seductive optics. Mentally 
separate the packaging from the content.

Hype Filter #8: True-ish
The story is told of a cross country meet where several teams back out 
at the last minute due to poor weather and only two teams show, archri-
vals Springfield and Centerville. Centerville wins the competition. The 
next day the Springville Gazette reports, “Springfield Finishes Second in 
Grueling Cross-Country Competition. Arch Rival Centerville Finishes 
Second to Last.”

Figure 6.3. Faces everywhere!
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Misrepresentations of this sort may be technically true, but they’re 
intended to deceive. They’re what I like to call True-ish. 

Sometimes a headline may misrepresent, while the article itself is ac-
curate. Sometimes both headline and article misrepresent, and the only 
way for readers to learn the whole truth is to read a more honest report. 

Here are a few examples of true-ish clickbait related to AI.

Figure 6.4. More faces!
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A Duke University headline claiming that their “Artificial Intelli-
gence Makes Blurry Faces Look More Than 60 Times Sharper”54 trades 
in half truths. To understand why, a bit of background is helpful. In or-
der to hide someone’s identity in a picture or a video, a face can be pix-
elated. The pixels of the face are made so big that no recognition is possi-
ble. Another example is blurred details in a photo due to poor resolution. 
For example, the license plate of a car is so small that, when enlarged, the 
image is pixelated to the point where identification is impossible.

A common scene in TV crime shows runs something like this: The 
lead detective is viewing an image of a possible culprit, but it’s badly pix-
elated. The detective tells the technician to sharpen the image. The tech-
nician punches a key on his computer keyboard, activating an algorithm, 
and magically, the de-blurred image appears. 

The title of the Duke University article about the Duke research 
seems to promise just this sort of ability, but it’s misleading. The Duke 
software generates a sharp face, but there is no guarantee the regener-
ated face is the original. The article confesses as much only in the fourth 
paragraph, saying, “The system cannot be used to identify people, the re-
searchers say: It won’t turn an out-of-focus, unrecognizable photo from 

Figure 6.5. Pixelated version on left; original image on right.
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a security camera into a crystal clear image of a real person. Rather, it is 
capable of generating new faces that don’t exist, but look plausibly real.”55

That’s less impressive.
There are at least two ways a pixelated image can be “restored.” The 

first takes the equivalent of a catalog of faces, pixelates them, chooses the 
one that looks most like the blurry image in question, and then uses the 
unpixelated version of this image as a best-guess stand-in for the blurry 
image in question. No claim is made that the software regenerates the 
image of the original face. Such a technology may, however, be useful in 
other applications. It might be applied to restoring license plate num-
bers from blurred images, given a large enough catalogue of images and 
their blurred equivalents. I can see this information being useful to law 
enforcement. Another possible application is restoring old photographs 
corrupted by age, if the program could be fed high-resolution images of 
the people in the old photos.

An alternate approach to restoring a pixelated image is gathering 
other versions of the same corrupted image. A second blurred image us-
ing different pixelation will help the restoration accuracy. Or in a blurry 
video, there are numerous versions of a pixelated face available as the 
person moves.

Here’s an extreme example. Suppose the world’s worst camera has a 
single photodetector. The camera is pointed at a scene and takes a single 
measurement over a small square region of the scene. The portion of the 
scene in this small region is blurred together (or averaged) into a single 
number. The camera adds up all the light coming from the small square 
into a single number that is recorded by the photodetector. The camera 
is then randomly moved to another position and another reading is tak-
en over another square. After doing this a number of times, is it possible 
to combine all these single readings into a composite image even when 
many of the regions overlap?

The answer is yes. Ten thousand readings using the world’s worst 
camera allow a decent rendering of the image. Further readings further 
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sharpen the image. Each image from the world’s worse camera adds 
more information about the image. 

But, despite detective shows and news media claims to the contrary, 
there is no computer algorithm that can take a single pixelated, blurred 
image and restore the original image.56 That’s because there is no free 
lunch. If you receive a corrupted image, no AI pixel-pushing algorithm 
can generate more information. You need to have an idea beforehand 
what the corrupted image is. Even here, the reconstruction is but a best 

Figure 6.6. On the upper left is an original image; upper right is the first 
reading from the world’s worst camera. On the second row and third 
rows, additional readings from the world’s worst camera gradually im-
prove the composite image.
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guess biased by your assumption about what the original could be. Al-
ternatively, other versions of the corrupted images can be gathered. In 
that case, the question is how they are combined to give a restored image.

Another AI technology that’s received the true-ish clickbait head-
line treatment is an MIT invention christened AlterEgo. Here are some 
examples.

 • From Newsweek: “This Strange Headset Lets You Interact with 
Devices Simply by Reading Your Mind.”57

 • From TechRepublic: “Could MIT’s AI Headset Transcribe your 
Future Strategy Straight from Your Brain?” 58 

 • From the Guardian: “Researchers Develop Device That Can 
‘Hear’ Your Internal Voice.”59

 • From Hearing Health & Technology Matters: “MIT’s 
Fascinating AlterEgo Device Can ‘Hear’ Your Thoughts.”60

These headlines are close to the truth. They’d be closer if they in-
cluded a crucial qualifier along the lines of “seems to” or “seemingly.” But 
the fact that the qualifier isn’t there makes all the differences. As it is, 
the headlines make it sound like actual mind-reading AI has been devel-
oped. Only the scare quotes around “hear” in the latter two headlines, 
and the question form of the second, so much as hint that the claim of 
mind-reading should be taken with a grain of salt. But reading deeper 
into AlterEgo’s technical details reveals that the AI reads “neuromuscu-
lar signals in the jaw and face triggered by so-called internal verbaliza-
tions (saying words ‘in your head’) that are not detectable by the human 
eye.”61 The AlterEgo headset reads not minds, but micro-movements, 
using electrodes attached to the wearer’s jaw and chin. Most of the time 
you think without making these micro-movements; you only make them 
when you pretend you’re talking. This is a habit called subvocalization 
that many of us got into when we learned how to read; some of us still 
combat subvocalization tongue movement. 

So essentially, the “internal voice” that AlterEgo is “hearing” turns 
out to be your tongue moving around inside your mouth. 
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Is AlterEgo a fun bit of AI? Yes, it is. 
Could it have helpful and interesting uses? Sure.
Does it actually read minds? No. 
Here’s essentially what happens with AlterEgo. Think of your teeth 

as computer keys activated by moving your tongue around as you type 
in your mouth. As the tongue moves around, there are tiny facial muscle 
movements. Small neuromuscular signals are detected by AlterEgo’s fa-
cial sensors that use simple AI to translate the movements into words 
that can be fed into a computer search engine that, like Alexa or IBM 
Watson, spits out a response to any question asked. AlterEgo is inter-
preting a silent ventriloquism query invisible to the non-observant. Not 
only do the lips not move, there is no sound.

Once the words originating “in your head” are wirelessly transmit-
ted to the computer, an answer is given and is wirelessly communicated 
back to AlterEgo. AlterEgo communicates to the user using vibrations 
on the bones of the face. Think of the vibration of your muted cell phone 
sending tactile Morse code to your jaw.

This is one of those situations where a product is flashy and fun, but 
the technical components are not as impressive as advertised. Train AI 
offline on neuromuscular signals by moving your tongue around in your 
mouth; the computer finds the answer and vibrates the answer back to 
you. Training AI to translate small facial muscle signals into words looks 
to be the only individual technical innovation behind AlterEgo. The idea 
of doing so is unique, but not that difficult. No deep learning is needed 
here. 

And so the headline claims are misleading. AlterEgo no more reads 
your mind than a computer keyboard does. Your mind can be said to 
communicate with your computer when you type, therefore interfacing 
your mind with the computer. Similar communication is what happens 
with AlterEgo. But the process has nothing to do with directly reading 
your mind. It has to do with your tongue moving around in your mouth.
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MIT’s headline about AlterEgo is more honest. It reads, “Computer 
System Transcribes Words Users ‘Speak Silently.’”62 But the MIT claim 
that AlterEgo “would weave into human personality as a ‘second self ’ and 
augment human cognition and abilities”63 is pure hyperbole. AlterEgo is 
no more a “second self ” than Alexa or the Google search engine. MIT’s 
additional claim that AlterEgo is “intelligence augmentation”64 is seduc-
tive semantics. “Intelligence augmentation” as used also applies to Alexa, 
Google search, and even the grocery list you take with you to the super-
market. 

The composite idea behind AlterEgo is clever and patentable. It may 
prove invaluable for applications like helping the severely handicapped 
to electronically interface with the internet of things, or to politely send 
and receive text messages silently in the middle of a movie at the Cin-
eplex. But despite headlines and publicity claiming otherwise, AlterEgo 
provides no technical stride forward in the field of AI-brain interface.

The larger lesson here is that some of the most convincing misrep-
resentations are the true-ish claims, the almost truths. To separate fact 
from fiction, you have to read the fine print. 

Hype Filter #9: Citation Bluffing
Another type of misrepresentation is citation bluffing. Here, someone 
claims that this or that authoritative source supports his argument when 
in fact it doesn’t. Writers with blinding ideologies or weak ethics wish-
ing to score points use citation bluffing to bolster their position. So don’t 
take a citation as gospel. Ask yourself, does the cited source actually say 
what the person claims it does? Did the person omit important caveats 
or qualifiers about the source? Most people don’t go to the trouble to find 
out. And oftentimes few details are given about the source, so the cau-
tious reader has to work hard to find the original material.

Here’s an example of either inadvertent or deliberate AI citation 
bluffing. A headline from the Daily Mail web page screams, “No more 
secrets! New mind-reading machine can translate your thoughts and 
display them as text INSTANTLY!”65
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Yes, “INSTANTLY” is in all caps. 
This Daily Mail web article, as is typical for money-seeking websites, 

is surrounded by ads that generate revenue. They are clickbait. One of 
the ads is for the latest Avengers movie. Another is for auto insurance. 
There are links to other news stories on the Daily Mail site, plus some 
sponsored clickbait links with teasers like “The Most Beautiful 1969 
Photos” and “Why Women Cheat.” The “news” headline fits right in. 
But hey, this is how websites make money. Attention-grabbing headlines 
about mind-reading AI are clickbait for unsuspecting web surfer prey.

But I digress. The citation bluffing in the Daily Mail article is still 
to come, in the first and third sub-headlines, in bold beneath the main 
headline:

1. “Researchers say they have developed a machine that can trans-
late any thought”

2. “The astonishing machine will analyze what you are thinking 
and display it as text”

3. “Scientists hope that the machine can be used by people who 
are unable to speak”

In the body of the article the writer says, “There are fears from crit-
ics... that the device will cause problems if secret thoughts are exposed 
accidentally.” Do we need to wrap our heads in tinfoil so the NSA can’t 
read our most secret thoughts?

There is enough in the Daily Mail piece to identify the source as a 
research journal paper by Moses, Leonard, and Chang.66 The research 
results reported in the original paper are significant and the authors are 
thorough in describing their work. But the Daily Mail chose to leave out 
information that presents the AI mind reader in a much less dramatic 
light. Here are some of the omitted facts: 

Fact 1: Two people were used in the mind-reading experiment. Both 
were being treated for epilepsy. For the treatment of their seizures, the 
subjects already had 128-channel ECoG (Electrocorticography) units 
“surgically implanted on the cortical surface” of the brain. Doing this 
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requires a craniotomy where the surgeon saws out a section of the skull 
large enough to allow the units to be placed directly on the brain. Ouch! 

Fact 2: One of the biggest obstacles to reading minds from brain 
signals is noise. Conventional electroencephalography (EEG) electrodes 
monitor brain activity from outside the skull. Direct reading from the 
brain’s surface gives cleaner signals. 

Fact 3: The mind-reading results are subject dependent. A mind-
reading system trained on John Lennon would not necessarily work on 
Paul McCartney and vice versa. Data is collected from a single person 
and then machine intelligence trains for reading of the mind for that 
person only.

Fact 4: Only ten brain signals are used for detecting thought. The 
subject is read ten short sentences from a recording and the brain signals 
are captured for these readings. Example sentences include: 

“Nobody likes snakes.”
“Have you got enough blankets?” 
“Yet they thrived in it.”
When enough brain signals are read, a machine is trained using the 

example signals. There is a lot of processing performed on the brain sig-
nal before it sees an AI classifier. Such man-in-the loop pre-processing 
is typical. 

The brain signal processing ultimately allowed detection of thirty-
seven phonemic types. 

Fact 5: Neither cutting-edge machine intelligence algorithms used 
to train AlphaGo and IBM Watson, nor deep convolutional neural net-
works are used. Training of the mind-reading AI uses machine intel-
ligence dating to the twentieth century. This is not bad. The choice of 
machine intelligence algorithms should fit the problem and many of 
these older techniques often work effectively. There is no reason to kill a 
fly with a sledgehammer. But the algorithms are by no means state of the 
art, as one might suppose from the Daily Mail ’s breathless references to 
the findings of the researchers. 
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The mind-reading research results of Moses, Leonard, and Chang 
may one day lead to AI that can read minds without the need of brain 
surgery. Or maybe it won’t. Establishing intermediate results are what 
incremental research is all about. The results reported in the research pa-
per are interesting and significant, but they don’t show, as the Daily Mail 
article implies, that the machine can “translate any thought.” Thoughts 
can consist of images, nonverbal hunches, and emotional responses. The 
research described in the article doesn’t even begin trying to tackle trans-
lation of these type of thoughts.

The Daily Mail piece is written by Danyal Hussain. I don’t know 
Hussain and have not researched his work. But his hype article on mind 
reading is sensationalism and cheapens the work of Moses, Leonard, and 
Chang. 

This hype filter requires that exciting news with impressive-seem-
ing source citations be taken with a grain of salt. Your college English 
teacher most likely tried to instill in you the importance of using primary 
rather than secondary or tertiary sources. This example shows why. The 
further removed you get from the original research, the more likely you 
are to find yourself in a game of “telephone” or “gossip.”

Hype Filter #10: Small-Silo Ignorance
AI concerns are often voiced outside of a critic’s silo of expertise. Ever 
wonder why actor Kevin Costner testified in front of Congress on the 
topic of oil spills, Ben Affleck on the A-T Children’s Project, and quiz-
master Bob Barker on the Captive Elephant Accident Prevention Act?67 
Many, apparently including some in Congress and the media, equate ce-
lebrity in one area to across-the-board expertise in everything. Author 
Laura Ingraham disagrees and tells clueless pontificating singer celebri-
ties to Shut Up and Sing.68 Comedian Ricky Gervais tells celebrity loud-
mouths, “You know nothing about the real world. Most of you spent less 
time in school than Greta Thunberg.”69
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The sentiment is not new. Iconic actor Marlon Brando said, “Why 
should anybody care about what any movie star has to say? A movie star 
is nothing important.”70 

Movie stars are one thing. But what of icons like Elon Musk? There 
is no doubting the business successes of Musk, who fathered Tesla and 
SpaceX. But Musk has some strange ideas. He argues, for example, that 
it’s quite possible we are all living in a computer simulation. “The ar-
gument for the simulation, I think, is quite strong,” he said in a 2018 
interview with Joe Rogan.71 “If you assume any improvements at all over 
time.... then games will be indistinguishable from reality, or civiliza-
tion will end. One of those two things will occur. Therefore we are most 
likely in a simulation. Because we exist.” This is a theory he has floated 
many times. In 2016 he said, “I’ve had so many simulation conversations 
it’s crazy. In fact it got to the point where every conversation was the AI/
simulation conversation.” He goes on to summarize his argument, and 
concludes, “There’s a one in billions chance this is base reality.”72

Tech visionary George Gilder casts doubt on Musk’s overall exper-
tise:

Elon Musk is a tremendous entrepreneur.... but when he starts pre-
tending that he’s an ethical visionary, that human life is just a simu-
lation in a smarter species’ game.... I hear lots of otherwise brilliant 
people talk in these terms. I think it’s a Silicon Valley dementia that’s 
going on, which probably results from a religious collapse.... A lot of 
people have an incredible longing to reduce human intelligence to 
some measurable crystallization that can be grasped, calculated, pro-
jected and mechanized.73 

Though Musk has “exposure to the most cutting edge AI” (his 
words),74 he apparently does not have a realistic understanding about 
what algorithms can and cannot do. And so he fears AI will become 
innovative. He says, “People call it the singularity.... It could be terrible, 
and it could be great. It’s not clear. But one thing is for sure. We will not 
control it.”75 But as we have shown, AI can’t become creative. 

Discerning ignorance can become more complicated when celebri-
ties are brilliant like Musk or recognized intellectuals like the late genius 



6� Twelve Fi lters for AI Hy pe Detect ion  /  149

Stephen Hawking. Hawking was a genius in cosmology. With fellow 
genius Sir Roger Penrose, he formulated the Penrose–Hawking singu-
larity theorems applying general relativity to understand black holes. 
Artificial intelligence scared Hawking, who said, “The development 
of full artificial intelligence could spell the end of the human race... It 
would take off on its own, and redesign itself at an ever-increasing rate. 
Humans, who are limited by slow biological evolution, couldn’t compete 
and would be superseded.”76

Hawking is genius in cosmology, but here he is outside his silo of ex-
pertise. Note his assumption that AI can be creative. AI writing smarter 
AI assumes creativity and, using the measure of the Lovelace test dis-
cussed in earlier chapters, AI has yet to be creative. And, as also dis-
cussed, there are good reasons to conclude that it never will be creative.

Hawking’s AI quote is curious given that he abandoned pursuit of 
an Ultimate Theory of Everything due to Gödel’s theorems on incomplete-
ness and inconsistency.77 This Ultimate Theory would unify physics in a 
neatly wrapped interconnected set of equations. Hawking once believed 
in the Ultimate Theory but changed his mind because of Gödel’s theo-
rems. No matter how much was discovered in physics, he concluded, 
Gödel’s theorems say there would always be more. 

Gödel’s theorems, as it turns out, also have implications for the ques-
tion of computer creativity. Alan Turing, the father of modern computer 
science, built on Gödel’s work and showed that there are problems that 
are non-algorithmic and therefore cannot be captured by computer code. 
Evidence grows that many human attributes like creativity are likewise 
unable to be captured by computer code. 

Hawking’s black hole co-author, Roger Penrose, recognized this 
connection and wrote books about it. The first, The Emperor’s New Mind, 
links Gödel’s work to Turing’s and makes a case for the non-computable 
nature of creativity and against the idea that AI programs could write 
better programs beyond the intent of the original programmer. Doing 
so requires creativity. Penrose dismisses Hawking’s fear and argues that 
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computers will never have the necessary creativity to write better and 
better AI. 

When Hawking made his scary prediction about a dystopian AI 
future, he seems to have been unaware of Penrose’s work in the area of 
AI. Now to be clear, and as I insisted in a 2020 article at Mind Mat-
ters News, because of Hawking’s giant intellect, no one should ever say 
to him, “Shut Up and Do Physics.”78 But with a great intellect comes 
great responsibility. Hawking had the intellect to learn about Penrose’s 
insight into computers and AI via Gödel, and ideally would have further 
explored the matter in the writings of others.79 But he seems not to have 
bothered, or at least his own analysis betrays no evidence of his having 
done so. 

This is often the case with brilliant thinkers commenting outside 
their area of expertise. They don’t perform the necessary due diligence in 
the area outside their field of expertise, and yet comment on it as if their 
stature in their area of success magically imbues them with wisdom and 
knowledge in another. Hype Filter #10 puts us on our guard against this 
sort of thing.

Hype Filter #11: Assess the Source
The Babylon Bee is a wonderfully creative website that specializes in 
satire. Their charmingly oxymoronic motto is “Fake news you can trust.”

But sites purporting to report real news while actually peddling fake 
news are a problem. So are fake news stories written to counter the origi-
nal stories! Ubiquitous fake news can be challenged in stories hopefully 
not themselves fake news. Here’s an example. 

Many McDonald’s restaurants now have self-order touchscreen ki-
osks. There is no need to talk to anybody. Walk in, poke in your order 
on the kiosk screen, stick in your credit card, and get your receipt with 
a number on it. You sit and display your number on the table. The food 
is delivered on a tray and set before you. No one has exchanged a word. 
The first time you need to open your mouth is to insert the Big Mac.
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I had a wager with a good friend that the self-order touchscreen ki-
osks at McDonald’s would not last. The kiosks not only take longer to 
use, but are annoying. The idea of the kiosk may sound good on paper 
but, to those like me who celebrate behavioral inertia, it’s a hassle in prac-
tice.

During one of my visits to McDonald’s, an employee intercepted 
my trip to the conventional counter for placing food orders. She asked 
if she could show me how the new kiosk touchscreens work. That was 
her job: teaching the reluctant and the untechnical how to program a 
touchscreen to get their McNuggets. I already knew how, but I complied 
because I did not want to seem rude. As she punched in my order, I told 
her I found the kiosks to be inconvenient and annoying. Her shoulders 
slumped. She sighed, looked me in the eye, and confessed, “Everybody 
does.” Older customers seem more reluctant to use the screens than 
younger tech-savvy diners.

The outcomes of wagers and showdowns can turn on unforeseen 
events. The invading Martians in H. G. Well’s War of the Worlds were 
technologically far superior to Earthlings. Earth fought back, but it 
looked like humanity was doomed. Unexpectedly, the Martians were 
killed by an onslaught of earthly pathogens. Who would have guessed?

There came a moment when I thought the McDonald’s touch-
screens might be finished off by a similarly unexpected threat. The 
Blaze news site reported on the outcome of an analysis of swab wipes 
from touchscreens at McDonald’s taken from eight restaurant locations 
in England.80 Dr. Paul Matawele of London Metropolitan University’s 
microbiology department reported, “We were all surprised how much 
gut and faecal bacteria there was on the touchscreen machines. These 
cause the kind of infections that people pick up in hospitals.”81

Gut and fecal matter next to my hamburger? Yech!
The ugly pathogens discovered included potentially fatal Staphylo-

coccus, the dreaded “Staph” infection that closes hospital wards. Staph 
is also becoming antibiotic resistant.82
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I now had another reason to not to use the kiosks at McDonald’s.
Pathogens helped Earth beat the Martians. Maybe pathogens would 

help me win my wager about McDonald’s kiosks. 
But then I read a media rebuttal titled “Relax, McDonald’s Touch-

screen Menus Aren’t Covered in Poop.” The article reported, “No. There 
is no brown, smelly fecal matter covering McDonald’s touchscreens.” 
Further, the author added, “Because we have a digestive system (complete 
with acid and enzymes) and an immune system, it is nearly impossible 
for one or two bacteria to cause disease. Instead, a person usually needs 
to ingest hundreds, thousands, or even millions of bacteria to become 
sick (with a foodborne illness, anyway). Unfortunately, the researcher 
didn’t bother to report how much bacteria he found.”83

Apparently, eating a little bit of poop won’t hurt you.
The writer of the rebuttal article sounded like he knew what he was 

talking about. His byline had a PhD after his name. I began to dismiss 
the original alarmist article as wrong. But then it struck me: this rebuttal 
could itself be fake news. Rebuttals can be backed or shaped by corpo-
rate influence. And, my hype filter noted, there is evidence of seductive 
semantics in the rebuttal.

The article begins, “There is no brown, smelly fecal matter covering 
McDonald’s touchscreens.” This is a hyperbolic exaggeration of the orig-
inal report, which made no such claim. The original report only claimed 
detection of “traces” of “gut and fecal bacteria” on the screen wipings.

The rebuttal also says that “the researcher didn’t bother to report 
how much bacteria he found.” This may bring the study into question 
but does not negate it.

We see a blatant use of the genetic fallacy in the rebuttal. The source 
of the claims is attacked instead of addressing disputed facts. The rebut-
tal says, “It’s not a study. It wasn’t published in a peer-reviewed journal. It 
is literally nothing more than a guy walking around swabbing McDon-
ald’s touchscreens for a newspaper article.” 
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But the “guy” was not a self-serving journalist looking for a sensa-
tional scoop. He was Dr. Matawele of London Metropolitan University’s 
microbiology department.

These observations give me pause about the rebuttal.
Now I don’t have certainty either way about fecal matter on the 

touchscreens at McDonald’s. It’s quite possible that one or the other of 
those two stories are legitimate; or that neither are; or that both are, and 
the authors simply have different opinions about the danger of fecal mat-
ter on touchscreens. Both stories have elements of hype. Questionable 
news reports in all directions can lead to a quagmire of confusion. 

We live in the information age, but much of the information we’re 
bombarded with is untrustworthy. Consulting multiple sources across 
the political spectrum, and carefully assessing the quality of each source, 
can help us tease out the truth from the hype.

And by the way—I lost my bet about the kiosks at McDonald’s. It 
looks like they are here to stay. In fact, McDonald’s is doubling down 
on AI technology at its restaurants. It purchased the company Apprente 
and its speech recognition technology84 to use for ordering in its drive-
through lanes. Since I have problems understanding the order takers 
when they talk through the cheap drive-through speakers, this is wel-
come news.

Hype Filter #12: Conflicts of Interest
Cui bono? is Latin for “who benefits?” When you read something about 
AI that seems too good to be true, or to terrifying to be true, ask yourself 
who benefits from presenting AI in this way.

Cold case police detective J. Warner Wallace identifies the three 
motivators for committing a crime: financial greed, relational desire, and 
pursuit of power.85 These same things are motives for hype, including in 
the world of AI.

We all know that websites seek money-generating clicks. Not every-
one knows, however, that academic researchers need to publish interest-
ing material to get grant funds, the accolades of their peers, promotions, 
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and salary increases. Those who publish fake technical papers written 
by SCIgen seek more beans for their deans to count. Deans don’t taste 
beans, they only count them.

So, unfortunately, overstated or downright fake news even occurs 
in the so-called scholarly literature. To prove this, in 2018 three estab-
lished scholars wrote papers reporting the most outrageous studies and 
conclusions they could fabricate.86 They chose to submit to high-profile 
journals in fields such as gender studies, queer studies, and fat studies. 
One of their papers, published in the journal Gender, Place and Culture, 
was titled “Human Reaction to Rape Culture and Queer Performativity 
at Urban Dog Parks in Portland, Oregon.” 

The paper addressed the absurd question “Do dogs suffer oppression 
based upon (perceived) gender?” The authors claimed to have watched 
fornicating dogs in public settings for a year.87 The paper included faked 
data: “Averaging across my data, in my observational vicinity there was 
approximately one dog rape/humping incident every 60 min (1004 doc-
umented dog rapes/humping incidents).”

Why would any academic journal publish such a ridiculous paper? 
Those who play in the sandbox of extreme beliefs love fueling their ide-
ology. The authors of the bogus papers, Helen Pluckrose, James Lind-
say, and Peter Boghossian, agree: “Scholarship based less upon finding 
truth and more upon attending to social grievances has become firmly 
established, if not fully dominant, within these fields, and their scholars 
increasingly bully students, administrators, and other departments into 
adhering to their worldview.”88 When academics needing publications 
write (or get a paper-generator to write) with the goal of pleasing ideo-
logues, hype happens. 

The same can be true of hyperbolic forecasts. Sometimes, though, 
motives are less clearly corrupt. As we’ve mentioned before, in some cas-
es, claims erupt from the pure excitement of research. In my experience, 
research plods along, when unexpectedly, there is a Eureka event. A flash 
of genius. The dopamine hits from such moments are a big motivator. 
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The resulting exuberance often gives the researcher an honest albeit 
overoptimistic view of themselves and the future.

Here’s a personal example. The Trend in Engineering was a quarterly 
publication of the College of Engineering at the University of Washing-
ton. My colleague Les Atlas and I were interviewed in an article titled 
“Artificial Neural Networks Model the Human Brain.”89 This sounds 
like a science news article we might read today. But this article was writ-
ten over thirty years ago in 1988.

First note the hyperbole in the title. The artificial neural networks 
we deal with are no more a model of the human brain than a pump han-
dle is a model of the human heart. Artificial neural networks yesterday 
and today are inspired by the architecture and operation of the human 
brain but fall way short of the human brain’s performance. 

The article goes on to describe our research into using AI in speech 
recognition. The description is fine until we announce a prediction that 
made our claims scrutiny-proof, at least for the near term: “The team 
plans to have a demonstration system available in two years.” We then 
added that we felt that the neural network’s speech recognition “has the 
potential to behave as human does.”

At the time we were optimistic. But not only were our goals not 
achieved, our research thrust was not even in the right direction. Our 
approach hit a brick wall and, in hindsight, was not even close to solving 
speech recognition. Commercially successful speech recognition today 
relies on AI called hidden Markov models. At the writing of the Trend 
in Engineering article, neither Les Atlas nor I knew anything about this 
algorithm. 

Our overly optimistic future forecasting was motivated in part by 
our excitement. We were true believers swept up in the moment. But 
there were other less pure motives at play. The Trend publication was 
distributed to alumni and the public. The University of Washington, 
like all other universities, wants the world to know how great it is. Uni-
versity rankings in US News & World Report are determined in part by 
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submitting evaluation questionnaires to university administrators, like 
deans. Most universities have discipline-specific shiny, full-color bro-
chures they circulate to those with influence. The shiny publication, also 
sent to alumni and potential donors, boosts donations and strengthens 
branding.

Collectively, modern universities are a glut of self-promoting enthu-
siasts in a crowded room, with all of them waving their hands above their 
heads and jumping up and down yelling, “Look at me! Look at me!” Such 
is also the competitive game played among beer brands, truck models, 
and rock stars. It’s part of the free enterprise system. Getting attention is 
a big motivation behind hype. So is money. In the Trend article about our 
neural network research, supporters of our research are listed: “Funding 
of Atlas and Marks’s [research] comes from a variety of sources: The Na-
tional Science Foundation, The Office of Naval Research, Physio Con-
trol Corp. and the Washington Technology Center.”

Professors in research universities are entrepreneurs. We must so-
licit and win external funding to support our graduate students, equip-
ment, and summer salary. Part of the professor’s marketing job is to keep 
funding program directors happy. The program director’s happiness is 
increased when there are publications to show to the boss. And the more 
cutting-edge and newsworthy the publications, the better.

I just listened to an old interview about neural networks I did on 
KIRO radio in Seattle in March 2002.90 I’m proud to say I projected 
minimal hype. What was more interesting than my answers were the 
questions asked by the host, who had little technical background. The 
questions were the same questions asked today about AI. Will AI take 
over our jobs? Will AI take over the world like the HAL 9000 computer 
took over the space mission in the movie 2001: A Space Odyssey? The 
fears and concerns of the public were the same then as they are now. To-
day, however, the internet and social media provide a much larger mega-
phone to the voicing of these fears. 
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The Hype List
In a nutshell, here is the list of twelve things to consider when reading 
AI news:

1. Outrageous Claims: If it sounds outrageous, maybe it is. 
Recognize that AI is riding high on the hype curve and that 
exaggerated reporting will be more hyperbolic than for more 
established technologies.

2. Hedging: Look for hedge words like “promising,” “develop-
ing,” and “potentially,” which implicitly avoid saying anything 
definite. 

3. Scrutiny Avoidance: Any claim that such-and-such an AI 
advancement is a few years away may be made with sincerity 
but avoids immediate scrutiny. Short attention spans mean 
that when the sell date on the promise rolls around, few people 
are likely to notice. Remember the old proverb often attributed 
to quantum physicist Niels Bohr: “Prediction is very difficult, 
especially about the future.”91 

4. Consensus: Beware of claims of consensus. Remember Mi-
chael Crichton’s claim that consensus regarding new technol-
ogy and science is the “first refuge of scoundrels.”

5. Entrenched Ideology: Many AI claims conform to the writer’s 
ideology.92 AI claims from those adherents to materialism are 
constrained to exclude a wide range of rational reasoning that 
is external to their materialistic silos.

6. Seductive Semantics: Claiming AI is conscious or self-aware 
without term definition can paint the AI as being more than it 
is. Seductive semantics is the stuff of marketing. In the ex-
treme, it can misrepresent.

7. Seductive Optics and the Frankenstein Complex: AI can 
be wrapped in a package that tries to increase the perception 
of its significance. Unrecognized, the psychological impact of 
the Frankenstein Complex and the Uncanny Valley Hypoth-
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esis can amplify perception far beyond technical reality. The 
human-appearing body in which a chatbot resides is secondary 
to its driving AI. 

8. True-ish: Beware of those tricky headlines and claims that are 
almost true but intended to deceive.

9. Citation Bluffing: Web articles and even scholarly journal 
papers can exaggerate or blatantly misrepresent the findings of 
others they cite. Checking primary sources can ferret out this 
form of deception.

10. Small-Silo Ignorance: The source of news and opinion always 
requires consideration, but those speaking outside of their silo 
of expertise need to be scrutinized with particular care, espe-
cially when the speakers are widely admired for their success 
in their silo. Don’t be dazzled by celebrity. This caution applies 
to famous actors speaking about politics but also to celebrated 
physicists speaking about computer science. 

11. Assess the Source: I trust content more from the Wall Street 
Journal than from politically motivated sites like the Huffington 
Post or yellow journalism sites like the National Enquirer. But 
even if the article appears at a site or periodical that has earned 
a measure of trust, it’s wise to assess the writer of the article. 

12. Who Benefits?: Remember financial greed, relational desires, 
and the pursuit of power. These are the three factors used by 
police detectives in their investigation of crimes. They are also 
good points to remember when considering whether a report 
on AI is true or hype. Is there a hidden agenda or emotional 
blind spot?

Final Thoughts
The “asymptote of reality” in the Hype Curve denotes the accumula-
tion of successful reduction to practice. The ultimate success of AI is not 
due to journal papers, blogs, press releases, forecasts, corporate acqui-
sitions, speculation, or promises. Success is measured by reduction to 
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practice. Where has AI been profitably reduced to practice in everyday 
life, used effectively by a government, or deployed in the military? Such 
is the ultimate test of the success of any technology.

While watching the traversal of AI on the hype curve, we today 
enjoy narrow AI applications from Alexa to Zoom. The applications 
are becoming ubiquitous. Such successful AI technologies, reduced to 
practice, are soon taken for granted as their initial sparkle is dimmed by 
familiarity and as more impressive AI technologies arrive. 

All technology inevitably reaches its “asymptote of reality” where 
further development either stops or becomes incremental. AI is said to 
be the new electricity. Electricity, solidly in its “asymptote of reality,” is 
firmly established with no breakthrough innovations for decades. AI 
will likewise reach this plateau. When and how remain a mystery of the 
future. As iRobot CEO Colin Angle says, “It’s going to be interesting to 
see how society deals with artificial intelligence, but it will definitely be 
cool.”93





Part Three: AI History





7. AI: The Fossil Record
I was more motivated by curiosity. Never by the desire for 
financial gain. I just wondered how things were put together. Or 
what laws or rules govern a situation, or if there are theorems 
about what one can’t or can do. Mainly because I wanted to know 
myself. 

—Claude Shannon, information theory pioneer1

Now that we’ve cleared away some of the smoke and mir-
rors regarding what AI can do and what only non-computable you 

can do, let’s step back and look at how AI got to this point. There have 
been three serious leaps in AI progress and popularity since the mid-
twentieth century. The first began in the 1950s. The second was in the 
late 1980s. We are in the midst of the third rise today.

AI’s Creation
I wasn’t old enough to be part of the first wave of machine learning. 
During the second wave I did, however, get to pay homage to many of 
those early pioneers. 

It was the late ’80s. A crowd of admirers gathered at the Boeing au-
ditorium in Seattle, all of us focused on a meek middle-aged man who 
was living neural-network royalty. Dr. Bernard Widrow was being rec-
ognized two-and-a-half decades after his remarkable work in pioneering 
artificial neural networks. Widrow, a professor of electrical engineering 
at Stanford, glowed in recognition that had been denied him for many 
years. 

Widrow spoke about the theory of the ADALINE neural network 
he had developed back in the ’50s and ’60s. The feminine-sounding 
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name was a contraction of “Adaptive Linear Neuron.” When more units 
were added, the network was later generalized to MADALINE, mean-
ing many ADALINES.

Computer learning machines of the 1960s were peppered with then-
new seductive semantic labels like neural networks and perceptrons. The 
Stanford MADALINE invented by Widrow was said to be a machine 
that “in some respects thinks like a man” (though Widrow said repeat-
edly that he didn’t like to use the term “thinks” because “we don’t really 
understand what thinking is about”).2 

These machines were impressive even by today’s standards. Wid-
row created a neural network that learned from repeated observations. 
It beat the local weatherman at forecasting weather and translated lan-
guages from spoken form to print. Around the same time, Claude Shan-
non at Bell Labs used relay switching to play chess and taught robotic 
mice how to master mazes; and Cornell’s Frank Rosenblatt was dazzling 
the world with his perceptron neural network. All this happened over 
sixty years ago.

In Seattle’s Boeing auditorium, Widrow played for us a clip from an 
old black-and-white TV program called Science in Action, a weekly show 
that ran from 1950 to 1966 and featured a variety of guest scientists. 
In this particular 1963 episode a young Bernie Widrow appeared on 
screen before us, sporting a fresh buzz haircut fashionable in that era. 
The crowd chuckled. 

This TV program provides an interesting glimpse into the public’s 
attitude toward computers and explains the leap Widrow made. The 
host, zoologist Earl Stannard Herald, gestures toward a wall-sized com-
puter and says: 

By now we’re all fairly familiar with computers such as this one, and 
we can now remember with some amusement the fears that many of 
us expressed that machines such as these might someday take over the 
world. Today we recognize them for what they are… huge calculators, 
arithmetic machines, no more capable of acting for themselves than a 
desktop adding machine. However, a totally new class of computing 
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machine has come into being. It’s called an adaptive computer, and it’s 
important because it can learn from its own experience.3

Widrow called his learning machine a neural network because it 
was loosely based on the 1943 McCulloch-Pitts model of the biological 
neuron. Like a string with balls attached on each end, neuron pairs are 
connected with a weighted interconnect. According to Hebbian learn-
ing published in 1949, the strength between neurons is determined by 
how often the connected neurons simultaneously fire. Today we simu-
late such weights using a computer program. But during the early 1960s, 
when computers were still wet behind the ears, Widrow used thin pencil 
leads suspended in a solution appropriate for electroplating for his inter-
connection weights.

Electroplating was a more familiar concept in the ’50s and ’60s than 
it is now. Odd though it may seem to today’s families, fond parents used 
to bronze their children’s baby shoes using electroplating. The shoes—
the more wrinkled the better—were dipped into a copper-based solution 
and dried. Then the shoes, able now to conduct electricity, were sub-
merged in a plating solution and voltage was applied. Atom by atom, the 
shoes were plated in a thin coat of hard metal.

In high school I did a science project in silver plating where silver 
nitrate in solution was supposed to deposit a thin silver coating on sub-
merged metal objects when a voltage was applied. I should have used 
gloves. I learned later that silver nitrate can be used to remove warts, 
treat nosebleeds, and cure gonorrhea; but when in contact with skin for 
long periods of time, silver nitrate is toxic, corrosive, and can cause burn-
ing. My electroplating worked but was far from meeting my expecta-
tions, and my fingers turned black from prolonged handling of the sil-
ver nitrate. My blackened fingers and I won no blue ribbons at the high 
school science fair.

The silver nitrate for silver plating is toxic, but is nothing compared 
to copper plating using a copper-cyanide solution. Copper-cyanide can 
cause headaches, dizziness, pounding of the heart, and vomiting.4 Adolf 
Hitler famously committed suicide by biting into a cyanide capsule.
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Copper plating is used for coins.5 Pennies these days are not copper 
all the way through.6 Why? Because copper is expensive. Many years ago 
my uncle Ed Hersman, a NASA engineer and stock market watcher, 
saw that the value of the copper in a penny was soon going to exceed a 
penny in cost. So he purchased ten thousand dollars in copper pennies 
that he stored in his basement in Doylestown, Ohio, in thirty-three gal-
lon drums.7 That’s a million pennies! And Uncle Ed was right. A penny’s 
worth of copper today is not enough to make a penny made of copper.8 
So the United States Treasury makes today’s pennies out of less expen-
sive zinc and plates them with a thin veneer of copper. 

The electroplating process can be reversed by changing the voltage 
polarity. The copper surface of a penny can thereby be removed. The 
copper simply goes back into the liquid solution.

Bernie Widrow used electroplating to make his neuron intercon-
nects. The Hebbian model of learning said a synaptic connection be-
tween two neurons grows stronger the more often the connected neu-
rons simultaneously fired. The catchphrase summarizing Hebb’s law for 
biological neurons is: “Neurons that fire together wire together.”

Widrow used metal-plated pencil leads to simulate this effect. The 
more plating was on the pencil lead, the thicker the pencil lead and 
the better it conducted. Widrow called the ever-changing pencil lead 
a “memristor,” which stands for “memory resistor.” Why? Because the 
pencil lead conductance depends on the history of the pencil lead plat-
ing. In a sense, the current conductivity of the pencil lead was a func-
tion of its past plating history. Hence, the pencil lead was said to have 
memory. Widrow founded a company, Memristor, to promote and sell 
his ADALINE and MADALINE adaptive learning machine. The com-
pany ran from 1960 to 1980. Widrow’s memristor was analog and suf-
fered from all the shortcomings in all analog computing, including poor 
accuracy. Updating neural interconnects digitally in software is much 
more precise.
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Neural Network Applications
In the old Science in Action episode, which you can watch for yourself,9 
black-and-white buzz-cut Bernie walks his audience through a number 
of applications of his neural network that remain impressive today.

For one thing, the speech recognition systems of today are not new. 
Widrow’s 1960 neural network was able to process a phrase spoken into 
a microphone and immediately type out the English. The machine also 
translated other languages to English. A French phrase spoken into a 
microphone was translated and printed in English. Japanese too. To-
day’s voice recognition technology and language translation machines 
are more technically sophisticated and powerful, but Widrow was first.

Widrow’s neural network also was trained to play the casino game 
of twenty-one (also called blackjack). The neural network played against 
the dealer. The dealer followed fixed rules and the job of ADALINE was 
to adapt around the fixed set of rules. At each stage, the network decided 
on either another hit or to stop and hold. 

In the game, you see one of the dealer’s two cards. Your goal is to get 
as close to twenty-one as possible without going over. You can ask for 
additional cards to add to your score. If, though, your card count exceeds 
twenty-one, you automatically lose. If your card count does not exceed 
twenty-one and you stop then it’s the dealer’s turn. The dealer must take 
additional cards until her score is seventeen or more. If the dealer flips 
a card and exceeds twenty-one, you win. If the dealer has between sev-
enteen and twenty-one points, the game is over. Whoever has the most 
points without going over twenty-one wins. If there is a tie, the dealer 
wins. There are many variations and nuances to the rules, but these are 
the fundamentals. 

ADALINE was trained by observing many blackjack games and 
seeing which betting strategies failed and which were successful. From 
this, ADALINE learned how to play blackjack and was able to nearly 
achieve the known optimal performance level.
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Then there’s physical balance. Balancing an upright broom handle 
on your index finger is called the “inverted pendulum” problem in con-
trol theory. Recall our discussion of the marketing hype surrounding in-
troduction of the Segway two-wheeled self-balancing scooter. The con-
trol of the Segway parallels that of the inverted pendulum. You are the 
broomstick being balanced by the Segway. Forty years before the 2001 
introduction of the Segway, Widrow trained ADALINE to balance a 
broom placed on a movable cart. Give the broom a slight shove at the 
top to push the broom off of equilibrium, and the balancing cart, mim-
icking a human’s movement to regain balance of a broom on a fingertip, 
moves back and forth in ever decreasing steps to reposition the broom in 
a stable upright position.

And then there’s weather forecasting. Using data provided by the 
San Francisco airport, Widrow trained his neural networks to forecast 
weather. Training looked at pressure patterns for one day—say Mon-
day—and forecast whether or not it would rain on Tuesday. ADALINE 
beat the official forecast accuracy of the human weatherman. ADA-
LINE was accurate 83 percent of the time verses 67 percent for the 
weatherman.

Transcription of voice to text, broom balancing, weather forecast-
ing, and winning card games were demonstrated using a rudimentary 
neural network AI over sixty years ago. Today’s AI machine does a bet-
ter job due to speed and sophistication. But the fundamental algorithms 
for these AI tasks were being used on a computer in the 1960s.

And we must note that Widrow’s ADALINE wasn’t the only early 
neural network attempt. There were others. Notably, in 1957 Frank 
Rosenblatt introduced the perceptron,10 an algorithm which was also 
based on biological models, and for which he received international rec-
ognition.11 The perceptron and ADALINE were not exactly alike,12 but 
both were based on human brain neuron connectivity and both relied on 
training data.
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Cage Match: Expert Systems versus Neural Networks 
ADALINE, a neural network, learned blackjack. (In case you’re won-
dering, ADALINE did not count cards, a no-no in blackjack.) As we’ve 
mentioned before, neural networks aren’t the only game in town. An-
other AI approach to playing blackjack is an expert system. An expert 
system uses so-called symbolic artificial intelligence where rules define 
the decision process.

Here’s an example of a rule in an expert system: “If a blackjack deal-
er’s shown card is a seven, and you have to date been dealt a three, a six, 
and a four, then ask for another card.” The fundamental idea behind 
expert systems is, as the name suggests, querying human experts and 
replicating these rules in computer code. For example, we can ask the 
professional gambler Bart Maverick what he would do if the dealer’s card 
were a seven and the player’s cards a three, a six, and a four. The human 
expert, Bart Maverick, might respond, “I would ask for another card.” 
The AI expert system records this in its big list of rules. Since there are a 
lot of different ways cards can be dealt, there can be a lot of rules. From 
a long session with Bart Maverick, an expert system can be built with 
expertise equivalent to Bart’s.

We can now speak of two ways for AI to learn blackjack. Blackjack 
can be captured by AI either by learning, as is done in neural networks, 
or by repeated querying of an expert and capturing the answer in code.

As we have seen in our discussion of hype, in the field of engineer-
ing, the true test of the success of a technology is the reduction to prac-
tice. Widrow’s ADALINE was reduced to practice but not in the game 
of blackjack. Remember the Concorde airplane that used to cross the 
Atlantic at supersonic speed and reach an altitude of 60,000 feet? An 
ADALINE-type neural network was used to optimize the engine con-
trol on the Concorde. 

You might be old enough to remember dial-up modems, where com-
puters connected to the internet over phone lines. Back then you could 
use your landline phone or the internet, but not both at once. When 
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first connecting, there would be a sound not unlike a duck choking on 
a kazoo. The sound was caused in part by an ADALINE-type system 
equalizing the phone line to allow optimal uploading and downloading 
speeds. 

Using an engineering metric, ADALINE was successful because it 
was reduced to practice. Not so with early expert systems. As discussed 
previously, rule-based expert systems were used to write a short western 
play in the early 1960s. But the effort was academic and never reduced 
to practice.

The existence of two types of AI should have been an altogether 
good thing—we learn by trying different approaches, noting the advan-
tages and disadvantages of each, and so forth. But the way the two camps 
treated each other led to a rather different outcome. 

Imagine a world where clowns drive around in tiny crowded clown 
cars looking for mimes to beat up. An observant clown car passenger 
yells “Mimes!” when he spots a group of mimes. Brakes screech as the 
clown car comes to an abrupt stop. Angry clowns begin to climb out of 
the clown car and run angrily at the mimes, brandishing pool noodles 
for beating sticks. More clowns emerge from the car than seems physi-
cally possible. The mimes see the clowns coming and know they are in 
for a beating. They begin to silently and busily construct imaginary pro-
tective air walls using their hands. The clowns, eager for conflict, burst 
through the air walls and both sides break into slap fights. 

Why would clowns and mimes be in conflict? After all, both are 
working towards the common goal of entertaining. But they end up hat-
ing each other because their approaches differ. Such was the case between 
those backing expert systems and those backing neural-type systems like 
ADALINE, which learned from data. Both approaches had AI as the 
common goal, but petty tribal conflict between the two methodologies 
led to the downfall of the first wave of research into artificial intelligence.

Such battles in academia—costly and much less funny than the 
conflict between clowns and mimes—are due to prideful ego, prestige 
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seeking, and the never-ending pursuit of research money from an often 
cliquish federal budgetary process.

The Expert Experts
The leader of the rule-based expert system cult was MIT professor 
Marvin Minsky. In 1959, with John McCarthy, Minsky founded what 
is known today as the MIT Computer Science and Artificial Intelli-
gence Laboratory. Minsky started out working with neural networks. 
In fact, in 1951 he invented one of the first artificial neural networks, 
called SNARC for “Stochastic Neural Analog Reinforcement Calcula-
tor.” SNARC simulated a rat finding its way through a maze, learning 
from its mistakes until it made it out. 

“It turned out that because of an electronic accident in our design 
we could put two or three rats in the same maze and follow them all,” 
Minsky told a reporter in 1981. “The rats actually interacted with one 
another. If one of them found a good path, the others would tend to fol-
low it. We sort of quit science for a while to watch the machine.”13

Despite this early enthusiasm, Minsky became disenchanted with 
neural networks (he saw the limitations all too clearly, but didn’t see that 
there could and indeed would be a way past those limitations) and began 
embracing symbolic artificial intelligence like expert systems.

Expert systems have some advantages over neural network systems. 
But they also have their drawbacks. Despite the drawbacks, Minsky 
embraced symbolic AI and turned against neural network training—so 
much so that he and his colleague Seymour Papert went to war against 
what they referred to as the connectionists (supporters of neural net-
works like ADALINE). Minsky and Papert were two clowns in the 
clown car; Rosenblatt and Widrow were enemy mimes.

To dis the work of those embracing neural network training, Min-
sky along with his colleague Papert wrote the book Perceptrons, first 
published in 1969.14 In the book, Minsky and Papert collegially give ku-
dos to the learning systems of Rosenblatt, Widrow, and others. This is 
characteristic in the halls of academia where opponents jockeying for 
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recognition call each other honored and distinguished scholars while 
snarling and brandishing knives behind their backs. We also see this in 
Congress where political opponents call hated opponents “good friends” 
and label them “distinguished.” In this spirit, Minsky and Papert even 
dedicate their expanded second edition of Perceptrons to their nemesis, 
Frank Rosenblatt, who died before its publication. 

But in the body of the book, Minsky and Papert move from praise 
to snark. They claim “most of this writing” about perceptrons “is with-
out scientific value,” and they use terms like “vacuous” and “sterile” to 
describe the approach.

 In 1988, almost two decades after the publication of Perceptrons, 
Papert published a peer-reviewed paper titled “One AI or Many?” in 
which he confessed to behind-the-scenes emotions. He says, “There was 
some hostility… and there is some degree of annoyance at the way the 
new movement [in neural networks] has developed.”15 

In recounting his version of what happened during the clown/mime 
fight, Papert composed a fairy tale, a sort of conflation of Cinderella and 
Snow White:

Once upon a time two daughter sciences were born to the new science 
of cybernetics. One sister was natural, with features inherited from 
the study of the brain, from the way nature does things. The other was 
artificial, related from the beginning to the use of computers. Each of 
the sister sciences tried to build models of intelligence, but from very 
different materials. The natural sister built models (called neural net-
works) out of mathematically purified neurones. The artificial sister 
built her models out of computer programs.

In their first bloom of youth the two were equally successful and 
equally pursued by suitors from other fields of knowledge. They got 
on very well together. Their relationship changed in the early sixties 
when a new monarch appeared, one with the largest coffers ever seen 
in the kingdom of the sciences: Lord DARPA, the Defense Depart-
ment’s Advanced Research Projects Agency.16 The artificial sister 
grew jealous and was determined to keep for herself the access to Lord 
DARPA’s research funds. The natural [neural network] sister would 
have to be slain. 
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The bloody work was attempted by two staunch followers of the 
artificial sister, Marvin Minsky and Seymour Papert, cast in the role 
of the huntsman sent to slay Snow White and bring back her heart as 
proof of the deed. Their weapon was not the dagger but the mightier 
pen, from which came a book—Perceptrons—purporting to prove 
that neural nets could never fill their promise of building models of 
mind: only computer programs could do this. Victory seemed assured 
for the artificial [symbolic AI] sister.... But Snow White was not 
dead. What Minsky and Papert had shown the world as proof was 
not the heart of the princess; it was the heart of a pig.17

Some of the criticisms of neural networks by Minsky and Papert 
were valid but, in retrospect, applied to the then-current development of 
the neural network and not the neural network’s future. Many of Min-
sky and Papert’s principal objections were ultimately overcome. Never-
theless, the impact of the book Perceptrons was immediate and brought 
funding of neural networks research in the United States to a screeching 
halt. Snow White, it seemed, had been slain.

Europe was not far behind the US. The publication of Perceptrons 
in 1969 was followed in 1973 by the so-called Lighthill Report, penned 
by Sir James Lighthill.18 The report, requested by the United Kingdom’s 
Science Research Council, was critical of the accomplishments of AI in 
light of initial exuberance. According to Lighthill, the promises made 
at the peak of the hype curve were grandiose claims that could never 
be achieved, because of mathematically insurmountable obstacles. The 
Lighthill Report caused the British government to stop funding AI re-
search and development in most universities.19 

What followed has been called the dark age of neural network re-
search. Even though Minsky and Papert took aim only at neural net-
works, they were wounded by the ricochet of their own shotgun blasts. 
Not only was neural network research axed, their own funding got cut 
as well. In fact, all AI funding in the United States shriveled and all but 
disappeared. The period after the publication of Perceptrons and the 
Lighthill Report is therefore known as the AI Winter.20 
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This winter lasted for about a decade. Then, as we will talk about in 
the next chapter, came an explosive AI revival.



8. The AI Revival
AI will continue to solve particular, set problems brilliantly, 
as it has been doing with slowly increasing prowess since the 
1950s, but AI software won’t show a glimmer of originality or 
creativity, which are essential to the very idea of thought, until 
it can simulate emotion as accurately as it does other mental 
phenomena.

 —David Gelernter, Yale University1

After infighting between AI factions brought about cuts 
in funding across the board, not much progress was made in the 

field until Cornell University’s John Hopfield began resurrecting the co-
matose neural network in the early 1980s. By this time I was involved in 
AI research, so I got to see the resurgence of AI firsthand. This wave of 
progress saw exciting innovations still in use today.

Hopfield and His Neural Network of Little Worth
With evangelistic zeal, Hopfield spoke loudly and frequently about 
what is today known as Hopfield neural networks. Hopfield’s neural 
network was markedly different from Widrow’s ADALINE and the 
Rosenblatt perceptron. Using adaptive processes, classic problems were 
tackled. Here’s one, known as the traveling salesman problem: Place a 
bunch of dots on a map and identify one as home. Starting from home, 
what’s the shortest distance so that all of the dots are visited once and 
you end up back at home? This is the traveling salesman problem. Find-
ing the shortest round-trip path becomes more and more difficult as the 
number of dots increases.
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Although not immediately obvious, the traveling salesman problem 
is related to what is known as the queens problem. My group at the Uni-
versity of Washington used a Hopfield neural network to solve the eight-
queens version of this puzzle.2 The idea is to place eight queens on an 
eight-by-eight chessboard so that no queen can capture any other queen. 
The problem on a standard chessboard is mildly difficult. (You can try 
it.) Watching the Hopfield neural network solve the queens problem was 
fun. During the iteration to solution, a queen would appear and the neu-
ral network would notice the queen could be captured by another queen. 
So one of the queens would disappear and the neural network would 
take another stab at the problem. Queens at different locations on the 
chessboard faded in and out until a solution was found.

Hopfield’s neural network was a hit. His papers were subsequently 
cited many thousands of times.3 Some of these citations were from me.4

Here’s an illustration of a basic Hopfield neural network that stores 
images. If you get close to a computer screen you see that images are 
not continuous but are represented by small discrete dots called pixels. 
Imagine, then, a bunch of pixels in an image that are only black and 
white. Just like turning a white LED light off and on, black pixels are 
said to be off and white pixels on. Each pixel corresponds to a neuron 
in a Hopfield neural network. Every pixel neuron is connected to every 
other pixel neuron with a weighted connection. Whether or not a pixel 
is off or on depends on (1) whether the neurons connected to it are on or 
off and (2) the weights of the connections between neurons. These fixed 
weights carry information about a large number of images stored in the 
neural network. 

Suppose one of these stored images is a picture of a smiling baby us-
ing only white and black pixels. If we only know the baby’s picture around 
his nose and right eye, that’s okay. The known pixels can be enough in-
formation for the Hopfield neural network to construct the rest of the 
picture of the baby.5 We turn on the white pixels in the region where the 
eye and nose are. Ideally neurons in the Hopfield neural network will 
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spend time flickering as pixels turn off and on but will ultimately end up 
with the full picture of the baby. This type of Hopfield neural network is 
called a content addressable memory or an associative memory.

To understand the terminology, we can think of computer memory 
as an array of mailboxes, each with an address. A picture of the baby 
might be stored in a mailbox labeled baby-dot-jpg, i.e., a JPEG image la-
beled “baby.” A traditional memory would access the stored baby image 
by the memory location’s address. The mailbox with the right number is 
identified and the contents retrieved. 

For a content addressable memory, we don’t know the mailbox ad-
dress but we do know about some of the contents of the mailbox. In 
the mailbox labeled baby-dot-jpg, for example, we know the pixel values 
corresponding to the baby’s nose and right eye. This is ideally enough 
for the Hopfield neural network to turn on the remaining pixels and 
completely specify the contents of the baby-dot-jpg mailbox. Hence the 
name content addressable memory. The memory is not accessed by know-
ing the address of the mailbox but by examining part of the contents of 
the mailbox.

Figure 8.1. Left: A picture of a smiling baby using only white and black 
pixels.  Right: The  same picture with only  right eye and nose of the 
baby shown. 
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Note that that the neural network is not actually originating infor-
mation about the baby’s picture. It doesn’t accurately “imagine” what the 
baby looks like based on a nose and eye. It accesses other files with infor-
mation about the image and completes the photo that way.

Of Little Use
There were other applications of the Hopfield neural network besides 
the content addressable memory. Researchers got excited about them. 
These were new and exciting ideas and everyone wanted a piece of the 
action. Hopfield neural networks were generalized, made into circuits, 
and even implemented optically. The Hopfield neural networks got peo-
ple enthused about neural networks again, leading to a new peak on the 
hype curve.

 But closer inspection revealed the Hopfield neural network had a 
number of problems. For one thing, it didn’t scale well. The idea of scal-
ing is best illustrated by a human body. If a copy were made of you that 
was twice your height, your belt size would also increase by a factor of 
two. The surface of your skin, though, would increase by a factor of four 
and your weight by a factor of eight. If you weigh one hundred pounds 
and were scaled to be twice your height, your weight would increase to 
eight hundred pounds. That’s why an ant, if scaled to the size of an el-
ephant, would break its skinny ant legs. The ant’s legs would need to be 
closer in structure to the stocky legs of an elephant. 

Like the ant, the Hopfield neural network did not scale well. If the 
number of neurons doubled, the number of images able to be stored in 
the neural network less than doubled. Also, the number of interconnec-
tions between neurons grew as the square of the number of neurons. 
For an eight-by-eight chessboard with every square acting as a neuron, 
there are only sixty-four neurons but about four thousand interconnects 
if every pixel neuron is connected to every other neuron. Increase this to 
a chessboard with dimensions of a thousand by a thousand, and over a 
thousand billion weights are required. This scaling problem was a show-
stopper for the Hopfield neural network.
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Hopfield neural networks theory is in analog rather than digital 
form and was implemented in analog using both silicon and optics. 
People into analog circuits got pumped. They thought they had another 
application for their craft. Today’s neural networks are nearly exclusively 
implemented digitally. The reason is that analog systems are both inex-
act and prone to errors.

Analog works fine in many situations. Most physical phenomena 
seem to be analog—that is, composed of continuous varying properties. 
The acoustic waves you hear, the electromagnetic light waves you see, 
the microwaves that cook your food, and even the rough surface of a 
wooden desk are examples. An exception in nature is digital DNA that 
encodes life. DNA has a sequence of four bases that combine in base 
pairs, each of which can be viewed as two bits of information. Reproduc-
tion is largely a digital operation. We might be degrading due to delete-
rious mutations and DNA locations,6 but not as fast as we would with 
analog reproduction. 

Which brings us back to the Hopfield neural network implemented 
with analog electronics and optics that were prominent during the Hop-
field hype peak. Because of its scaling problems and explosive increase 
in interconnects, analog Hopfield neural network popularity tumbled 
down from its hype peak. The asymptote-of-reality for the Hopfield 
neural network, as it turned out, is zero. There are more straightforward 
and better ways to implement content addressable memories and solve 
the traveling salesman problem.

I know of no Hopfield neural network reduced to practice today.

The Awesome Layered Perceptron
Remember the perceptron, attacked by Marvin Minsky and Seymour 
Papert in their book of the same name? Neural networks got better, so 
much so that the so-called “layered perceptron” gave lasting impetus to 
the second wave of serious interest in neural networks. 

Whereas early perceptrons were “single layer” (the input was fed di-
rectly to the output nodes), multi-layer perceptrons have hidden middle 
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layers. They’re called “hidden” because they don’t connect directly with 
the outside world, but instead transfer information between the input 
and output layers.7

The most basic multi-layered perceptron is a feedforward neural net-
work, which means the data is transmitted from the input layer to the 
output layer in the forward direction. Things really get hopping with 
backpropagation, a training algorithm that uses outputs as inputs. That 
is, the algorithm calculates the difference between the expected output 
and the actual output (the error) and feeds it back through the network 
to tune the neural interconnect weights so the neural network performs 
a bit better next time. By doing this multiple times, the error between 
actual and expected output is minimized. In effect, the machine notices 
and corrects its own mistakes. It “learns.” (We’ll take a more in-depth 
look at how error backpropagation works in just a moment.)

Figure 8.2. A layered perceptron.

hidden 

input 
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The error backpropagation training algorithm was first reported in 
1974 by Paul Werbos in his Harvard PhD dissertation,8 but it wasn’t 
widely popularized until a 1986 two-book set titled Parallel Distributed 
Processing.9 I suspect that error backpropagation would make the list of 
the top ten most commonly used algorithms in the world. When I asked 
Paul Werbos whether he agreed, his response was simply “Easily.”10

Error backpropagation generalized the idea of Frank Rosenblatt’s 
perceptron and Bernard Widrow’s ADALINE. It did so by allowing 
those hidden neurons in the neural network’s structure. Previously ev-
ery input node and every output node were connected; now, to get from 
the input to the output in a layered perceptron, one typically must go 
through one or more hidden neurons. The generalization of the percep-
tron to the layered perceptron was so named because the hidden neurons 
were often grouped into layers. 

Adding hidden neuron layers vastly increased the types of data the 
neural network could learn. The layered perceptron was nonlinear and 
was able to classify nonlinearly. It overcame the main objections made in 
Minsky and Papert’s book Perceptrons. 

In Entertainment Media
The impact of the layered perceptron filled the media and spilled over 
into entertainment. 

Dick Tracy was a syndicated newspaper cartoon strip that pre-
miered on October 4, 1931. It was so popular that “Dick” became an 
American slang for detective. In a series printed January 27–29, 1991, 
Dick Tracy is on the track of a cybercriminal. In the strip, Tracy speaks 
to the character Data Banks about her brother. 

Tracy says, “Your brother was working on a ‘neural network’ com-
puter? You mean a type of artificial intelligence?”

Data Banks replies, “A neural network computer functions more 
like a person than an overgrown calculator.”

Ever-informed Dick Tracy responds, “I understand the federal gov-
ernment sank 40 million into neural network research recently.”
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Data Banks then mentions her brother Memory Banks: “Yes. But 
they won’t make the strides Memory did.”11

Dick Tracy was right about the interest of the US government in 
neural networks. DARPA, “The Department of Mad Scientists,”12 com-
missioned an in-depth study of the state of the art in neural networks in 
1988.13

Neural networks also made it into the movies. Arnold Schwar-
zenegger’s character in Terminator 2: Judgment Day (1991) tells the boy 
he’s sent to protect, “My CPU is a neural network processor, a learning 
computer.”14

Supervised Training
As we’ve seen, the breakthrough causing resurgence of interest in neural 
networks was the error backpropagation algorithm. This is a good place to 
pause and talk about supervised learning. Supervised learning is used by 
Widrow’s ADALINE, Rosenblatt’s perceptron, and our current topic 
of the layered perceptron. It is also applicable to more advanced training 
like convolutional neural network deep learning.

To train a neural network or any other learning machine, we need 
training data. Suppose, for example, we have a bunch of data on the 
heights and weights of numerous sumo wrestlers and basketball play-
ers. We choose these two features because we suspect the weights and 
heights of sumo wrestlers will be relatively far removed from the weights 
and heights of basketball players. The height and weight measures are 
therefore useful in differentiating between the two types of athletes.

On a data spreadsheet, imagine three columns: height, weight, and 
sport. The height and weight numbers are the inputs to the neural net-
works. They are called features of the image. The output is the sport—
either basketball or sumo wrestling. For the purposes of this discussion, 
we’ll assign the output +1 to a basketball player and -1 to a sumo wres-
tler.

Like the Hopfield neural network, the information in a layered 
perceptron is stored in the weights connecting the neurons. Recall Ber-
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nie Widrow’s clever use of memristors (memory resistors) to vary the 
strength of connections between two neurons. As Hebb put it, “Neu-
rons that fire together wire together.” Each connection weight is assigned 
a single number dictating how strongly the neurons are connected. Giv-
en the data concerning the basketball players and the sumo wrestlers, 
our job is to find weights such that any time a sumo wrestler’s height and 
weight are input into the neural network, the neural network outputs a 
minus one, meaning, “This is a sumo wrestler.” If basketball player data 
is input, we would like the neural network to output a one, or “This is a 
basketball player.” The question is how we figure out the weights in the 
neural network to achieve this goal.

During training, each weight connecting neuron pairs can be consid-
ered a tunable knob on a big board of knobs. Each knob can be tweaked 
up or down. But how do we tweak them to achieve the sumo wrestlers 
versus basketball classification? Some intelligent way to tweak the knobs 
is needed. Doing so is called supervised training and the process is re-
ferred to as supervised learning. 

The term supervised means that each input data, for example weight 
and height, has a corresponding classification label. In our example the 
classification labels are sumo wrestler and basketball player. If we didn’t 
have the labels, could we still learn from the data? Yes, but we would 
need to use unsupervised learning or clustering.15 With unsupervised 
learning (without labels), we might look at the data and announce, “Hey! 
This data looks like it separates into tall skinny people and shorter fat 
people.” We are not told that the data comes from basketball players and 
sumo wrestlers. The height and weight data alone hopefully has natu-
rally separated into two classes without being told what the classes are. 

Supervised training where each piece of data has an associated tag is 
easier to learn. Generally, the more information brought to any problem, 
the better the results. So, use of tags in supervised learning will give a 
better result than no tags of unsupervised learning.
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There is an analogy to be made between supervised learning and the 
1956 black-and-white science fiction classic Invasion of the Body Snatch-
ers. In the movie, giant five-foot pods from outer space are laid alongside 
a human. Slowly the pods begin to morph into human form. Soon, the 
former pods resemble the human almost exactly. Imagine, then, a list of 
data lying next to a neural network being trained using supervised learn-
ing. Like the pod from outer space, the neural network slowly changes 
its weights to match the data. In the end, the neural network becomes a 
clone that generates numbers like the data lying next to it.

Here’s another way to look at it. The input-output data used to train 
a neural network can be thought of as the result of an unknown system. 
In warfare, spotters for mortars help zero-in the launched mortars on 
their targets. Consider parameters from a mortar launching system. The 
input to the system is (1) the angle of the launcher, (2) the speed and 
direction of the wind, and (3) the launch velocity of the shell. The output 
label is how far the mortar travels. 

A layered perceptron could learn to simulate mortar statistics if we 
wanted it to. If we have a large amount of data from previous mortar fir-
ings, a neural network can be trained under ideal conditions to hit the 
target every time. But in this example, we don’t need to train a neural 
network. The relation between the mortar input and output data is eas-
ily determined by fundamental laws of classic physics. Why spend time 
training a neural network when we can plug numbers into a simple equa-
tion? Domain expertise here trumps AI. 

Knowing a model like the physics behind the mortar launcher is a 
luxury. There is no well-defined equation describing the height and the 
weight of an athlete and his profession. The neural network constructs a 
system to map inputs to outputs in the absence of such knowledge.

The Beauty of Error Backpropagation
Error backpropagation is a mathematically beautiful and effective 
method of training a neural network with hidden neurons. 
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Training of neural networks is typically iterative. The weights in a 
neural network are slightly nudged each training iteration so that learn-
ing the input/output data becomes more and more accurate. 

Error backpropagation begins by providing an input. The weights 
connecting each neuron pair, not yet trained, will typically give a neu-
ral network output totally inconsistent with what the output should be. 
Whatever it is, we’ll call the output “what we get.” We know the out-
put is wrong, because it differs from the data label that tells us “what 
we want.” The difference between “what we want” and “what we get” 
(squared) is the error. To train, we wish to tweak the weights so that, 
next time, “what we get” is closer to “what we want.” This is equivalent 
to pushing the output error closer to zero. This is the job of the neural 
network training algorithm.

Training a dog illustrates this process. You tell your dog, “Bring me 
the potato chips.” Your dog brings instead the bag of Doritos. You shake 
your finger at the dog and say, “Bad dog. Bring me the potato chips.” The 
dog delivers a bag of Cheetos and the scolding is repeated. Finally, the 
dog retrieves the bag of potato chips, and you scratch her behind the ears 
and give her the rest of your Slim Jim. In the rewarding, the dog’s neu-
rons are being wired so the potato chips are recognized in the confusion 
of the plethora of other salty and crunchy snacks. This is roughly what 
happens when you train a classification neural network. 

When an input is fed to a layered perceptron neural network, every 
neuron is assigned a number. The state of neuron X is determined only 
by all the other neurons that connect directly to neuron X and the val-
ues of the interconnecting weights. Visualize, then, every neuron in the 
neural network being assigned a number. This number is called the neu-
ron’s state and is determined by a flowing wave of activation starting from 
the neural network’s input to its output. The input values determine the 
states of the neurons in the first hidden layer, which then determine the 
states of the neurons in the next hidden layer, etc. Eventually the wave 
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reaches the output layer and every neuron has a state number assigned 
to it.

 The states of all the neurons are remembered. At the output of the 
layered perceptron the result is “what you get.” This is compared to “what 
you want” and the error is computed from the difference.16 The error at 
the output then flows in a wave backwards from the output to the in-
put. This is the source of the term error backpropagation. While the error 
wave flows backwards, each neuron is assigned a second error number 
called its delta value. Now every neuron has two numbers assigned to it: 
its state and its delta value.

Here’s the beauty of error backpropagation. Each weight in the neu-
ral network can be updated only knowing the numbers of the two neu-
rons it connects. The multiplication of the state of one neuron by the 
delta value of the other is sufficient to tweak the connecting weight so 
that, next time, “what we get” is closer to “what we want.” Error back-
propagation is mathematically beautiful.

This is a big deal. Recall Hebbian learning where weights between 
two neurons were only determined by the degree the two neurons simul-
taneously fired—“Neurons that fire together wire together.” This is not 
exactly what is happening in error backpropagation, but it’s similar in 
that weights are tweaked only as a result of numbers associated with the 
two connected neurons. This is a highly satisfying result for neurologists 
and psychologists like error backpropagation popularizer David Rumel-
hart.

In biology, one interconnect weight in a neural network will not 
directly know what another weight is doing unless there is a commu-
nication path going through numerous neurons. There is no overseer 
that views all the weights and, based on this global knowledge, provides 
updates to all the weights. The weights only know what is happening 
locally, and locally the only thing happening is the action of the two con-
nected neurons. This is the same thing that happens in error backpropa-
gation training of layered perceptrons. In this narrow sense, the neurons 
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in human brains and the “neurons” in algorithmic neural networks are 
indeed alike.

Computer scientists and engineers, though, have no reason to be 
constrained by the biologically friendly updates provided by error back-
propagation. Other effective tweaking techniques can be used to update 
a weight as a function of another far-removed neuron or weight. Many 
training algorithms have been proposed and used that require other than 
local information. Error backpropagation, though, has made resurgence 
in the training of deep learning convolutional neural networks where the 
number of weights are so large that dealing with neurons two at a time is 
more efficient than any training that requires global knowledge of every-
thing prior to updating.

There are numerous generalizations of error backpropagation. 
Those interested in learning more or in wading through the beautiful 
math might want to take a look at the MIT Press book Neural Smithing 
by Russ Reed and me.17

Exponential Interest
Largely due to Hopfield’s evangelical zeal and the development of the 
layered perceptron, interest in neural networks swelled in the engineer-
ing and computer science communities. A key by-invitation-only confer-
ence dedicated to neural networks was held in 1986 at Snowbird, Utah, 
and was attended by the top researchers in the field. An open neural net-
work conference, held the following year, attracted thousands of techni-
cal attendees from industry and academia. The sponsoring organization 
was the IEEE Neural Networks Council (NNC). IEEE, pronounced 
“eye triple e,” stands for the Institute of Electrical and Electronic Engineers. 
It is the largest professional society in the world, with over 400,000 
members. IEEE is carved up into several specialties, including computer 
science, power, cybernetics, signal processing, and electronics. With the 
Neural Networks Council, IEEE designated a specific spot for neural 
networks. I was elected Secretary of the NNC and, when the committee 
chair resigned in 1988, I became the chair. Another independent profes-
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sional organization, the International Neural Network Society (INNS) 
was formed at the same time. Neural network pioneer Bernard Widrow 
was its first president. 

The first large open neural network conference was titled “The IEEE 
International Conference on Neural Networks.” The conference con-
tinues to this day but has been renamed the “International Joint Con-
ference on Neural Networks” because it is now sponsored by both the 
IEEE and the INNS.

As you might guess from all these conferences and new organiza-
tions, the hype curve for neural networks went vertical in the mid 1980s. 
The media took notice. Headlines screamed:

 • “First Annual ICNN Meeting Will Draw 2,000 or More to San 
Diego”

 • “Nerves of Silicon: Design of Neural-Network Computers Are 
Trying to Capture the Most Ordinary–And Elusive–Powers of 
the Human Brain”

 • “A Long-Existing Goal of Computer Science Is Met by 
Neurocomputers That Learn”

 • “Changing Synapses: Teaching Old Neurons New Tricks”

 • “Institute Gathering Demystifies Neural Networks: IEEE Puts 
Neural Nets into Focus”

Government-funded researchers climbed on board. Other headlines 
read:

 • “Lockheed Targets Neural Networks”

 • “European Community Begins Esprit II Neural Network 
Program” 

 • “Japanese Developing a Thinking Computer”
As neural networks climbed the hype curve in the technical jour-

nals, there were some useful applications reduced to practice. And there 
were some silly ones, which we’ll talk about first.
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Early Hype
Here are some curious uses of neural networks reported during the 
excitement period of the early layered perceptron. Like many headlines 
we see today, they are hype.

Did Family Bowlers Elect Bill Clinton?
The United States presidential campaign in 1996 was between incum-
bent Bill Clinton and Senator Bob Dole. Dole’s right arm and back had 
been riddled with machine-gun fire when he was a soldier in Italy dur-
ing World War II. His right arm was visibly useless. Bill Clinton, by 
contrast, was famous for playing saxophone on the Arsenio Hall show 
and participating in the fall of American morality with a well-publicized 
indiscretion with a White House intern. The Clinton campaign bought 
into neural network hype and enlisted the help of a neural network hyp-
ester we will call Barnum.

I know a former employee of Barnum who calls Barnum a com-
pulsive liar and says Barnum would stand in a torrential downpour and 
declare it a sunshiny day. I have spoken to a Department of Defense en-
gineer who says dealing with Barnum left a vile sour taste in his mouth 
about neural networks. Barnum funded his neural network company 
with numerous small federal grants.

The Bill Clinton campaign asked Barnum to crunch some data to 
help Clinton win his second term in the White House. We quote from 
the late syndicated columnist Robert Novak, who reported the story 
February 18, 1996: “President Clinton’s pollsters have identified the vot-
ers who will determine whether he will be elected to a second term: two-
parent families whose members bowl for recreation. Using a technique 
they call the ‘neural network,’ Clinton advisors contend that these fam-
ily bowlers are quintessential undecided voters. Therefore, these are the 
people who must be targeted by the president.”18

I am not privy to the details of the neural network used to finger the 
bowling family voting block. The claim has the feeling of careless hand-
waving bordering on the ludicrous.
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Novak, a conservative opposed to Clinton’s election, ended with 
a snarky footnote: “Two decades ago, Illinois Democratic Gov. Dan 
Walker campaigned heavily in bowling alleys in the belief he would find 
swing voters there. Walker had national political ambitions but ended 
up in federal prison.”

Bill Clinton was elected to a second term as United States president. 
The questionable role of family bowlers in Clinton’s reelection was never 
explored. It was too silly an explanation. 

Can Neural Networks Prevent Riots?
Here’s another story about Bill Clinton and neural networks. 

The 1996 Democratic National Convention that nominated Bill 
Clinton for president was held in Chicago. Twenty-four years earlier, in 
1968, the Democrats also held their national convention in Chicago, and 
it was a disaster. To prevent a repeat, the Internal Affairs Department 
of the Chicago Police Department turned to neural networks for help.

Why was the 1968 Democratic National Convention such a disas-
ter? That was a volatile year. A few months before the convention, civil 
rights leader Martin Luther King, Jr., was assassinated, as was presiden-
tial hopeful Bobby Kennedy. (Kennedy’s assassination opened the way 
for the nomination of the sitting vice president, Hubert Humphrey, who 
ultimately lost the election to Republican Richard Nixon.) 

Then there were the Yippie protests, which were everywhere in 
1968. Anarchist Yippies were amusingly dangerous. They spread their 
strange brand of chaos by giving away free bologna sandwiches outside 
of thousand-dollars-per-plate political fundraisers. From the spectator 
balcony of the New York Stock Exchange, Yippies mockingly showered 
traders with fluttering dollar bills, hoping to show that the traders be-
low on the floor were greedy. They were. Some traders scrambled and 
grabbed for the floating bills and were mocked by the Yippies. Yippies 
protested Vietnam. Yippies also spread rumors that smoking dried ba-
nana peels could get you high. The pop singer Donovan popularized the 



8� The AI Rev iva l  /  191

rumor with his hit Mellow Yellow, which included the line “electrical ba-
nana is gonna be a sudden craze.” 

What motivated the Yippies? The same thing that motivated Mar-
lon Brando’s character in the 1953 motorcycle outlaw gang classic The 
Wild One. Asked what he was rebelling against, he replied, “Whadaya 
got?”

The Yippies brought their antics to the 1968 Democratic National 
Convention and contributed to loud noisy protests against the Vietnam 
War and various other things. They decided to nominate a 145-pound 
pig for president, naming him “Pigasus the Immortal” and saying, “They 
nominate a president and he eats the people. We nominate a president 
and the people eat him.” (Pigasus was confiscated when his backers 
were arrested for disorderly conduct. Reportedly he was transferred to a 
farm.19 His ultimate fate remains unknown.) 

The Yippie protesters at the 1968 Chicago convention butted heads 
with political strongman and Chicago mayor legend Richard J. Daley. 
Daley thought the protestors fouled his city, and he released his police 
department like a pack of attack dogs. On the streets outside of Chi-
cago’s International Amphitheatre, where the Democratic convention 
was being held, there were violent clashes between the protestors and 
the Chicago police.20 Blood was shed. Protestors and police officers alike 
were injured. More than 650 protestors were arrested. A presidential 
commission later called the conflict a “police riot,” though the commis-
sion did state that most officers had behaved responsibly.

So, yes. The Democrats of 1996 wanted to avoid a repeat of 1968. 
In 1996 Richard J. Daley was no longer mayor, but his son Richard 

M. Daley was. What could be done to assure there was no repeat of the 
“police riot”?

Enter the neural network. The task of the neural network was to 
identify bad cops who might become enraged and start cracking skulls. 
The neural network was trained using data from 12,500 police officers. 
They were compared to about two hundred officers who had previously 
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been dismissed or who had resigned under investigation. The charges of 
troubled cops in the database ranged from insubordination to criminal 
misconduct. 

After the neural network was trained with historical data, a total of 
ninety-one of the 12,500 currently serving Chicago police officers were 
identified as potential risks by the neural network. Those identified were 
asked to enroll in a counseling program. 

But the union representing the police officers did not like the decree 
and challenged it in court. The objection raised by the police union re-
mains a weakness of neural networks even to this day: the neural network 
is basically a black box. When the computer programmer was asked why 
a cop was classified as a bad cop, the only explanation was “because I 
trained the neural network to detect bad cops and the neural network 
did what I trained it to do.” That’s apparently not a good enough legal 
reason. Specifics must be cited, like “The officer regularly attends dog 
fights” or “The police officer we fingered as dangerous regularly beats 
her husband.” The trained neural networks couldn’t give officer-specific 
reasons.

The generic neural network lacks what is called an explanation facil-
ity, which assigns reasons as to why a conclusion is reached. Although 
there is some research into constructing explanation facilities for neural 
networks, the layered perceptron and the convolutional neural network 
used in deep learning remain fundamentally black boxes.

All the fuss about the 1996 Democratic National Convention was 
much ado about nothing. Key Yippies were out of commission—Jerry 
Rubin died in 1994, Abbie Hoffman committed suicide in 1989, and 
Tom Hayden (after divorcing Jane Fonda) served in the California State 
Senate. The Vietnam War was long over and there seemed to be noth-
ing much to protest, except Bill Clinton’s extramarital affairs. So insofar 
as the 1996 Democratic National Convention was concerned, all went 
smoothly—even though the neural network results were ignored by le-
gal decree.
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Reduction to Practice
Now let’s talk about some success stories. The first AI wave in the 
1960s gave us a method to equalize phone lines for modem and fax 
transmission. Widrow’s ADALINE was used in the supersonic trans-
Atlantic Concorde aircraft. The second wave of AI in the 1990s also 
spawned technologies that were reduced to practice.

Power to the People
To schedule generation of electricity, your power company likes to 
forecast future demand. If a forecast overestimates demand, the power 
company has to sell any excess power it generates at whatever price the 
power market says. If future power usage is underestimated, the power 
company must buy power at whatever the market price is. Removing this 
uncertainty is good. 

I’m not an expert in power, but in 1991 I was able to team with some 
of the best power engineers in the country. That’s the way some great 
research gets done. Experts from orthogonal fields get together and do 
great things. 

Our goal was to train a neural network to forecast power usage. 
The historical data we used to train the neural network came from the 
Puget Power and Light Company in Seattle. Prior to neural networks, 
the power forecast for that region was performed by a Puget Power em-
ployee name Lloyd. To estimate the power demand for the next day, 
Lloyd looked at the day of the week, the current temperature, the fore-
casted temperature, and some other relevant variables. He then placed 
his moistened finger into the air, furrowed his brow, thought hard, and 
announced his forecast.

My colleagues and I first applied the layered perceptron to fore-
casting the load demand for power companies in 1991.21 Six years later 
neural networks were being used by thirty-two major North American 
utilities.22

The neural network forecasting did the same thing as Lloyd, except 
more methodologically. We had gobs of historical data from Puget Pow-
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er. From Mondays past, for example, we knew power usage, times, and 
temperatures. We also knew the temperature forecasts for Tuesday. So 
the input to the neural network was all the data we knew on Monday, 
and the output was the Tuesday power forecast. We also trained the 
same neural network for data from the other days of the week. Like the 
pod in Invasion of the Body Snatchers, the neural network soon morphed 
into a system with a similar input-output relationship as the training 
data. Once trained, the neural network, when presented today’s infor-
mation about time, power, and temperature, will output a forecast of 
what happens tomorrow. The neural network worked and worked well. 

Our paper was not the first used to forecast using neural networks. 
We’ve mentioned Bernie Widrow’s use of ADALINE to forecast weath-
er in the 1960s. For power load forecasting, the technique used in our 
paper has been tweaked, addended, and expanded numerous times by 
others. Our paper has been referenced over 1,700 times by those ex-
panding or improving on our initial effort.23 

Our paper on power load forecasting was not well written. But it was 
the first on the topic. My wife’s grandfather often quipped, “If I knew I 
was going to live this long, I would have taken better care of myself.” 
In hindsight, if I’d known our paper would be cited so often, I’d have 
spent more time polishing it. Even now, three decades after its publica-
tion, somebody somewhere references our paper on average more than 
once a week. 

Robert Hecht-Nielsen Checks Your Wallet
A leader in the second wave of AI popularity was Robert Hecht-

Nielsen. Hecht-Nielsen held an adjunct professorship at the University 
of California, San Diego. He co-organized the first few major confer-
ences on neural networks in the late 1980s and was a prolific contribu-
tor to the field. Hecht-Nielsen Corporation (HNC) specialized in the 
application of AI to financial fraud. When you swiped your credit card 
at 7-11, HNC software cataloged the transaction and checked for fraud.
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I acted as an expert witness for HNC in a patent conflict. The soft-
ware they used was before kick-ass computers. One of my jobs was to 
examine HNC code. Did you know that you can subtract the zip code of 
one town from that of another to get a rough estimate of the east-to-west 
separation of the locations? One of New York City’s zip codes is 10001; 
Chicago’s is 60007; LA’s is 90001. The further west you go in the con-
tinental United States, the bigger the zip codes. Before more powerful 
computers, this was one of the metrics used by HNC software. Credit 
card transactions occurring close together in time but separated in dis-
tance raised one of many flags monitored by the HNC credit fraud code.

Fair Isaac sounds like a character in a Charles Dickens novel, but 
is in fact a large financial company named after its two founders.24 The 
first two letters in the acronym FICO, as in your FICO score, are for Fair 
Isaac. HNC Software was sold to Fair Isaac in 2006 in an $810 million 
deal.25 Robert Hecht-Nielsen reduced his AI to practice very success-
fully and was rewarded handsomely for his success.

I received an unexpected phone call from Robert a few years after 
the Fair Isaac deal. He’d had a near-death experience that transformed 
him spiritually. I never shy away from confessing my faith professionally 
when appropriate, and Robert knew I was a Christian. That’s why he 
called me. He wanted to share the joy of his spiritual transformation. 
Robert, now rich and free, was flying his own plane around the world 
living a full life in the peace he had found. He passed away in 2019 and 
would be the first to say he couldn’t take his millions with him. Nor, 
because of his transformative experience, did he care.

Based on impact, Robert Hecht-Nielsen was by far the most suc-
cessful individual to reduce neural networks to practice in the second 
wave of AI popularity.

Enter Fuzzy Systems
Fuzzy logic jumped aboard the neural network hype bandwagon as 
a technique to implement simple expert systems. Yes, believe it or not, 
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“fuzzy” is an oft-used technical term giving rise to other curious terms 
such as “fuzzification” and “defuzzification.” 

During a 2000 presidential campaign debate, Republican George 
W. Bush dissed Democratic candidate Al Gore’s economic plan as 
“fuzzy math.” I was listening to the debate in my office, and I recall look-
ing at my bookshelf at a book titled Introduction to Fuzzy Arithmetic. 

The book was a serious scholarly treatment of performing arithmetic 
operations on uncertain numbers. Addition, for example, is performed 
using a complex mathematical operation called convolution. This wasn’t, 
of course, what Bush meant. 

Fuzzy arithmetic is a well-defined discipline in mathematics. It is 
built on the idea of fuzzy sets. The application is so broad that journals 
and international conferences are still exclusively dedicated to the topic. 
Fuzzy logic and fuzzy arithmetic are based on fuzzy sets. 

Here’s how it works. In regular or Boolean set theory, an object is 
either a member of a set or isn’t. Ants and beetles are members of the 
set of all insects. Elephants and anteaters are not. What, then, do we 
say about the set of tall men? Is a man measuring six feet in height in 
the set of tall men? In a way, yes. Certainly a man seven feet tall is more 
a member of the set of tall men than is a six-footer. Someone who is five 
foot eleven would rank lower in the set of tall men, though he’d still be 
partially in the set.

That’s the idea of fuzzy sets. Something isn’t totally within the set or 
external to the set. There are, rather, degrees of membership. 

Fuzzy set membership is used any time a judge at an athletic event 
gives a heuristic judgment call. After ice-skating performances there is a 
ranking of how well the skaters performed. Judges offer a number from 
one to ten based on their opinion of the performance. The numbers are 
combined for an aggregate score. Each judge’s scores are often not the 
same, but that’s okay. The mathematics of fuzzy logic takes care of that.

For the set of tall men, the key word is “tall.” “Tall” is called a fuzzy 
linguistic variable. Your idea about the membership of a six-footer in the 
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set of tall men might be different from mine. I might say the member-
ship is 70 percent and you might say 75 percent. But this difference does 
not prohibit you and me from talking about tall men. Indeed, we com-
municate using fuzzy linguistic variables all the time. 

Fuzzy linguistic terms include ugly, hot, cold, fat, shiny, long, short, 
beautiful, fast, faster, slow, slower, hot, cold, smart, dumb, and thirsty. 
In each case, we define a fuzzy set. For example, consider the set of “hot 
foods” in terms of temperature. You and I might differ in the exact nu-
merical estimate of membership, but our relative rankings would be the 
same. Both you and I would have a larger membership in the set of hot 
foods for freshly brewed coffee than we would for ice cream straight 
out of the freezer. Given a list of foods, our specific membership might 
differ. But if we were to make a list of highest to lowest membership, 
we would expect the lists would be in the same order or at least show a 
strong resemblance.

The ranking of the performance measure of ice skaters to fuzzy 
membership is straightforward. With a rating of one to ten, judges are 
asking: What is the membership of the skaters in the set of perfect per-
formances? In terms of percent, membership in a set ranges from 0 to 
100 percent. When a judge gives a ruling of zero to ten, simply multiply 
by ten to get the percentage. A judge’s ruling of five out of ten becomes a 
membership of 50 percent in the set of perfect performances. A perfect 
score of ten translates to a membership of 100 percent. In ice skating, 
a ranking of ten means total excellence. In fuzzy logic, the equivalent 
membership 100 percent means the skaters are totally in the set of excel-
lent skaters.

There is an old saying among statisticians: If you can’t measure it, 
you can’t manage it. Fuzzy sets apply to measures that are not ordinal—
in other words, to measures you can’t assign a numerical value to. Fuzzy 
linguistic variables like “tall” and “fat” have numerical values of feet and 
pounds to help with assignment of a fuzzy membership function. Non-
ordinals can’t be numerically measured. Examples include beauty, pain 
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level, and cleverness. Things not ordinal can’t be definitively measured 
but can be described using a fuzzy membership value.

Describing the membership of a three-year-old in the set of “cute 
three-year-olds” does not have an associated number to back the mem-
bership. The fuzzy membership is based solely on the heuristics of expe-
rience and judgment.

Pain is likewise not ordinal. Pain, as discussed in Chapter 1, is an 
example of qualia and thus non-computable. Pain is also a fuzzy linguis-
tic variable. On Saturday, June 5, 2013, I was running and tripped on a 
teeny three-inch-wide, half-inch-deep sinkhole in the parking lot of The 
Coffee Shop in McGregor, Texas. My head was in front of my body as 
momentum pushed me forward. I tried to get my feet under my head. 
Unfortunately, I have a very large head not unlike Jack Box (sorry mom) 
and the faster I ran, the greater the horizontal distance between my head 
and my feet. Soon I was sprinting. I blocked my gravitationally induced 
transition from vertical to horizontal primarily with my right hand. 

The collision was neither graceful nor elastic. I fortunately had the 
instinctual foresight to distribute the load of the impact to my right 
knee, right ribs, left hand, nose, and upper lip. When my nose first made 
contact with the concrete, my glasses escaped their perch and bounced 
a couple of feet beyond my head. They landed unscathed facing me and 
seemed to mock my newly sore ribs, skinned knee, two injured wrists, 
and freshly grated face. It was the  first time I had ever felt contempt for 
the  glasses. 

I lay motionless on the parking lot taking inventory. Was I dizzy? 
No. Was I unconscious? I don’t think so. Pain? Maybe. The assessment 
was mine because initially there was no one around to assist. Face down, 
spread-eagled, and lying still for a good half minute, I heard a woman’s 
tiny voice from afar ask, “Are you okay?” Me kowtowing to a pair of 
glasses in an open parking lot apparently left her room for doubt. I slowly 
raised myself to my knees, then stood. A little dizzy. But okay as far as it 
goes. “Sure,” I said in the most macho voice I could muster. Fortunately, 
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my brother Ray was at The Coffee Shop. I told him I was fine and just 
needed my overstuffed Lazy Boy, a Diet Dr Pepper, and a Tylenol. My 
wrist heard the exchange and protested. It communicated in Morse code 
using intense short and long throbs. So brother Ray drove me to the 
Hillcrest Hospital emergency room. We walked in, registered, and were 
ushered to an examination room.

After the paperwork, the first guy I met was a medical technician. 
He asked me on a scale of one to ten how much pain I felt. Aha! A fuzzy 
non-ordinal linguistic variable! 

I told him eight, which meant I was 80 percent in the set of maximal 
pain. With the technician was a mobile aluminum pole on wheels where 
IVs are hung. There were some strange-looking things like inverted hol-
low cow nipples hanging on strings, and a long thin bag on which “10 
pounds” was written. Have you ever played with Chinese finger traps 
as a child? The Chinese finger traps are long tubes in which you stick 
your fingers, usually the pointer fingers on both hands. Then when you 
pull the tube, it squeezes tighter around both your fingers and you are 
trapped. That’s what the inverted nipples were. They were open on one 
end only. 

There were numerous hanging nipples of all sizes. Little fingers, 
big fingers, and just right fingers. The technician found some inverted 
nipples that looked like they would fit my fingers. My middle finger and 
the finger next to my pinky were inserted. As I lay reclined, my arm was 
hanging with my elbow at 90 degrees in midair, supported by my two 
digits pulling against the one-sided Chinese finger traps. To increase the 
tension the ten-pound weight was placed across my bicep. This made the 
downward pressure on my fingers even more intense. Oh my goodness. 
It felt wonderful! The throbbing diminished and the pain took a break. 
When asked, I told the technician the pain had gone down to two on 
a scale of ten. The technician explained to me that the muscles around 
my broken wrist were trying to adapt. The downward pull in my fingers 
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aligned my wrist and placed less stress on my muscles to conform to a 
new and novel bone geometry.

I hoped my wrist was not broken. But the doctor came in, felt about, 
and announced I did have a broken wrist. In rolled the mobile x-ray ap-
paratus. My wrist was x-rayed from the side and from the top. After 
x-ray development, the doctor reentered and said he had to set the bone. 
I had heard the phrase “set the bone” numerous times before—mostly 
on TV. But never again will I underestimate the pain associated with 
such an act. If your bone breaks and is no longer aligned, mechanical 
force must be applied to align the bones. The doctor first gave me a shot 
of some numbing agent in my joint at the break. He grabbed my wrist 
and began feeling my bones through my skin. I thought he was setting 
the bone and told him the shot had really worked—there was next to no 
pain. Then came the unannounced bone alignment jerk. In hindsight I 
should have asked for a stick on which to bite. Man did it hurt. I turned 
to the technician and through clenched teeth muttered “TEN!” 

Pain on a scale of one to ten is an effective non-ordinal measurable 
by fuzzy membership functions.

As seen when talking to a doctor about pain, we communicate effec-
tively using fuzzy linguistic variables. Or consider the problem of back-
ing a car into a parking space. A computer-based instruction might be 
“back up at a speed of two miles per hour for seven feet. Then linearly 
decelerate to a speed of zero for four feet.” But this is not the way we do 
it. Suppose I’m the driver and you’re standing outside watching the car 
as I back in. Your instructions would sound like, “Come on back. A bit 
faster. Okay. Start slowing down. Slower, slower, stop!” (In my native 
West Virginia, “come on back” is pronounced “mon-back.”) Notice the 
use of fuzzy linguistic variables in the instructions—faster, slow down, 
slower. In these instructions, it doesn’t matter that your membership in 
the fuzzy linguistic variable “slower” is not the same as mine. In fact, 
numbers aren’t even considered in the set of instructions. All that is 
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required is a general agreement on the meaning of the fuzzy linguistic 
variables.

The idea of fuzzy sets was introduced in 1965 in a seminal paper by 
UC Berkeley electrical engineer Lotfi Zadeh.26 Zadeh was an affable, 
energetic man who relished the success of his founding of fuzzy logic. 
Until his death in 2017 at the age of ninety-three, Zadeh traveled across 
the globe accepting awards and giving keynote talks at conferences. I 
once edited a book of fuzzy logic27 and asked Zadeh to write a foreword. 
His response was “I always say yes.”28

Zadeh chose the term “fuzzy” to describe his mathematics. His 
choice was not without consequence. To soften the negative reaction 
to the word “fuzzy,” some literature began to refer to the field in other 
terms like “soft logic.” Nevertheless, Zadeh defended his choice of the 
term “fuzzy” to the very end, even though it caused image problems for 
the field.

Zadeh’s choice of the term “fuzzy” caused me problems. While at 
the University of Washington, I did a lot of work with Boeing. Boeing 
research had a big footprint in Seattle. The engineering team I worked 
with was concerned with airplane anti-skid and automatic braking sys-
tems. Boeing’s legacy anti-skid and automatic braking systems were de-
scribed to me as mechanistic. The basic systems had small faults, so they 
were updated over the years with various Band-Aid fixes. My team of 
cutting-edge Boeing engineers formulated a new simple and highly ef-
fective replacement expert system based on fuzzy logic. A detailed fuzzy 
system hardware mock-up was shown to outperform the systems cur-
rently used. For future airplanes, use of fuzzy seemed to be a no-brainer. 

But when the engineers ran the idea up the management flagpole, 
the idea was nixed. The fuzzy solution was DOA. Why? A Boeing engi-
neer told me that top management felt their customers would not want 
to ride on airplanes whose automatic braking and anti-skid systems were 
based on “fuzzy logic.” Boeing management was unfortunately inter-
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preting the word “fuzzy” the same way George W. Bush did when he 
called Al Gore’s economic policy “fuzzy math.” 

Hey, at least Zadeh’s choice of the term “fuzzy” cannot be accused 
of seductive semantics.

I lost contact with the status of Boeing’s anti-skid and automatic 
braking systems. I admit to not even thinking about such things when 
flying on Boeing planes today. Whatever is there seems to work well.

Fuzzy Applications
Fuzzy logic expert systems emerged as an application-rich approach for 
AI control.29 Consider a washing machine with two sensors. One sensor 
shines a light through the wash water to a simple photoreceptor. If the 
water is dirty, not a lot of light gets through. If the water is clear, a lot 
of light gets through. This simple light detection system measures how 
dirty the water is. A fancy word for the measure is the water’s turbidity. A 
second sensor measures how heavy the wash load is. The weight and the 
water turgidity are the inputs, or antecedents, to controlling how long 
to wash the clothes. The output, or consequent, is how long to wash the 
clothes. The idea is similar to a neural network where input data gives 
some result at the output. For the neural network, the mapping from 
input to output is determined by training data. For the fuzzy system, 
the mapping is determined by coding an expert system using fuzzy logic. 
After establishing the fuzzy expert system, the input-output relation-
ship might not be close to that desired. The fuzzy system can then be 
tuned using a training algorithm to give results closer to those desired. 

It doesn’t take a genius to figure out the rules for washing clothes. 
For example, one rule would be, “If the water is highly turbid and the 
load is heavy, then wash the clothes for a very long time.” Note the fuzzy 
linguistic variables: highly, heavy, and a very long time. 

To have a complete set of rules, all contingencies would need to be 
covered. Another contingency might be, “If the water is highly turbid, 
and the load weight is medium, then wash for a long time.” Since the 
weight has changed from the first rule from “heavy” to “medium,” the 
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consequent has changed from “a very long time” to “a long time.” An 
exhaustive list of all these fuzzy if-then rules is required to cover all pos-
sibilities. Suppose the turbidity is described by three linguistic variables: 
lightly turgid, medium turgid, and highly turgid. If the laundry weight 
were likewise described by the fuzzy linguistic variables light, medium, 
and heavy, then a total of nine fuzzy if-then rules describe all possible 
contingencies. Each contingency must be assigned a fuzzy consequent 
describing how long the clothes need washing. An example of fuzzy lin-
guistic variables for the consequent might be a very short time, a short 
time, a medium amount of time, a long time, and a very long time.

There you have it! An expert system totally expressed in fuzzy if-
then rules. 

Lotfi Zadeh showed us how to express fuzzy linguistic variables us-
ing fuzzy membership function math that could be straightforwardly 
reduced to computer code. He also showed how to combine member-
ships using logic operations like “and” and “or.” Notice the logical “and” 
in the rule, “If the water is highly turbid and the load is heavy...” Two 
fuzzy linguistic variables need to be combined using what is known as 
a fuzzy “and” operation. Zadeh showed how to do this in his seminal 
1965 paper. When done, the results of all the if-then rules must be re-
duced to a single member. Specifically, how long the clothes are washed. 
This is the output consequence of the fuzzy control system. This was 
figured out by Ebrahim Mamdani and S. Assilian30 about a decade after 
the first publication of Zadeh’s 1965 paper. 

The bottom line is this. Writing out fuzzy if-then rules can be 
straightforwardly intuitive. Once written down, Zadeh, Mamdani, and 
Assilian  have given us the mathematics to reduce the linguistics to com-
puter code. It could be that the initial attempt at codifying the if-then 
rules doesn’t work out exactly as desired. That’s okay. All design, includ-
ing the design of fuzzy control systems, is iterative. The designer can 
tweak the contributing parameters. Perhaps the membership of one or 
more of the fuzzy linguistic variables needs to be increased or decreased. 
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Alternatively, if the desired system performance can be defined before-
hand, the parameters of the fuzzy system can be tuned automatically us-
ing procedures like those used in training neural networks. The desired 
system performance is the “what we want” part of neural network type 
training. The parameters of the fuzzy system are adapted until the fuzzy 
system output, the “what we get,” matches “what we want.”

The washing machine timing example we explained is easy to set up. 
Another fuzzy expert system can be designed to determine other opera-
tions such as how much laundry soap to add. For example, “If the water 
is highly turbid and the laundry weight is very heavy, then add a lot of 
laundry soap.”

Reduce these fuzzy linguistic variables to computer code using Za-
deh’s mathematics, tune the result, and you have a great expert system to 
run your washing machine.

Analytic Clowns and Fuzzy Mimes
The paradigm shift to fuzzy and neural systems was not without resis-
tance. Many applications of fuzzy AI were in the area of control theory. 
The washing machine is an example of controlling washing time given 
sensor inputs of laundry weight and water turbidity. Classic control 
theory was anything but linguistic. Journals published highly theoreti-
cal articles on control theory; many of these papers are so esoteric they 
will never find any real-world application. Undergraduate engineers are 
still taught sophisticated mathematics using impressive-sounding tools 
like Laplace transforms and solution of simultaneous differential equa-
tions. Then along comes simple fuzzy logic control that translates con-
trol linguistics used by humans to perform control theory. Some of the 
entrenched classic control theorists were outraged.

Piero Bonissone, PhD, a chief scientist at GE Global Research, was 
involved in the fuzzy redesign of General Electric appliances such as 
washers and dryers. He tells about being approached by an academic 
who suggested that conventional classic control could accomplish fuzzy 
design’s goals in a possibly more efficient way. Bonissone recognized—
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rightly—that arguing with academics with no skin in the game can often 
be futile. So instead of engaging, he deflected with the equivalent of a 
skillful judo move and replied, “Hey, that’s great! Why don’t you go do 
it?” (The academic didn’t.)

Among the fuzzy logic naysayers was Australian professor Bob 
Bitmead, who liked classic mathy control and disliked AI. At the peak 
of the fuzzy AI hype curve, he conveyed his disdain of fuzzy systems 
in no uncertain terms: “The image that is portrayed is of the ability to 
perform magically well by the incorporation of ‘new age’ technologies 
of fuzzy logic, neural networks, expert systems, approximate reasoning, 
and self-organization…. This is pure unsupported claptrap which is pre-
tentious and idolatrous in the extreme, and has no place in the scientific 
literature.”31

In our running analogy, Bob Bitmead was one of the classic control 
clowns attacking the fuzzy mimes of AI. Both were trying to supply the 
world with effective control technology, but one did not like the cut of 
the other’s jib.

One of the AI mimes under Bitmead’s attack, fuzzy control pioneer 
Mamdani, countered.32 He noted that fuzzy AI solutions were unduly 
criticized by those in the “cult of analyticity” who swore any contribu-
tion to control theory must be described by sophisticated mathematics. 
Professor Bitmead was apparently in that cult, and his cult was found to 
be misguided. Fuzzy technology has been reduced to practice.

Reduction to Practice
As we have seen, arguments about technology are often solved by re-
duction to practice. When the market makes use of technology, most 
arguments about the validity of this or that academic approach become 
moot.

In the AI boom of the 1990s, a wave of AI-based consumer products 
appeared on the open market in Japan. Many were later adapted world-
wide by companies like GE. A partial list of such Japanese products from 
1991 includes air conditioners, washing machines, vacuum cleaners, rice 
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cookers, microwave ovens, clothes dryers, electric fans, and refrigera-
tors.33 All incorporated neural network and fuzzy logic AI components.

Recall that Bernie Widrow’s ADALINE neural network was used 
in the supersonic Concorde passenger airplanes. In the second wave of 
AI, fuzzy AI was used in the US Space Shuttle’s attitude control.34 AI 
also found uses in industrial process control vehicular technology such 
as cruise control, motor control, bioengineering, and as we have dis-
cussed, power engineering. These were stairs in an ascending staircase of 
AI technology that, as we discuss next, continues to amaze.



9. AI Matures
Computers aren’t intelligent, they only think they are.

—attributed to comedian Emo Philips

The term AI is used a lot in the media, but rarely defined. 
When it is defined, the definitions are often in conflict. In circles of 

scholars, disciplines such as artificial intelligence, computational intelli-
gence, and machine intelligence are teased apart. But in the popular me-
dia, AI seems to be defined as any “gee whiz” application of computers 
that surprises and amazes. I like the “gee whiz” definition. It’s a thread 
that connects all the definitions. 

There are towers of AI accomplishment like Deep Blue’s chess pro-
gram, DeepMind’s Alpha-Go, deep fakes, GTP writing prose, and the 
victory of IBM’s Watson at Jeopardy. All these accomplishments were 
exciting at first. Now, in many cases, that initial “gee whiz” response has 
been numbed by familiarity. But for those of us who experienced the 
first unveilings of AI, remnants of the magic remain.

In this chapter, I reflect briefly on a few “gee whiz” highlights of AI’s 
teenage growth spurt before moving into an examination of where it 
stands today.

Technical Nostalgia
My grandparents’ generation was blown away by the introduction of 
the automobile, the talking motion picture, commercial air flight, elec-
tricity, air conditioning, and affordable motorcars. My generation takes 
such astonishing technology for granted. 
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Here, colored by some of my personal memories, are a few of the 
astonishing AI-related developments that today’s generation takes for 
granted. These innovations have all happened in my lifetime and, upon 
reflection, still leave me in awe. 

Dear Mom
Here’s an old riddle that some youth today might not get: What starts 
with an e, ends with an e and contains one letter? The answer is (drum 
roll) an envelope. 

When I was a boy, we took detailed lessons in how to write a letter. 
Where does the address go? In what order do you write the address ele-
ments? What are proper salutations? How should the letter be folded? 
Where does the stamp go on the envelope? Then along came email, 
which was amazing. Instant communication! No more shopping expedi-
tions to collect paper, envelopes, and stamps. No more searching for a 
pen that worked.

I remember thinking how much simpler email was going to make 
life. How wrong I was. 

Phone Home
 A few decades ago Max Hitchens, a former engineering classmate of 
mine from Rose-Hulman, visited me in Seattle with a prototype of a cell 
phone. It was the size of a brick. He drove me to downtown Seattle and, 
while still in his car, I called my mother in Cleveland. This was mind 
blowing! I still remember the beginning of the conversation. “Mom! You 
won’t believe where I’m calling you from!” At the time, calling Mom 
from home on a wired phone racked up big long-distance phone charges. 
Now long distance is no distance at all.

The magic of the cell phone is lost on today’s generation. Like the 
opposable thumb, it’s simply another appendage we take for granted. 

Lost No More
I’m severely directionally challenged, and I don’t know how I ever lived 
without GPS and Google maps. Think of the magic technology behind 
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GPS. From satellites orbiting Earth, GPS fingers your location. On your 
cell phone you enter where you want to go, and an algorithm in the cloud 
calculates the best route. The cell phone even talks to you, giving turn-
by-turn instructions! Incredible when you think about it. GPS is among 
the few commonly used technologies that require Einsteinian relativity 
adjustments.

And yet I have become too familiar and unappreciative of this AI 
magic; I can become peeved if all this pinpointing and calculation doesn’t 
happen in a few seconds. 

Catch a Ride
Today I take an Uber from my home to the DFW airport because it’s 
cheaper, more reliable, and more convenient than flying out of the un-
predictable Waco airport to DFW. The service is taken for granted and 
I am no longer in awe of computers behind the business.

Happy with the convenience, I also don’t tend to think about the 
way Uber and its imitators have threatened the livelihoods of many. 
Consider this: Taxi drivers in New York City at one time paid up to a 
million dollars for their medallions and the right to operate cabs in the 
city. Many cabbies borrowed from the bank to pay their fees. In Lon-
don, cabbies must pass an extremely difficult test called The Knowledge, 
proving they know their way around the intricate and sprawling city. 
This grueling test requires years of study.1 

Then Uber and LYFT changed the rules. Free from the regulations 
imposed on cab drivers, powered by GPS and cell phones, drivers in 
these new ride services have a definite edge over traditional cab drivers. 

The New York Times reports that “in the past year and a half, eight 
professional drivers, including three taxi medallion owners, have died 
by suicide. Since 2016, over 950 taxi drivers have filed for bankruptcy.”2 
Huge protests brought London traffic to a stop as cab drivers there pro-
tested Uber.3 Uber currently operates in London but is heavily taxed.4

Disruptive AI is going to take us into a lot of troubled waters of this 
sort.
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Goodbye Brick and Mortar
In the early ’90s I did some expert witness work for a company called 
Neopath. The technical head of Neopath said there was this new web 
business called Amazon that sold books. He had just read a book titled 
The History of Pi and wanted to buy a copy for me. I gave him my address 
and watched him enter information on the Amazon website. I was as-
tonished. The book selection on this new Amazon website was broader 
than Barnes & Noble, Borders Bookstore, and Waldenbooks combined. 

Amazon has of course ballooned into a site where you can buy al-
most anything. Today I use it weekly and get prompt delivery. This is 
incredible technology except for the annoying part where Amazon tries 
to analyze me and pitch products.

Today most of us take Amazon for granted. Gone are the days when 
finding a particular book required physically searching through libraries 
and bookstores.

Talk to Me
When I broke my wrist and couldn’t type, I purchased Dragon voice 
recognition software. Stanford’s Bernie Widrow trained a voice recogni-
tion system in the 1960s that typed spoken words into a microphone. 
Today’s technology is far better but still has a long way to go. AI still has 
no common sense and has a rough time with homonyms. “But it’s not!” 
from the mouth comes out as “But it’s snot” on the computer screen. 
If you’ve ever used voice-to-text dictation on your cell phone, you’ve no 
doubt experienced similar problems.

Speaking of speaking, Alexa and Google Home are impressive but 
amusingly dumb. I recently asked Alexa to play “I’ll Do Anything for 
Love” by Meatloaf. It kept playing a redo of the rock classic; no matter 
what I said, I could not budge Alexa off its decision. 

Some of the jokes generated by Alexa are pretty good, though. And 
Siri has proven to be a boon to kids with autism, who can practice con-
versations with the technology. It requires them to speak clearly; and, as 
one researcher put it, “Humans are not patient. Machines are very, very 
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patient.” One mother says that her son’s “practice conversations with Siri 
are translating into more facility with actual humans.”5

Again, this voice recognition technology is nowadays taken for 
granted.

Entertainment at Your Fingertips
Streamed media remains jaw-dropping to me. My brother Ray spent 
years collecting every recording in history that appeared in Billboard’s 
charts. Along comes Spotify and, except for the market value of the 
physical recordings, my brother’s effort has little musical worth.

When I was a boy my friend Art Porrello had an uncle who be-
longed to a movie club that swapped classic celluloid reels among mem-
bers. I once went to Art’s house to watch the classic Hollywood movie 
King Kong. Even with the projector clunking away in the background, I 
remember what a wonderful experience this was. We stopped the movie 
in the middle for a bathroom break. What a treat! I couldn’t stop a movie 
at the theater. I wanted to be a member of this movie-swapping club 
when I grew up.

Television likewise required exercising bladder control until the 
next set of commercials. Now, with Amazon video, nearly every movie 
ever made is available instantaneously for a small fee. And I can pause it 
any time I want. 

I now take the service for granted.

Trivia Titan
When a question arises in a conversation and no one knows the an-
swer, I pull out my cell phone and announce, “Fortunately, I have all the 
world’s knowledge at my fingertips. Let’s find out the answer.” I then do 
a Google search.

While going to graduate school, I spent hours in the library looking 
for journal papers. I have pulled a bound volume of journals down from 
the library stacks and flipped to the article I wanted, only to discover 
some lazy jerk has ripped the entire paper from the volume. No more! 
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Everything in my university library and more is at my fingertips on a cell 
phone. 

I haven’t been inside a library for twenty years. 

Hello, World!
The comic strip detective Dick Tracy was introduced in the 1930s. Dick 
Tracy used a wristwatch that shared real time images during phone calls. 
Tracy’s wristwatch was a prophecy of Skype, Zoom, and the other real 
time video we have today. I’ve had Zoom calls from Texas to Nigeria, 
Scotland, Australia, Sweden, and Indonesia. I continue to be amazed 
that this can be done with almost no delay.

Building on the Past
Even with all this technology behind us and taken for granted, we are 
still awestruck with new advances in computer technology. It’s interest-
ing to note, however, that contemporary accomplishments of trained AI, 
such as neural networks, that get celebrated in the media often are re-
lated to algorithms formulated way back in the 1960s and before, but 
which can now be effectively implemented. Faster computers, instant 
communication, and more memory allow neural networks and related 
AI to be trained more quickly. The increased speed of computers made 
possible smart exploration of large databases stored in the bowels of cy-
berspace.

Looking into Deep Blue’s Eyes
The first big news story of modern AI is IBM’s Deep Blue. Russian Gary 
Kasparov was indisputably the world’s chess champ. Except for three 
months, he ranked the number one chess player in the world for nine-
teen years, ending with his 2005 retirement. Deep Blue first beat Kasp-
arov on February 10, 1996, and later defeated him in match play in May 
1997.6 The world was astonished.

Deep Blue’s playing strategy was not new. It was a suggested strategy 
for winning at chess by Bell Lab’s Claude Shannon, who is more famous 
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for founding the field of information theory in 1948.7 (Application of 
Shannon’s genius theory allows today’s cell phones to work so well.) 

In 1950, Shannon published a paper entitled “Programming a Com-
puter for Playing Chess.”8 The strategy proposed by Shannon, called 
minimax, was simple in concept. First, the current chessboard layout is 
assessed and the worst damage your opponent can do is identified. Then, 
from the options available, the move that minimizes the worst-case sce-
nario is chosen. In other words, you want to minimize the maximum 
damage. Hence the term minimax. Often the number of cases to be con-
sidered becomes prohibitively large to look at all worst cases, so methods 
have been developed to only look at the most suspected worst cases.

To demonstrate his chess playing theory, Shannon invented a de-
vice in 1948 that could handle up to six chess pieces. One hundred and 
fifty relay operations were required to complete a move and required ten 
to fifteen seconds to compute.9 In 1997, algorithm polishing and faster 
electronics used Shannon’s minimax approach to eventually beat the 
world chess champion.10 

 More modern breakthroughs in AI already discussed include gen-
erative adversarial networks, or GANs, and the writer of short bursts 
of coherent prose, GPT. Two other remarkable AI algorithms are deep 
convolutional neural networks and reinforcement learning. We discuss 
them next.

Deep Convolutional Neural Networks
One major leap contemporary artificial intelligence has made is in the 
area of deep learning. Deep learning generates astonishing results. Mod-
ern deep convolutional neural networks11 are a clever generalization of 
the layered perceptron popularized in the late 1980s. 

With the traditional layered perceptron, features of training data 
had to be used to train the neural network. Early neural nets could only 
handle a few inputs, so outstanding features needed to be identified to 
limit the number of inputs. For example, two good features to differenti-
ate between sumo wrestlers and basketball players are height and weight. 
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This changed with deep learning. The deep convolutional neural 
network allows classification of sumo wrestlers and basketball players 
using raw pixels from pictures of sumo wrestlers and basketball players. 
Instead of only two features (height and weight) thousands of inputs can 
be handled. Each pixel is an input.

Looking at how nature uses raw pixels for classification can help 
explain this process. In the mid 1980s I attended a workshop of opti-
cal computing practitioners and entomologists (bug scientists). There I 
learned about a fascinating property of the dragonfly. Dragonflies have 
extraordinary color vision,12 but sometimes the enormity of data can be 
overwhelming. So dragonflies have a hierarchical system whereby, one 
step at a time, unneeded information is discarded. Eventually a binary 
sensor tells the dragonfly whether the light it sees is polarized or not. 
Light reflecting from water is polarized, so the dragonfly knows it is hov-
ering above water if the detected light is polarized. If the light is not 
polarized, the dragonfly knows it is over land. This remarkable feature of 
discarding unusable information is hardwired into the dragonfly’s physi-
ology. 

The categorization of information as useful or not useful is deter-
mined by the ultimate goal of the information discarding process. For 
the dragonfly, the ultimate goal is determining whether or not light was 
polarized.

Removal of unusable information is what neural networks do in 
general and what the deep learning convolutional neural networks do 
in particular. Scads of pictures of sumo wrestlers and basketball players 
are shown to the deep neural network. The neural network is told to 
discard all the information not relevant to the identification of a picture 
as a sumo wrestler or a basketball player. All other information, like the 
background in the picture or the image’s contrast, is not useful and is 
ideally discarded.

This is useful stuff. However, research has now exposed fundamen-
tal limitations of deep convolutional neural networks. The Peak of Hype 
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on the hype curve has been reached and enthusiasm for convolutional 
neural networks is on its way down. It remains to be seen how deep the 
dive will be and where opinion will plateau. There are niche applications 
of deep convolutional neural networks, but dreams of more universal ap-
plication are being crushed. Below are a couple reasons why.

The Curse of Dimensionality
One fundamental issue constraining AI is the curse of dimensionality. 

A neural network or any regression machine requires tagged data. 
Inputs of features of sumo wrestlers must be tagged “Sumo Wrestler” 
and basketball players tagged “Basketball Player.” If we use athlete height 
and weight, the neural network uses two inputs. We can add a third fea-
ture, say annual income, and the number of inputs increases to three. As 
we will now illustrate, a rule of thumb says the amount of training data 
needed can increase exponentially with respect to the number of inputs. 
This is the so-called curse of dimensionality.13

Consider attempts to identify a prespecified short line segment in-
side a longer line segment. Visualize a short freshly painted stripe on a 
long asphalt strip of the same width. We can choose a point at random 
on the asphalt strip and ask, “Does this point lie on the part of the as-
phalt strip just painted?” If the point is inside the painted segment, we 
write an X. If outside the painted region but still on the longer road, we 
write an O. The more points we identify, the better the guess will be. 
There is no precise answer, but if the line segment is about a third the 
length of the longer line segment in which it is imbedded, let’s say we 
need ten Xs and Os to estimate the location of the painted region.

The painted stripe example is functionally one-dimensional. For 
two dimensions and two inputs, imagine a circle inscribed inside a 
square. How many points do we have to know to see there is a circle in-
side a square? We need enough points to visually see that the underlying 
shape is a circle. The training data is, again, little Xs and little Os written 
within a square on a sheet of paper. The Xs and Os are randomly chosen. 
Little Xs are inside the circle and Os outside. How many Xs and Os are 
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needed to see that the Xs roughly define the interior of a circle? Again, 
there is no right answer, but one hundred points sampled on the two-
dimensional square seem reasonable.

For three dimensions, we have a sphere imbedded in a cube. The 
number of required X and O samples to recognize there is roughly a 
sphere inside a cube is clearly larger than the two-dimensional case. If we 
slice the cube into ten planes, we have ten circle problems each requir-
ing a hundred samples. The three-dimensional sphere-in-a-box example 
therefore needs about a thousand samples.

There is enough here to see a trend. One input in one dimension 
requires ten samples, two dimensions require one hundred samples, and 
three need one thousand samples. The number of dimensions tells how 
many zeros there are after the one. Two dimensions require a one fol-
lowed by two zeros. Three dimensions require a one followed by three 
zeros. In other words, a thousand samples. If there are nine inputs, a 
billion samples are needed. That’s a one followed by nine zeros. 

So in general, the more inputs there are to a neural network, the 
more data is needed, with the increase occurring exponentially. 

The curse of dimensionality is only a rule of thumb and is not ap-
plicable when the target being learned has certain properties. When the 
shape within a box is not a circle but resembles a long-coiled snake with 
Xs inside the snake and Os outside, more samples will be needed to see 
the pattern of the snake. The data training set here must be much larger. 
Russ Reed and I used the spiral coil picture on the cover of our Neural 
Smithing book as an example of this difficult shape to learn.14

Visualizing hyperspheres in higher dimensions is difficult if not im-
possible. But we don’t have to. We know by the pattern established that, 
in ten dimensions, the number of sample points required is one followed 
by ten zeros, or ten billion. 

Deep convolutional neural networks have figured out how to learn 
directly from image pixels. Since the number of pixels in an image can 
number in the millions, it looks like the number of training examples 
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would be on the order of one followed by a million zeros. Since one fol-
lowed by eighty zeros is about the number of atoms in the universe, a 
million zeros looks to be insurmountable. The genius behind convolu-
tional neural networks is avoidance of this problem. A much smaller set 
of pixels, called a window, is used to scan the image up and down and 
right to left, and the neural network trains how strongly each section of 
the image is connected to the smaller set of roaming pixels in the win-
dow. With some additional pixel pushing, this process is repeated again 
and again in different layers of the convolutional neural network. The 
curse of dimensionality in this case, it turns out, relates to the number 
of pixels in the windows and not the number of pixels in the image. The 
number of training examples needed to train the neural network is still 
very high but not anywhere near the colossal number required if every 
image pixel were supplied as an input.

The Problem of Sensitivity
Another major problem is sensitivity. The accuracy of some deep convo-
lutional neural networks can be derailed by changing a handful of pixels 
on an image. In fact, a 2019 paper titled “One Pixel Attack for Fooling 
Deep Neural Networks”15 showed that deep neural networks trained on 
popular databases can be fooled by changing only one pixel in an image.

This ill-conditioned property resident in some deep neural networks 
gives the military (and others) concern about developing deep neural 
networks. In his book An Army of None, Paul Scharre authoritatively ex-
plores use of AI in the military. He warns that in battle situations, deep 
neural networks can be gamed by the enemy to make the AI ineffective. 
“Deliberately feeding a machine false data to manipulate its behavior is 
known as a spoofing attack,” Scharre writes, “and the current state-of-
the-art image classifiers have known weakness to spoofing attacks that 
can be exploited by adversaries.”16

Using such technology for actions based on autonomous target de-
tection “could lead to tremendous harm,” AI researcher Jeff Clune says.17 
Scharre explains, “An adversary could manipulate the [deep convolu-
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tional neural network] system’s behavior, leading it to attack the wrong 
targets. If you’re trying to classify, target, and kill autonomously with no 
human in the loop, then this sort of adversarial hacking could get fatal 
and tragic extremely quickly.”18 

Can this problem be overcome? We’ll see. For now, as Scharre notes, 
“The vulnerability of deep neural nets to adversarial images is a major 
problem. In the near term, it casts doubt on the wisdom of using the cur-
rent class of visual object recognition AIs for military applications  —or 
for that matter any high-risk applications in adversarial environments.”19 

Testing the Black Box
Use of deep convolutional neural networks in the military is not ver-
boten, however. Their use, as in the case of medical diagnosis, needs a 
human to verify the black box output. For instance, Scharre relates how 
a deep neural network trained in image recognition was able to locate a 
crashed helicopter. A human was needed to verify.

Trained neural networks are black boxes whose performance must 
always be verified. This is often done by testing whether the neural net-
work has learned or memorized. This is accomplished by showing the 
trained neural network data not yet considered. Will the neural network 
respond correctly? Even though this process, called cross-validation, is 
necessary, it’s not always sufficient.20

When assessed by an expert, the debunking of an AI program can 
sometimes occur immediately. I once served as a program co-chair for 
a conference titled Computational Intelligence for Financial Engineer-
ing.21 The conference co-chair was John Marshall, who later became the 
world’s first professor of financial engineering. Marshall was repeatedly 
approached by people who claimed they had trained an artificial neu-
ral network to successfully forecast the stock market from tick data. He 
told me he didn’t even need to look at their computer code or results. 
He assessed the true success of their software with the simple question, 
“What kind of car do you drive?” 
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In other words, if they could predict the stock market with their 
software, they should be driving a Lamborghini. Maybe their neural net-
work worked well with cross-validation data, but the true test is how the 
software performed when applied to the market in real time. The tech-
nology must be successful in field tests and when reduced to practice.

Other AI performance assessment requires closer, more in-depth 
scrutiny. There is a story that the Pentagon trained a neural network to 
determine whether there were enemy tanks in surveillance pictures.22 
Numerous photos with and without enemy tanks were collected. Not 
all the images were used to train the neural network. Some were set 
aside for cross-validation after the neural network was trained. The ex-
periment was successful. The cross-validation worked and everyone was 
happy, until some spoiler noticed a deal breaker. All the pictures with 
tanks had been taken on a cloudy day and the tankless pictures on a 
sunny day. This included both training and cross-validation data. The 
neural network was not learning whether a tank was or was not present, 
but rather whether the sun was shining or not.

In engineering, we emphasize that for reduction to practice, field 
tests must be performed. If the cloud cover problem had not been identi-
fied in the lab, the tank-trained neural network would have performed 
poorly in field tests.

Similarly, robotics researcher Peter Haas recounts a confusion in a 
classifier that differentiates dogs from wolves using deep convolutional 
neural networks.23 A husky dog was misclassified as a wolf, but why? 
When further investigation was performed, neural smiths discovered 
the classifier’s attention was on the snow in the background of the pic-
ture of the dog. Pictures of wolves used to train the neural network al-
ways had snow in the background. The pictures of dogs had no snow. 
When the picture of the husky was presented with snow in the back-
ground, the neural network saw snow and immediately figured that the 
husky in the picture was a wolf. None of the characteristics of the husky 
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was important in making this decision. The husky pixels were discarded 
as not useful. 

The tank and dog examples are blatant failures of classification—
what would be obvious to a human confused the neural network. But 
remember that ambiguities always exist in classification. Consider dif-
ferentiating a bush from a tree. After the neural network is trained, a 
bonsai tree is supplied as an input. The bonsai tree is small like a bush 
but is actually a tree. The classification here is not a problem of the neu-
ral network. There are always ambiguous cases where both a human and 
the neural network will have problems. Like any detection scheme, suc-
cess is determined by the frequency of false positives and false negatives.

Reinforcement Learning 
Deep convolutional neural networks require training data. There are 
other problems where AI is trained to win a game. No training data is 
used. Only the rules of the game. Reinforcement learning explores use of 
different strategies to win the game. AI trained to play checkers, chess, 
and GO use reinforcement learning. Training consists of exploring dif-
ferent strategies to win the game. As different winning strategies are 
tried, results of attempts are remembered.

Reinforcement learning uses incremental neural networks; each new 
piece of data allows the AI to “learn,” adjusting its behavior with every 
new bit of feedback. Reinforcement learning has been used to beat world 
champions at GO and beat legacy Atari video arcade games trained on 
pixels only. These are astonishing accomplishments.

In pure reinforcement learning, there is no training data per se. In 
winning at board games like checkers, chess, or GO, there are only rules 
and the goal of winning. Reinforcement learning explores and ultimately 
decides on the best winning methodology. 

Reinforcement learning is given an environment and a goal. How 
is the environment to be explored to best achieve the goal? Ants run 
around individually foraging for food. They are exploring. When food 
is found, the ants form a line back and forth from the food to their nest. 
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They are exploiting their discovery. Exploration and exploitation are the 
fundamental components of reinforcement learning.

In the ant foraging example, the environment is fixed but unknown. 
Similarly, in GO, the environment is the GO board accompanied by the 
rules of GO. The goal is to explore and exploit different move combina-
tions for different board configurations, and reinforcement learning is 
the procedure to achieve this goal.

A simple example of reinforcement learning involves a row of slot 
machines, nick-named one-armed bandits. A coin is inserted in one and 
a lever pulled. Three simple images spin, slow down, and then stop. If 
all three images are cherries, you win. If the three images are all dia-
monds, you win bigger. If the images all differ, the investment of the coin 
dropped into the machine is lost. 

Now, there’s a row of twenty slot machines, and some of them pay 
off better than others. One machine pays off 60 percent of the time and 
another 70 percent. The rest pay off 50 percent of the time. At the start, 
you have no idea how well any of the slot machines operate. The only 
way to find out is to insert coins and see how the machines pay off. After 
spending a lot of money, the machine with the best payoff can be identi-
fied. To maximize winnings, all your money should then be used on the 
most generous machine. 

What is the best way to do this? How much money should be invest-
ed in each machine to identify the most generous machine? If a machine 
is paying well, is confirming the statistics of the win by playing the ma-
chine some more the best investment of your coins? Or is it better to try 
some of the other machines to see if they are better? This is an example 
of a problem addressed by reinforcement learning.

There are two basic aspects of reinforcement learning: exploration 
and exploitation. In the slot machine example, exploration is the testing 
of various machines to see which one pays off the best. Once one slot 
machine is thought to be superior to all the others, it is exploited. All the 
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gambler’s nickels go into the favored machine. Once the best one-armed 
bandit is identified, there is no reason to explore the others.

One can, however, never be 100 percent sure that the slot machine 
chosen is the best. Maybe some more nickels should be spent in the oth-
er machines to be sure. In other words, maybe you should explore more. 
If you are limited to a single bag of nickels and have no other money, 
how is the money best divided between exploration and exploitation? 
Reinforcement learning manages this tradeoff to hopefully maximize 
winnings.

Here’s another example of reinforcement learning. Imagine you 
are a general in the seventeenth century looking for a path to a harbor 
through a thickly grown rainforest. First, you send an expedition into the 
rainforest. The team hacks through the vegetation and ends up against 
a massive cliff that cannot be crossed. The expedition team returns and 
reports the path and how far they got. 

You send another team in a totally different direction. They also fail 
but report some progress for the chosen path. Maybe a variation of this 
path will give a better result. 

A third team is available and ready to go. As the leader, you must de-
cide whether to use information about a previous path or take a brand-
new path. Or you can do a mix, combining what is known with a little 
bit of new exploration risk. 

Repeated excursions eventually find a path to the harbor. But even 
then, can a better path be found? You continue your search, always using 
a trade-off between what you know and new risk, i.e., between the explo-
ration of new paths and the exploitation of the paths you already know. 
Given enough time, you’ll eventually find the best path.

Making Money with Reinforcement Learning
The ultimate test of technology is reduction to practice. So how is Deep-
Mind, the AI that mastered GO using reinforcement learning, doing? 
How about other hot topics in AI? Many formerly hot AI developments 
like the Hopfield neural networks are on the scrap heap of failed ideas.
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In projects other than reinforcement learning, DeepMind has 
sharpened the ability to make recommendations to us like which tune to 
play next on our music app. DeepMind is also training tomorrow’s cyber 
salesman. And DeepMind’s Text-to-Speech converts text into human-
like speech in more than one hundred voices across more than twenty 
languages and variants. I wonder if their Text-to-Speech will soon be 
reading books for Audible or replacing voice actors in audio plays? Many 
websites, including MindMatters.AI, can now read text automatically. 
The renderings are not without flaws. 

Like IBM’s Jeopardy-winning software, DeepMind is looking to ap-
ply AI to medicine, specifically by applying algorithms to diagnose eye 
diseases, spot cancers on medical images, and predict which patients are 
at risk of various conditions.24 As you may recall, Watson has no com-
mon sense and has thus far failed in its medical ventures. Will Deep-
Mind fare any better? That remains to be seen.25 There are, however, 
some strong indications things are not going well.

In 2014 the company behind DeepMind was purchased by Google 
for about a half billion dollars. DeepMind is still chugging away on AI 
applications, including reinforcement learning, in competition with 
Amazon, Apple, Facebook, and Microsoft to produce AI that gener-
ates big bucks in the market. But in 2018, DeepMind lost $570 million. 
Forbes reported, “DeepMind’s losses are growing because it continues 
to hire hundreds of expensive researchers and data scientists but isn’t 
generating any significant revenue.”26 

In August of 2019, DeepMind’s three-year debt reached a billion 
dollars, and it also had more than one billion in debt due in the twelve 
months following, causing industry watchers to ask whether DeepMind 
was on the right track. “There is reason for skepticism,” Wired reporter 
Gary Marcus wrote. “DeepMind has been putting most of its eggs in 
one basket, a technique known as deep reinforcement learning…. The 
trouble is, the technique is very specific to narrow circumstances.”27 
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In 2020 DeepMind scored a profit of $60 million. But some are 
skeptical of the figure. DeepMind is owned by Alphabet, Google’s par-
ent company. And Alphabet and its subsidiaries are the DeepMind’s pri-
mary customers. “DeepMind does not directly sell products or services 
to consumers and companies,” one reporter notes. “Its customers are 
Alphabet and its subsidiaries. It is not clear which one of DeepMind’s 
ventures caused the spike in its revenue.” One has to wonder if the sud-
den increase in DeepMind’s revenue is nothing more than “creative 
accounting.”28

Always hopeful, Google CEO Sundar Pichai claims not to be both-
ered by the lack of high-profit DeepMind applications. He says, “Look-
ing at the pace of progress, I think we will have AI in a form in which it 
benefits a lot of users in the coming years, but I still think it’s early days, 
and there’s a long-term investment for us.”29

This scrutiny-avoiding optimism is encouraging, but is it realistic? Is 
it just a matter of pouring enough time, money, and brainpower into the 
research, or are there hard barriers that will forever limit DeepMind’s 
applications? Time will tell. 

Until then, be wary of the hype. As Bradley Center Fellow Bren-
dan Dixon says, for a clearer picture, follow the money consistently over 
time.30 If it’s not making money, chances are it isn’t working in terms of 
real-life application.

The Need for Forecast Ergodicity 
What could be holding back reinforcement learning AI such as Deep-
Mind? One barrier for certain advances is forecast ergodicity. Simply 
put, not all data can be used to train AI. This limits the scope of AI 
application. 

Forecast ergodicity, a property of data, requires future performance 
to be captured by examining previous performance. Ergodicity is for-
mally taught in introductory courses on stochastic processes. The term 
“stochastic process” is a fancy term for noise and random signals. If I flip 
a fair coin a million times and keep track of the number of heads, about 
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50 percent of these flips will be heads. The conclusion is that the prob-
ability of getting a heads is about 50–50. If you repeat the experiment 
and flip a coin a million times, you will also get about 50 percent heads. 
This is true even though the detailed record of my coin flips is different 
than yours.

Coin flipping is an example of a stationary stochastic process. It is 
mean ergodic in the sense you get about the same result as I do when 
looking at two different instantiations of the same stochastic process. 
The details of our flips are different, but both estimate a 50 percent 
chance of a heads.

For time series, a stationary process is one whose character does not 
change with respect to time. Coin flipping is stationary. The probability 
of getting heads or tails remains the same. The sound of rain on a metal 
roof or the shhhh sound of white noise are also stationary. In contrast, 
electromagnetic interference from a flash of lightning is not stationary. 
It is a onetime event.

With no inflationary pressure or disrupting news, stock market 
movement is modeled in finance as a stationary stochastic process.31 The 
model was used in the Nobel Prize-winning mathematical derivation of 
the Black-Scholes model for options pricing in finance.32 The naïve stock 
market model is stationary but famously cannot be profitably forecast 
from tick data. The next occurrence in the market, like the next flip of a 
coin, cannot be forecast from previous events.

Ergodicity comes in many flavors. The coin flipping process just de-
scribed is mean ergodic since the mean can always be extracted from any 
sufficiently long realization of the process. The mean of the flipping of a 
fair coin is 50 percent heads. A process can be ergodic for measuring one 
thing, like the mean, from an arbitrary realization of the stochastic pro-
cess, and not ergodic for some other measure like the ability to forecast. 

In the AI treatment of time series, we are interested in whether a 
process is forecast ergodic. Can future values of a time series be forecast 
from past values? The coin-flipping problem is clearly not forecast er-
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godic. The result of the next flip is independent from all previous flips. 
This may seem obvious but is not an idea widely embraced among those 
seeking to get rich at a Vegas casino. At roulette wheel stations, results of 
previous winning numbers are sometimes displayed for players. A naïve 
player might examine the board and think, “Number thirty-one on the 
black hasn’t won for the last two hundred games. It’s overdue!” A large 
bet is then placed on the number thirty-one. But like coin flipping, the 
next outcome of the roulette spin is independent from and has nothing 
to do with the spin results in the past. 

This is hard for some to believe, but it’s true. If ten sequential flips of 
a fair coin are heads, the chance of getting a tails on the next flip is not 
increased. Getting a tails cannot be considered overdue. The probability 
the next flip will be a tails remains 50–50. 

Forecast ergodicity can also be subtle. Reflect upon the following 
game considered by the founders of probability, French mathematicians 
Blaise Pascal and Pierre de Fermat. Assume Pascal and Fermat agree to 
flip a fair coin five times. If the majority of the coin flips are heads, Pas-
cal gets one hundred dollars. If there are more tails than heads, the pot 
of money goes to Fermat. The coin is flipped three times and the results 
are heads, heads, tails (HHT). Before the last two flips can be made, 
a Covid pandemic occurs and prevents the game from being finished. 
How then should the pot be split between Fermat and Pascal in the un-
finished game? 

There are four possible outcomes for the remaining two flips: HH, 
HT, TH, and TT. Since Fermat has only one tails to date, he needs two 
successive tails to win. This is his only path to victory. This is one of the 
four possible scenarios of the remaining flips. The other three outcomes 
give the pot to Pascal who, with two heads, only needs one more heads 
to win. So since there are three out of four scenarios where the pot goes 
to Pascal, three-fourths of the pot should go to Pascal and one-fourth of 
the pot to Fermat. The fair solution to the problem is that Fermat gets 
twenty-five dollars and Pascal seventy-five dollars. 
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The unfinished coin flipping game is the problem considered in a 
series of letters between Fermat and Pascal in the seventeenth century. 
Their correspondence and subsequent solution to the problem, nicely 
described in the book The Unfinished Game,33 is credited with the found-
ing of the field of probability theory.

 So, although the sequence of coin flips is not forecast ergodic, wa-
gers of the type between Pascal and Fermat can tell us to bet more heav-
ily on Pascal when he is two successes ahead on a best-of-five coin flip-
ping contest. 

Ergodic Examples
Before applying AI, practitioners need to address whether the prob-
lem under consideration is forecast ergodic or not.34 

We are amazed when reinforcement learning can be used to win 
Atari arcade games using only display pixels. But in doing so, the AI is 
exposed to the same game again and again. The game scenarios change 
as the human opponent makes different moves, but the game itself does 
not change in time. It is time invariant. The same is true with chess or 
GO. The same game is played over and over and over. When trained, the 
AI will be playing this same game. No rules are changed. A time-invari-
ant system is one where the rules remain the same, and the AI’s response 
to inputs does not change over time. Today, tomorrow, whenever—the 
game always remains the same.

To illustrate time invariance, consider training AI to win at the 
game of checkers. When a boy, I played a variation of checkers called 
“give-away” where the winner is whoever gets all his checkers jumped. 
Needless to say, AI trained to win at conventional checkers would not 
do well in the game of give-away. The rules have been changed. Chang-
ing the rules violates time invariance and thus forecast ergodicity is not 
applicable.

Remember our rainforest example, where you’re sending out teams 
seeking the best path? If the terrain is continually being changed by 
earthquakes, tsunamis, and volcano eruptions, then results from previ-
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ous explorations can no longer be trusted. Reinforcement learning will 
no longer be applicable because the problem under consideration no lon-
ger displays forecast ergodicity.

Likewise, if I train machine intelligence to play GO and then switch 
to the game of chess, the trained GO-playing program will sit up and 
flub its lips in confusion. The future performance in playing chess can-
not be assessed by analysis of past performance in playing GO. Simi-
larly, strategy in GO cannot be learned if the rules of GO are randomly 
changed during the training process.

All board games from simple Parcheesi to GO are time invariant 
and forecast ergodic. The rules are fixed. Note the terminology differ-
ences: While stationarity applies to data such as that used in load fore-
casting, time invariant applies to fixed systems like the games of GO and 
checkers. Stationarity indicates that the character of the data doesn’t 
change. Future data has the same character as past data. Time invari-
ance dictates that the rules of the game don’t change. 

Power Ergodics 
A real-world example of a stationary forecast ergodic process is pre-
diction of power load demand for a power company.35 As we discussed 
in Chapter 8, if a power company produces too little power, it must pur-
chase power off the grid at the prevailing price. If the forecast is too high, 
too much power is generated and the power company must sell its excess 
at an uncertain market price. Because of the uncertainty of the power 
market, power companies wish to avoid both underestimating and over-
estimating future demand. Power companies like to reduce this uncer-
tainty as much as possible with accurate power consumption forecasts.

Fortunately for power companies, data for power load forecasting 
is forecast ergodic. Data from the past is indicative of data of the future. 
The secret is identification of data to train a forecasting neural network. 
For the forecast of Tuesday’s power demand, we know the power usage 
for Monday. Another relevant parameter is Tuesday’s forecasted tem-
perature. Air conditioners are turned on when the temperature is high 
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and electric heaters when the temperature is low. Both these tempera-
ture extremes increase power consumption. There is access to a lot of 
historical data for power consumption on Mondays and Tuesdays. A 
neural network is trained with the historical data using Monday’s data 
and Tuesday’s weather forecast on the input and Tuesday’s power con-
sumption at the output. Once trained, we can ideally provide inputs to 
the neural network on Monday and forecast the power usage on Tues-
day. This, in fact, works quite well. Many power companies use neural 
networks to forecast load demand.36 The success of the load forecasting 
neural network is proof that the underlying forecasting data was forecast 
ergodic.

Note that in describing the load forecasting neural network, we spec-
ified forecasting power consumption for Tuesday. The power load char-
acter for some days is different than for others. Weekends differ from 
weekdays. Holidays are also outliers. Holidays do not fit the statistics 
of normal day usage. My friend and colleague Mohamed El-Sharkawi 
worked on this problem. He called a spike in power usage on Thanksgiv-
ing “The Turkey Effect.” Everyone turned on their electric ovens to cook 
their turkeys about the same time on Thanksgiving, manifesting a big 
spike in power consumption.

Some processes can be described as displaying slowly changing (or 
variation limited) stationarity.37 The historical data for training the pow-
er forecasting becomes more unreliable the farther it is removed from 
the present. New housing developments, factories, and offices affecting 
power consumption might have been built. Old power-inefficient build-
ings might have been torn down. In training a neural network for power 
consumption forecast, care must be taken when using older data that 
might pre-date such changes.38

Another example of short-term forecast ergodicity is predicting the 
weather from meteorological data. Generally, the nearer the future event 
is from now, the more accurate the forecast. We can be pretty sure of the 
weather a minute from now. Forecasts of weather details two months 
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from now will be less accurate. But seasonal history can provide relevant 
data, even if the data is from a year ago. If it’s August in Waco, Texas, it’s 
going to be hot.

Meteorologists’ forecast accuracy based on data has increased re-
markably as more and more data is gathered and analyzed by more pow-
erful computers. Some practitioners believe, though, that there remains 
a lot of room for improvement.39 

Forecast ergodicity is not guaranteed by either stationarity or time 
invariance. Nor is forecast ergodicity guaranteed by ergodicity in some 
other sense. The coin flip process is mean ergodic but not forecast ergo-
dic. The 50 percent heads-tails chance can be estimated using any his-
tory of a flipped coin. This is mean ergodicity. Forecast ergodicity would 
require that past flips give you more than a random guess of the next flip. 
Since the outcome of a coin flip cannot be forecast, the process is not 
forecast ergodic.

Although stationarity and time invariance do not guarantee fore-
cast ergodicity, the converse sets up a necessary condition for forecast 
ergodicity. If data is non-stationary, or the system time variant, it is not 
forecast ergodic. A game whose rules are changed in a non-forecastable 
manner is time variant and cannot be mastered by AI. 

Takeaways 
Engineers and computer scientists have been seriously studying AI 
for over seventy years. During this time, many new ideas have bit the 
dust. Other AI innovations have taken root and are commonly used to-
day. We take many of them for granted. The jury is still out on some 
more recent AI. 

Reinforcement learning has been wondrously applied to board 
games like GO and arcade games like Space Invaders. These problems 
are time invariant and strongly forecast ergodic. The same game with the 
same rules is played again and again. However, many real-world prob-
lems involve human creativity and insight and are not forecast ergodic. 
Battlefield conditions and CEO leadership can require that decisions be 
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made about situations not formerly considered. This is a problem for AI. 
Reinforcement learning will fail in such cases. Reinforcement learning 
has no ability to “think on its feet.” 

The absence of ergodicity stymies successful application of AI, such 
as reinforcement learning, to strategy on the battlefield. Commander 
Bradley A. Alaniz, a military professor at the US Navy War College, 
writes that “at the strategic and operational levels of warfare—the realm 
of human decision-making that requires creativity and original thought 
in order to compel or dissuade other humans—there are very few de-
fined states. Furthermore, the number of non-defined, ambiguous states 
is essentially infinite.”40 

To apply AI, reinforcement learning would at minimum need to be 
privy to all of Commander Alaniz’s “non-defined, ambiguous states.” But 
as we have seen in previous chapters, creativity is beyond the reach of AI. 
A clever enemy would seek to guide a military conflict into unexpected 
contingencies not considered in the training of the AI. 

AI is good at fixed strategies. But any fixed military strategy can 
be gamed by the enemy. In World War II, General George Patton beat 
the top Nazi, General Rommel, in Germany’s North African campaign. 
How? Patton had studied Rommel. He knew Rommel’s strategy and 
gamed it. The 1970 movie Patton captures this reality with a fun but 
fictitious line where Patton says, “Rommel, you magnificent bastard! I 
read your book!”41 Likewise, military adversaries with knowledge about 
an enemy’s AI strategy can game the weak point of the AI strategy and 
win the day.

In sum, deep convolutional neural networks have found niche 
applications but suffer from performance problems in broader, more 
complicated applications. At this writing, these limitations are still 
being sorted out. In many applications, AI may serve as an effective 
advisor, but final decisions will need to be made by a human. One 
perhaps insurmountable barrier to AI moving beyond “advisory” 
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capacity is that time variant systems and nonstationary data are not 
forecast ergodic and cannot be captured by AI. 

We will dig deep into other reasons why AI is limited in the next 
chapter. 



Part Four: Gödel to 
Turing to Chaitin 
to the Unknowable





10. It’s All Gödel’s Fault
 Either mathematics is too big for the human mind or the human 
mind is more than a machine.

—Kurt Gödel1 

Algorithmic information theory is the science that ad-
dresses what algorithms and therefore computers (including AI) 

can and can’t do. The field may sound stuffy and even tedious, but when 
understood, is more fascinating than the best science fiction you could 
ever read. 

Computable Means Algorithmic
AI often produces surprises. Self-driving cars may crash. In such cas-
es the car-driving computer program must be bettered to address this 
contingency. Sometimes, though, surprising results from a well-written 
computer program may cohere with the goals of the programmer. Al-
phaGo, programmed to play the board game GO, might make surpris-
ing moves but will never self-evolve to give investment advice. What else 
can the program do? Oren Etzioni, chief executive officer of the Allen 
Institute for Artificial Intelligence, notes AlphaGo can’t even answer 
simple questions like, Do you play poker? Can you cross the street? Can 
you explain the game of GO to me?2 

As we’ve discussed, computers only do what they’re programmed 
to do, by way of step-by-step procedures called algorithms. A recipe for 
baking a cake is an algorithm. Google Maps generates an algorithm—a 
set of instructions—to help you get from point A to point B. 
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Computers can only execute algorithms. If a task can be described 
using computer code, it is algorithmic. In other words, computable im-
plies algorithmic. In logic, the contrapositive or modus tollens of a true 
statement is also true. Since computable implies algorithmic, non-algo-
rithmic implies non-computable. There are problems that are proven to 
be non-algorithmic. Therefore, no computer program can ever be writ-
ten to solve these problems. This is not a proposition or an arguable is-
sue. It is a mathematical fact. As discussed earlier, humans display non-
algorithmic properties that no AI will ever compute. 

The Non-Algorithmic 
We are so used to thinking algorithmically using step-by-step proce-
dures that non-algorithmic tasks can be difficult to grasp. But they do 
exist. 

For example, undergraduate students in computer science are taught 
about the Turing halting problem, encapsulated by this question: can a 
computer algorithm be written that can determine whether another ar-
bitrary computer program will stop running (halt) or will run forever? 
As will be explained in the next chapter, the answer is no. The Turing 
halting problem is non-algorithmic and therefore not computable. Alan 
Turing proved this mathematically in 1936. The Turing halting prob-
lem is the poster child for the non-algorithmic and therefore the non-
computable. Sometimes people talk about a hypothetical program called 
the Turing halting oracle that can decide whether an arbitrary computer 
program will stop or run forever. Computer code for a Turing halting 
oracle can never be written.

We have already shown humans can have non-algorithmic capaci-
ties such as compassion and creativity. Humans are therefore beyond 
the capability of a computer. This is not to say humans can do all non-
algorithmic tasks. We can’t, for example, look at an arbitrary computer 
program and solve the halting problem in many cases. Answering the 
question as to whether a computer program halts or runs forever cur-
rently looks to be beyond the ability of both man and machine.
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Axioms and the Non-Algorithmic
Related to the non-algorithmic are limitations resident in a finite set 
of assumptions called axioms or postulates. These are the foundational 
assumptions upon which all else is built.

The concept of axiomatic foundations and their consequences 
should be familiar to you from everyday life. Your beliefs and behavior 
are based on an axiomatic core. Jews have the Ten Commandments as 
their axioms. There are five pillars to the Muslim faith and, for some 
Christians, the five points of Calvinism are captured in the TULIP ac-
ronym. These are the foundational assumptions (axioms) that blossom 
into a system of belief. They also limit what follows. If your foundational 
assumption is that the Earth is round, you are limited or prevented from 
worrying about sailing off the Earth’s edge.

Definitions always accompany axioms. For instance, both Muslims 
and Christians claim belief in Jesus, but the meaning differs when de-
fined by the two groups. Definitions must be precise to remove ambigu-
ity. 

Some strict mathematicians might claim any connection between 
mathematical axioms and the more malleable foundations of religion is 
troublesome—and they are right to a degree. But the analogy is there 
and, although not perfect, is strong. 

Because of its direct and visible connection to rigid rules and in-
flexible logic, mathematics is highly specified compared to the more in-
terpretive social commandments. Mathematical axioms are truths so 
evident that they need not be proved. In mathematics, axioms are first 
established using precisely defined terms. Then, using laws of logic, these 
axioms are expanded into lemmas, corollaries, and theorems. Mathe-
matical systems can be developed formally from a handful of definitions 
and axioms. A mighty oak of mathematics can grow from the acorn of 
the foundational axioms. But, as Kurt Gödel showed, there are limits. 
An oak tree can grow from an acorn, but can only grow so high. The 
trees, mathematical or religious, are dependent on the choice of axioms.
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Euclid of Alexandria developed planar geometry three hundred 
years before the birth of Christ. Planar geometry is the mathematics de-
scribing geometrical figures on a two-dimensional plane like a flat floor 
or a tabletop. Before talking about any of Euclid’s axioms, a common un-
derstanding of some definitions must be established. These include the 
meaning of a point on a plane or the concept of a line in the plane. After 
agreeing on definitions, some obvious self-evident truths of geometry on 
a flat plane can be addressed. To develop his theory of planar geometry, 
Euclid proposed five such axioms.3

His first axiom claimed that between any two points a unique single 
line can be drawn.

Duh! Yes, axioms are often seemingly obvious to the point of being 
trivial. 

Euclid’s second axiom claimed any line segment can be extended in-
definitely in both directions.

Again… Duh! This is obvious.
Euclid’s remaining three axioms deal with the nature of circles, right 

angles, and parallel lines. From these five axioms, all Euclidean geometry 
emerges. Euclid’s axioms expanded by common logic lead to theorems 
that prove truths such as (a) the three angles in any triangle add to 180° 
and (b) the Pythagorean Theorem. These and other truths are not im-
mediately obvious from Euclid’s five little axioms.

Euclid’s book Elements describes his beautiful axiomatic develop-
ment of planar geometry. It is a landmark work in the development of 
mathematics. Mathematics today still relies on Euclid’s axiomatic ap-
proach. Modern probability theory, for example, is a field of mathemat-
ics built on axioms by the extraordinary twentieth-century Russian 
mathematician Andrey Kolmogorov. 

The first of the five probability axioms states that a probability is 
either zero or greater. Obviously! Talking about a probability of minus 
one-half makes no sense. Another axiom requires that the probability 
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of something happening when a random event occurs is one. Obviously! 
Axioms are obvious. 

Euclid’s axiomatic approach can be applied in many places. But 
though it is powerful, axiomatic development has limitations. 

Euclid had flatness in mind when he developed his theory. Suppose 
instead of a plane we live on the surface of a sphere. (Come to think of it, 
we do, more or less.) Between the North Pole and the South Pole there 
is no unique shortest path on the earth’s surface. Just like there are many 
ways to slice a perfectly round tomato into two equal halves, there are an 
infinite number of lines connecting the sphere poles, and they are all the 
same length. 

Euclid’s first axiom requires that a single unique line connect two 
points, but on the sphere there are cases where the number of lines con-
necting two points is infinite. Thus Euclid’s first axiom is violated, and 
no subsequent theorem based on this axiom can be trusted. This illus-
trates that although powerful, any set of axioms will not solve all prob-
lems. A new set of axioms is needed if we are to talk about the geometry 
on the surface of a sphere.

The Big Challenge
We now come to the moment that eventually catapulted young Kurt 
Gödel to fame. In 1928 the great German mathematician David Hilbert 
offered a challenge to his fellow nerds: find a set of axioms that can be 
used to develop theorems that ultimately prove any mathematical prop-
osition. Hilbert’s Entscheidungsproblem (German for “decision problem”) 
asks for an algorithm that takes as input a mathematical proposition 
and, using axioms and logic, outputs whether the proposition is true or 
not. Having such a tool would essentially solve all mathematics. 

Hilbert’s challenge was accepted by Sir Alfred North Whitehead 
and Bertrand Russell. They launched their journey with a three-volume 
work titled Principia Mathematica. Like digging a tunnel through hard 
rock, the going was slow and tedious. Several hundred pages are required 
to prove the validity of the simple proposition 1 + 1 = 2. The book was 
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ranked by the Modern Library as twenty-third of the top one hundred 
English-language nonfiction books of the twentieth century. Principia 
Mathematica also has the distinction of being called the most important 
twentieth-century non-fiction book no one has read. I suspect even those 
who highly ranked the tome never read it cover to cover.

Whitehead and Russell had not yet reached their goal but felt they 
were approaching success. Their dream, however, was permanently de-
railed by a young Austrian math punk named Kurt Gödel. 

Gödel showed that Hilbert’s challenge and Russell and Whitehead’s 
ultimate goal was not possible. There is no way to create an algorithm 
that can consider all mathematical statements and decide whether they 
are valid.

Gödel demonstrated this mathematically using a logical tool fanci-
fully named reductio ad absurdum, which translates to “reduction to the 
absurd.” The principle of reductio ad absurdum is also called “proof by 
contradiction.” It works like this: if assuming a proposition is false leads 
to a contradiction or absurdity, then the proposition must be true. Re-
ductio ad absurdum has been used extensively in the fields of philosophy 
and mathematics since at least the time of the ancient Greeks.

Here’s an example of a proof using reductio ad absurdum. Our goal 
is to prove the proposition that “all positive numbers are interesting.” To 
prove that “all positive numbers are interesting,” we make a contrary as-
sumption: there are positive numbers that are not interesting. If this is 
true we can assume there exists a smallest non-interesting positive num-
ber. 

But hmmm. This is interesting!
The observation contradicts the assumption that all positive num-

bers are not interesting. Therefore, the initial proposition “all positive 
numbers are interesting” is true because its contrary assumption was 
shown to logically “reduce to the absurd.” We have thus proved that all 
positive numbers are interesting.
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Self-Refuting Statements
The proof dealing with interesting positive numbers is whimsical. 
More serious self-refuting statements like “There is no truth” also can 
disprove themselves using reductio ad absurdum. Using meta-analysis, 
we simply apply the claim to itself. The statement “There is no truth” by 
its own application is not true. The statement is presented as true. But if 
there is no truth, the statement itself cannot be true. The claim contra-
dicts itself. When a simple claim applied to itself causes a contradiction, 
the claim is said to be self-refuting.

The Cretan Paradox
One famous self-refuting statement comes from the Bible, where in Ti-
tus 1:12 the Apostle Paul writes, “One of Crete’s own prophets has said 
it: ‘Cretans are always liars...’”

This claim, first credited to the Cretan philosopher Epimenides of 
Knossos around six hundred BC, is known as the Cretan Paradox or 
the Epimenides Paradox. Since Epimenides was a Cretan, his statement 
applies to himself. We can thus exaggerate a bit and say Epimenides is 
claiming that “everything I say is a lie.” The restatement has taken the 
original claim to the extreme.

Applying meta-analysis to the statement, Epimenides’s statement is 
a lie. So applying “everything I say is a lie” to itself says that Epimenides 
is lying about his claim. If he is lying, Epimenides must be telling the 
truth. But if the statement is true, then he is telling a lie. But if he is lying, 
Epimenides must be telling the truth. Around and around we go. Like 
an unstable flip-flop in electronics, the reasoning in the Cretan Paradox 
flips without end from one conclusion to another.

Electrical engineer Bart Kosko calls this cycle a bipolar paradox.4 
Douglas R. Hofstadter in his classic book Gödel, Escher, Bach, refers to 
such recursive flip-flop in logic as “strange loops” and notes their occur-
rence in drawings and music.5 The unresolvable Cretan paradox can also 
be interpreted as a logical illusion.
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Logical Illusions 
Illusions are ubiquitous. M.C. Escher draws surrealistic strange loops. 
In Escher’s 1960 sketch “Ascending and Descending,” we find ourselves 
always climbing the stairs but, by some remarkable fluke, find ourselves 
at the bottom of the staircase, ready again to ascend. Escher accomplish-
es this by drawing a clever optical illusion that does not exist in reality. 

Strange loops happen in music. The Shepard-Risset glissando seems 
to ever increase in pitch. Up and up the tone seems to go. But if the tone 
frequency were always increasing, the tone would soon be out of range 
of human hearing and become irritating to dogs. This doesn’t happen. 
Ten hours of a Shepard glissando can be experienced on YouTube6 and 
no such thing occurs. No matter where the ten-hour timeline is clicked 
the tone seems to ever increase in pitch. Hofstadter relates the tone to 
the work of Bach, which is why Bach appears in the title of Hofstadter’s 
book Gödel, Escher, Bach. 

Escher’s sketches are optical illusions. The Shepard-Risset glissando 
is an audio illusion. The illusion is accomplished by increasing the fre-
quencies of a number of notes simultaneously. As the notes get higher, 
their volume is slowly decreased and then faded. At the same time lower 
frequency notes are introduced quietly and slowly increased in volume. 
All this happens seamlessly, giving the listener the audio illusion that 
the pitch of the ensemble of frequencies is ever increasing. The effect can 
be compared to a rotating barber pole. When the pole rotates, the red 
stripe pattern seems to move up the pole even though the spiral stripe 
itself does not move.

Hearing the Shepard-Risset glissando described with words falls far 
short of hearing the music itself. I encourage you to go to YouTube and 
listen.7 The spooky glissando was used in the Hans Zimmer score for 
the movie Dunkirk8 and also makes an appearance in the 1996 Super 
Mario Nintendo Game as Mario climbs the stairs. The band Pink Floyd 
uses the Shepard-Risset glissando in its 1971 recording title “Echoes.” 
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Weird Shepard glissando tones can also be heard in movies like The 
Dark Knight and The Dark Knight Rises.

Another audio illusion is the Risset rhythm, where the speed of a 
drumbeat sounds like it is getting faster while, in fact, the beats per sec-
ond remain the same. It’s fun to listen to as well.9

Optical and audio illusions create the impression that something 
exists when it doesn’t. Escher’s optical illusion stairs are contradictory. 
If I continue to climb stairs, I cannot end up in the same place I started. 
The two conclusions are in conflict and we have an optical illusion. The 
Shepard-Risset glissando cannot simultaneously increase in frequency 
and forever remain in the frequency range of human hearing. The two 
observations are in conflict; the Shepard-Risset glissando is an audio il-
lusion. 

There are also logical illusions consisting of contradicting state-
ments that cannot simultaneously exist. Saying “There is no truth” while 
simultaneously affirming that statement to be true is a logical contradic-
tion. If true, the statement “There is no truth” is not a truth. Holding 
two conflicting ideas to be true at the same time isn’t logical. 

The Meta Test
Meta statements can sometimes be self-refuting. They are statements 
that can refer to the statement being made. An example of an obvious 
meta-statement is, “This sentence uses five words.” The meta sentence 
is true since the statement contains five words. But the meta statement, 
“This sentence uses twenty words,” since it contains only five words, is 
false. Meta statements like these are easy to analyze. Others are not. 

A particularly curious example of a self-referential sentence is Cur-
ry’s Paradox,10 introduced by Haskell B. Curry to demonstrate the in-
consistency of certain systems of formal logic using conditionals like “if 
A, then B.” An example of a Curry paradox is the sentence, “If this sen-
tence is true, then fire is a liquid.” Is this sentence true? 

What if we changed the statement to: “If this sentence is true, then 
Texas borders Oklahoma”? Texas does border Oklahoma, so is the 
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statement true? What about the variation where bordering Oklahoma 
is changed to far-away Australia? We now have, “If this sentence is true, 
then Texas borders Australia.” 

Curry’s Paradox is curious. 
The truth table of Boolean logic implication states that a falsehood 

implying something true is true.11 For example, the statement “a throb-
bing toe implies it’s raining outside” is true if it’s raining outside. It mat-
ters not whether a toe is throbbing or not. So the truth in Curry’s para-
dox has nothing to do with whether the sentence is true or not. “If this 
sentence is true, then Texas borders Oklahoma” is true because Texas 
borders Oklahoma. “If this sentence is true, then Texas borders Austra-
lia” is false since Texas does not border Australia.

Here is a less-curious statement from the Bible that appears to be 
self-refuting. In Matthew 19:36b, we read, “With God, all things are 
possible.” Let’s apply a meta test. 

If the claim made in Matthew is true, then God should be able to 
create a task impossible for God to do. If God can do anything, He 
should be able to do this. Has meta-analysis discovered a self-referential 
contradiction in the Bible? Biblical scholars will say no. The statement 
must be placed in context. Invoking context can dissolve a logical con-
flict. A more complete statement would be, “With God all things are 
possible that are consistent with His nature.”

God is said to be righteous, so He cannot be unrighteous. Titus 1:1, 
for example, refers to a “God, who cannot lie.” By adding context, the 
meta self-referential that refuted itself is transformed into a statement 
without conflict. 

Context can likewise be used to remove self-referential conflict from 
many troublesome claims. The problem with the Cretan can be removed 
if the statement is augmented to read, “Everything I say, except for this 
sentence, is a lie.” The validity of the revised claim can still be debated, 
but not because meta-analysis reveals it as inconsistent.
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Here’s another common self-defeating claim, one made by some 
atheists: given enough time science can account for everything. The claim 
is self-refuting because science cannot demonstrate (cannot account for) 
the claim that science will account for everything. In other words, the 
claim itself cannot be proven scientifically. Such a claim lies beyond sci-
entific scrutiny and is therefore, according to the claim itself, unworthy 
of consideration. The faith that science can explain all is called scientism. 

Consider next the pantheistic claim that “all religion should be 
accepted as true.” The problem is that nearly all religions claim some 
degree of exclusivity. And their truth claims are often contradictory. If 
Hinduism claims there are millions of gods and the Abrahamic religions 
claim a single God, both propositions cannot be accepted as true. Any 
claim that “all religions are true” is like claiming any liquid from a cow, 
when chilled, goes well with a chocolate chip cookie.

A more severe meta claim is “there is no right or wrong.” Proponents 
of this viewpoint will argue its truth. Imagine a rebel pounding his fist 
on the table and yelling, “There is no right or wrong!” You softly counter, 
“You are wrong.” The fist repeats its pounding and the rebel yells “No! 
I’m right!” If there is no right or wrong, how can the rebel claim he is 
right?

 The claim “there is no right or wrong” is self-refuting. A philosophy 
that asserts “there is no right or wrong” must therefore be discarded onto 
the scrap heap of nonsense. It is a logical illusion. 

Here’s another example. There are those who believe faith and reli-
gious belief are a cover for insecurity. Others do not agree. I think true 
belief is based on explanatory power and supporting evidence. New Age 
guru Deepak Chopra does not agree and thinks his New Age philoso-
phy frees him from insecurity without the need of beliefs. 

Chopra was confronted in a public forum Q&A where a questioner 
destroyed Chopra’s claim with a short and pointed reductio ad absur-
dum smackdown.12 After being recognized to ask a question, a man 
standing at the audience microphone first restates Chopra’s position. He 
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says, “Now you stated before that all belief is a cover-up for insecurity. 
Right?”

Deepak Chopra responds with “uh huh,” meaning “yes, this is my 
position.” The questioner responds with a question. “Do you believe 
that?”

With no hesitation, Chopra responds, “Yes.”
“Thank you,” the questioner says, and with this mic-drop moment 

returns to his seat in the audience sits down.
The crowd responds with a long communal belly laugh while Cho-

pra, victim of the reductio ad absurdum smackdown, squirms uncom-
fortably on stage. Chopra’s belief that his position allows him escape 
from insecurities was a belief that, according to Chopra’s own precept, 
was itself a cover-up for insecurity. The contradiction exposed Chopra’s 
philosophy on this matter as self-refuting.

Russell’s Paradox
E. Kasner and J. Newman once noted, “Perhaps the greatest paradox of 
all is that there are paradoxes in mathematics.”13 Russell’s Paradox is a 
famous example of self-refutation that leads to an unexpected and curi-
ous result. It takes a bit of buildup to appreciate Russell’s Paradox, so 
let’s get started.

We all have an idea of what a set is. We can have sets of dogs, sets of 
geometrical shapes on a plane, and even sets of sets.

Some sets contain themselves. We will call such sets inclusive. An 
example is the set of all things that are not skunks. The set of all things 
not skunks is itself not a skunk. Let’s give this set a name. Call it the 
NOTSKUNKS set. The NOTSKUNKS set is a set. It is therefore not 
a skunk and is a member of the set NOTSKUNKS. NOTSKUNKS is 
therefore an inclusive set. The set includes itself as a subset. 

Another inclusive set is the set of all sets with more than three ele-
ments. This set contains more than three elements and will therefore 
contain itself as a subset.
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Sets that do not contain themselves will be called exclusive because 
they exclude themselves from being in the set. An example is the set of 
all apples. The set of all apples is itself not an apple. A set isn’t an apple. 
Therefore, the set of all apples is exclusive because the set does not con-
tain itself as a subset.

So there are two types of sets—sets that contain themselves as sub-
sets and those that don’t. If a set includes itself, it is inclusive. If a set does 
not contain itself as a subset, it is called an exclusive set. 

Russell’s paradox reveals these simple definitions lead to a theory 
that is a logical illusion. The paradox arises from considering the meta 
question: “Is the set of all exclusive sets itself an exclusive set? Or is it an 
inclusive set?”

For reference, let’s call the set of all exclusive sets the AllEx set for 
All Exclusive. We consider both possibilities one at a time.

1. If the set of all exclusive sets contains itself, it is an inclusive set. 
But AllEx is limited to only contain exclusive sets. There are no 
inclusive sets in AllEx. We have reached a contradiction and 
are forced to conclude that AllEx is not an inclusive set.

2.  Consider the alternative. If the set of all exclusive sets does not 
contain itself, AllEx is an exclusive set. But AllEx contains all 
the exclusive sets in the universe, so it must therefore contain 
itself. We have reached another contradiction and are forced to 
conclude that AllEx is not an exclusive set.

This weird result may require a couple of readings to understand.14 
The bottom line is that the AllEx set leads to contradictions. The set of 
all exclusive sets, AllEx, is neither inclusive nor exclusive. The question, 
when we try to answer it, leads to a logical illusion.

What’s a mathematician to do? Have we stumbled on a third type 
of set that is neither inclusive nor exclusive? Or maybe we are the victims 
of bad thinking. 



248   / Non-Computable You /  

When a conflict of this sort is reached, we must conclude a mistake 
has been made somewhere. If you prove 2 plus 2 is 5, you made a mistake 
somewhere. 

To avoid problems of this sort, mathematicians set aside so-called 
intuitive set theory that gave rise to Russell’s Paradox in favor of greater 
rigor. Because of Russell’s Paradox, set theory was derived from scratch 
using an axiomatic approach—just like Euclidean geometry and proba-
bility. Russell’s Paradox is avoided by careful development from founda-
tional axioms. Reasoning of the type leading to Russell’s Paradox is now 
derogatorily called “naïve set theory.” Zermelo, Fraenkel, and Skolem 
(ZFS) developed the axiomatic foundation for set theory. The ZFC for-
malism is still taught today. Within the ZFC structure, Russell’s para-
dox about the AllEx set is no longer a problem.

Apparently our naïve intuition about sets cannot be trusted if we 
wish to avoid curiosities like Russell’s paradox. Mathematicians, after 
all, need to establish axioms that give rise to consistent results. 

No logical illusions are allowed in mathematical truth.

Gödel’s Theorems
Speaking of consistent, we now address Gödel’s theorems that show 
that all mathematical systems built on axioms must either be incomplete 
or inconsistent. Gödel’s use of reductio ad absurdum self-contradiction 
is cleverly parodied in an XKCD cartoon panel in which someone taking 
a survey holds a pad of paper and happens upon Kurt Gödel.

Survey-taker: “Hey Gödel–we’re computing a comprehensive list of 
fetishes. What turns you on?”

Gödel: “Anything not on your list.”
Think about that! Gödel’s response means the questioner can never 

complete his survey. If one of Gödel’s fetishes is added to the questioner’s 
list, then it’s no longer a Gödel fetish and must be removed from the 
list, in which case it again belongs on the list, and so forth forevermore. 
Cartoon Gödel’s response has rendered completion of the list a logical 
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illusion. His request that “anything not on your list” be added to the list 
is impossible to do.

Similarly, Gödel’s proof demonstrated that Whitehead and Rus-
sell’s task of axiomatically developing all mathematics would also never 
be completed.

Gödel’s Proof
Gödel showed that Whitehead and Russell’s attempt to derive all of 
mathematics from a group of axioms was not possible.15 He used a re-
ductio ad absurdum smackdown. Remember, Whitehead and Russell 
were attempting to formulate a set of axioms that would determine the 
truth or falseness of any mathematical statement. Gödel showed that in 

Figure 10.1. XKCD. Gödel is a dangerous guy to question.
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any such attempt, one must ultimately arrive at something like the fol-
lowing self-referential theorem:

Theorem X says Theorem X can’t be proved.
The self-reference here is obvious. Theorem X explicitly refers to itself. 
But what are we to make of Theorem X? There are two possibilities.

1. Incompleteness: If Theorem X is true then there are truths 
(theorems) that cannot be proven using the foundational 
axioms. Theorem X is an example of something that can’t be 
proved with the assumed axioms. The formal system defined 
by the axioms is therefore incomplete. There are truths beyond 
those able to be proved.

2. Inconsistency: If Theorem X is not true, then Theorem X, 
contrary to its claim, can be proved. So if Theorem X is not 
true, the system built on the foundational axioms is inconsis-
tent. We are claiming at the same time that Theorem X can’t 
be proved and can be proved.

The conclusion is this: any system built on axioms will either be in-
complete or inconsistent. To avoid contradiction, mathematicians like 
Whitehead and Russell work hard to keep their system in Principia 
Mathematica consistent. They wanted no repeat of Russell’s paradox. 
Gödel showed as a consequence of maintaining consistency, the work 
of Whitehead and Russell was doomed to be incomplete. They would 
never axiomatically develop all of mathematics. Whitehead and Russell 
raised a white flag and surrendered their work to Gödel’s analysis. 

The Theorem X statement is not a logical illusion if the derived 
theory is consistent. For the math system developed from axioms to be 
consistent, Theorem X must be true. Therefore there exist things that 
are true that lie above and beyond what can be proven from chosen foun-
dational assumptions. To keep consistency, Theorem X must be true! 
It is a true theorem that can’t be proved within the constraints of the 
chosen axioms. 



10� It ’s A l l Gödel ’s Fau lt  /  251

Gödel published his first landmark papers when he was only twenty-
five years old. His contributions were obscured by sophisticated math-
ematical details and not widely understood. Later that same decade, 
Alan Turing gave a more intuitive and understandable explanation of 
Gödel’s result using computer science mathematics. Turing’s result un-
veiled limitations about what computers can and cannot do. The list of 
cannots reveals part of non-computable you.

This is the astonishing material covered next.





11. Turing Makes 
Gödel Simple

Even though such machines might do some things as well as we 
do them, or perhaps even better, they would inevitably fail in 
others, which would reveal that they were acting not through 
understanding but only from the disposition of their organs. For 
whereas reason is a universal instrument which can be used in all 
kinds of situations, these organs need some particular disposition 
for each particular action; hence it is for all practical purposes 
impossible for a machine to have enough different organs to make 
it act in all the contingencies of life in the way in which our reason 
makes us act.

—René Descartes (1637)1

Polymath Charles Babbage conceived of the programmable 
digital computer in the nineteenth century, but Alan Turing formal-

ized modern theoretical computer science a few years after Gödel’s land-
mark papers. In doing so Turing made Gödel’s ideas more accessible by 
framing them in the context of a computer.

It’s possible that Turing became interested in computers because of 
a personal tragedy. In high school, Turing lost his friend Christopher 
Morcum to bovine tuberculosis. There is speculation that Turing turned 
from God because of the incident and later concentrated on development 
of the automated human to demonstrate man’s materialistic nature. As 
we discussed earlier, Turing used the imitation game in his proposal in 
1950 of a “Turing test” to refer to whether computers can achieve the 
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abilities of the human. Constructing a machine to imitate a human was 
Turing’s imitation game. 

Turing and His Machine 
In 1936 Turing invented the Turing machine, which uses operations that 
can be considered foundationally axiomatic. 

A Turing machine is a mathematical model of computation that 
manipulates symbols on a strip of tape according to a table of rules. The 
tape is regarded as infinite and is divided into a sequential set of loca-
tions on which the machine can read, erase, and write. The action of the 
Turing machine is determined by the number read from the tape at its 
current location and the machine’s state. The symbol on the tape might 
be a one and the machine might be in state twenty-two. State twenty-
two says that if a one is on the tape, the read/write head should erase the 
one, write zero, move one position to the left, and change its state from 
twenty-two to state fifteen. 

The process seems quite simple but is extremely powerful. The sim-
ple Turing Machine can be used to execute any computer program. This 
includes AI computer programs written for today’s supercomputers. The 
Turing machine might take a long time to duplicate the supercomputer 
but will eventually get the job done.

Thus, Turing is the founder of modern theoretical computer science. 
His machine formalized the concepts of the algorithm and computation. 

Turing Goes to Church 
Later in the 1930s, after developing the Turing Machine, Turing trav-
eled from Great Britain to study under mathematician Alonzo Church 
at Princeton. Church had developed a computational language he 
dubbed lambda calculus. The computational ability of lambda calculus 
was shown to be the same as that of the Turing machine. Both were 
said to be computationally universal. In other words, the Church-Tur-
ing thesis claims any computationally universal number cruncher can 
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be performed on a Turing machine and visa versa. If something can be 
computed, the Turing machine can compute it. 

The Church-Turing thesis has powerful implications. The blazing-
ly fast computers we have now are amazing, but every algorithm per-
formed by today’s computers can be performed on a Turing machine.2 
Compared to early computers, the Turing machine calculation may take 
a million or a billion times as long. But if computing time and memory 
are sufficiently large, Turing’s simple machine can sluggishly duplicate 
the performance of a supercomputer. 

Don’t miss the significance of this. The Turing machine established 
what can or cannot be computed. The speed of today’s computer is blaz-
ingly fast, but the takeaway is this: any performance limitations identi-
fied on Turing’s original machine applies equally to today’s computers 
and therefore to modern AI.3 If a task is algorithmic, it can be executed 
on a computer. Non-algorithmic tasks cannot be executed on a Turing 
machine or any other computer.

Looping Algorithms
Recall that an algorithm is simply a step-by-step set of instructions 
to generate a desired result. Many algorithms have inputs. Take cooking 
recipes, for example. The ingredients for a recipe serve as recipe inputs, 
and then comes the algorithm that tells you what to do with the inputs. 

Some step-by-step procedures don’t qualify as algorithms. For ex-
ample, software developer Alex Altair observes that the scientific meth-
od may look algorithmic, but isn’t.4 Here are the four steps in the scien-
tific method: 

1. Make an observation.
2. Form a hypothesis that explains the observation.
3. Conduct an experiment that will test the hypothesis.
4. If the experimental results disconfirm the hypothesis, return 

to step #2 and form a hypothesis not yet used. If the experi-
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mental results confirm the hypothesis, provisionally accept the 
hypothesis. 

This is a step-by-step procedure. So why isn’t it an algorithm? Because 
step #2 reads “Form a hypothesis that explains the observation.” Unless 
there is a hypothesis specified, the general scientific method cannot by 
coded on a computer. Doing so requires information outside of the rule 
list. So, Altair is right. The scientific method is not algorithmic.

Some algorithms can loop forever. For instance, there is an algo-
rithm on your shampoo bottle that could prove dangerous if interpreted 
literally. 

1. Lather
2. Rinse
3. Repeat

Followed literally, this algorithm will go on forever and your hair will be 
really clean. No matter how clean your hair, you will wash it again when 
the algorithm instructions are followed literally. 

The intent of the shampoo instruction is made crystal clear by 
changing the last instruction from “Repeat” to “Repeat once.” The in-
structions are now:

1. Lather
2. Rinse
3. Repeat once

With this revision, the hair washing procedure is only executed 
twice. Thus is the world of algorithms: a programmer must be very care-
ful to specify an exact action without ambiguity. 

The Turing Halting Problem 
We mentioned Turing’s halting problem in the previous chapter. Now 
we will address it more thoroughly. 

In 1936 Turing proved the so-called halting problem is non-algo-
rithmic and therefore cannot be solved using any computer program.5 



1 1 � Tur ing Ma kes Gödel Simple  /  257

The halting problem addresses whether there exists a computer program 
called a halting oracle. A halting oracle could examine an arbitrary com-
puter program and answer the question of whether that program will 
halt or loop forever. As we said before, the halting oracle does not exist. 
Such a computer program can never be written.

A key word describing the program under analysis is “arbitrary.” 
Some computer programs obviously halt. If computer code consists of 
“Print Hello World then stop,” halting is obvious. Likewise, a computer 
program that says “Print Hello World and, as long as two is greater than 
one, do it again” will be printing Hello World forever. The condition that 
two is greater than one is always true, so the program will perpetually 
loop. 

Sometimes it’s easy to tell whether a computer program will halt or 
continue forever, as with the lather/rinse/repeat algorithm. But telling 
whether a computer program halts or loops for more complex programs 
is sometimes difficult. There’s always the option of running the program. 
If a program runs for a while and stops, the problem is solved. But what 
if it doesn’t stop? If a program runs for a year, we might be tempted to an-
nounce that it will run forever. But the program might halt after running 
for one year and five seconds. The halting problem is therefore described 
as a semi-decidable problem. We can often know whether a program 
halts, but we can never be sure if a program that is still running loops 
forever.

How can the Turing halting oracle be shown to be non-computable? 
Turing, acknowledging he was building on Gödel’s paper published a 
few years earlier,6 used Gödel’s reductio ad absurdum smackdown. The 
proof first assumes the halting oracle is computable and then shows, as 
a consequence, that a contradiction occurs. The initial computable as-
sumption is revealed as wrong and the computable halting oracle is ex-
posed as a logical illusion. 
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A short proof appreciated by nerds is in the endnotes.7 The proof 
that the Turing halting oracle is non-computable is beautiful for those 
who appreciate elegant reasoning.

The Incredible Uses of the Halting Oracle
If the Turing halting oracle did exist, it would have all sorts of wonder-
ful applications. The oracle could be used to solve many open problems in 
mathematics. Proofs for some of these problems have large cash prizes.

May the Fours Be with You
Here’s a fun example illustrating how a halting oracle could be effectively 
used—if it were computable. 

Let’s start by defining the operation of “crunch” as spelling out a 
number and counting the number of letters.8 For example, the number 
three has five letters: T-H-R-E-E. So when we crunch three, we get five 
letters. For larger numbers, numbers are spelled out one number at a 
time. For example, the number sixteen is written as ONE, SIX. Both 
numbers have three letters for a total of six letters. Therefore, crunch-
ing sixteen gives six. This works for really big numbers too. Consider a 
million, which is one followed by six zeros. ONE has three letters and 
ZERO has four letters. So one million is ONE, ZERO, ZERO, ZERO, 
ZERO, ZERO, ZERO. That’s a total of twenty-seven letters to write 
one million. We don’t include spaces or commas in the count. Therefore, 
one million crunches to twenty-seven.

Here is the interesting part. If we keep on crunching any number, it 
looks like we always end up at four. Watch how this happens: 

One million, as we have seen, crunches to twenty-seven letters.
Twenty-seven, written as TWO SEVEN (three letters plus five let-

ters) has eight as its crunch number.
The word EIGHT has five letters.
The word FIVE has four letters.
The word FOUR has four letters.
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Since FOUR crunches to four, it looks like we’re in an endless loop 
of doing the same thing over and over.9 

What is interesting is that, no matter what number we start with, 
we always seem to end up with the number four. Let’s try another.

The number 377, as THREE SEVEN SEVEN (five plus five plus 
five), crunches to fifteen.

Fifteen as ONE FIVE has eight letters when spelled out and 
crunches to eight.

EIGHT crunches to five.
FIVE crunches to four.
Repeated crunching again converged to four. Could it be that every 

number eventually crunches to four?
Let’s write the crunch operation as an algorithm. Since we always 

seem to end at four, we’ll call the algorithm “May the Fours Be with 
You.”

An input is needed to start things. Let’s call the input X. X can be 
any number. The steps are as follows:

 Input X
 Replace X by its crunched number
 if X = 4 stop
 Otherwise, repeat

As you can see from our steps, when the “May the Fours Be with You” 
algorithm sees four, it halts. If not, it will run forever.

Does the “May the Fours Be with You” algorithm always halt no 
matter what number X we start with?10 One counterexample is all that 
is needed. 

We write a computer program that repeatedly uses the “May the 
Fours Be with You” program. We apply to the number X=1 and see if 
it crunches to four. If it does so we move on to X=2 and see it also even-
tually crunches to four. Then to X=3. On and on we go testing each 
number in sequence. If we happen on a number that does not crunch to 
four, we exit the program and the program HALTS. But if all numbers 
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do eventually crunch to four, it would take forever to prove this, because 
there are an infinite number of numbers.

Enter the Turing halting oracle. Our program is presented to the 
halting oracle. The oracle examines the code and without running the 
code decides whether the program HALTS or LOOPS forever. If the 
oracle announces looping through all numbers HALTS, a counterex-
ample has been found and there is a number that doesn’t crunch to four. 
If the halting oracle outputs LOOPS, then the program will run forever. 
This would mean no counterexamples are ever found and the “May the 
Fours Be with You” has been proven. 

This is not the only problem the halting oracle could solve. If it ex-
isted, the halting oracle could prove or disprove every conjecture where a 
single counterexample proves the conjecture false.

Here are some examples.

Goldbach’s Conjecture
Goldbach’s conjecture is a more serious application of the Turing halting 
oracle—if the Turing halting oracle were computable.

In a letter dated June 7, 1748, addressed to possibly the greatest 
mathematician of all time, Leonard Euler, fellow mathematician Chris-
tian Goldbach noted that every even number looked like it could be 
expressed as the sum of two prime numbers.11 For example, the even 
number ten can be written as the sum of seven and three. Both seven 
and three are prime numbers. Another example is one hundred, which is 
the sum of prime numbers ninety-seven and three. Larger even numbers 
are more difficult to parse into two prime numbers, but so far no one 
has found a counterexample. Goldbach’s conjecture has been tested for 
all even numbers up to 4 x 1013  or 4,000,000,000,000,000,000 or four 
billion billion. In every case, an even number was shown to be able to be 
expressed as the sum of two prime numbers. 

But no matter how many even numbers tested Goldbach’s conjec-
ture, the conjecture will never be proved. No matter how long the search 
and no matter how large the even numbers, there can always be a larger 
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number that violates Goldbach’s conjecture. And we never run out of 
larger numbers.

So what does this have to do with the Turing halting oracle? Any 
student in introductory programming can write a program to step 
through all the even numbers one at a time and see if they are sums of 
two primes. The program will find that ten is the sum of the prime num-
bers seven and three, and then move on to the next even number, twelve. 
The even number twelve can be written as the sum of the two prime 
numbers five and seven. So we move on to fourteen, which is the sum 
of the prime numbers eleven and three. And on we go. The program is 
written so that if a counterexample is found to Goldbach’s conjecture, 
the program will print Eureka! and print the even number that disproves 
Goldbach’s conjecture.

If a single counterexample is found, Goldbach’s conjecture will be 
proved to be wrong. If, on the other hand, Goldbach’s conjecture is true, 
the Goldbach program will run forever. Unfortunately, forever is a long 
time and we are only able to check for a finite number of cases. Forever 
is still a long way from the four billion billion numbers already tested. In 
fact, the difficulty of starting to verify Goldbach’s conjecture starting at 
four billion billion is just like starting over again. An infinite number of 
even numbers has yet to be tested.

But suppose a Turing oracle were able to analyze the computer pro-
gram and announce whether the program would halt or run forever. The 
Goldbach program that steps through all even numbers is presented 
to the Turing oracle. If the Turing oracle says the Goldbach program 
runs forever, then Goldbach’s conjecture is true. If the Turing oracle says 
the Goldbach program stops, it means there is a counterexample. The 
Goldbach program has found an even number that is not the sum of two 
primes and Goldbach’s conjecture is false. 

There have been prizes of up to one million dollars offered for any-
one able to prove Goldbach’s conjecture. So having a Turing oracle could 
earn us big bucks. But unfortunately, Turing has shown the Turing ora-
cle is non-computable. 
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Here’s the point. The halting oracle is non-algorithmic. It can’t be 
written as a computer program. There are numerous other similar prob-
lems in computer science that are not computable. And according to the 
Church-Turing thesis, this limitation extends to today’s hyper-perfor-
mance AI engines.

Legendre’s Conjecture 
Goldbach’s conjecture could be proved or disproved using a halting or-
acle, if such an oracle could exist. There are many other similar open 
problems. It helps to know about some of these before we consider Chai-
tin’s number. 

Take Legendre’s conjecture, which is about prime numbers. Legen-
dre claims at least one prime number always lives between the square of 
two consecutive numbers. Take, for example, the consecutive numbers 
two and three. Two squared (two times two) equals four. Three squared, 
or three times three, is nine. Between four and nine are the primes five 
and seven. Legendre’s conjecture checks out here. What about ten and 
eleven? Ten squared is one hundred. Eleven squared is 121. Does a prime 
live between one hundred and 121? Yes. In fact, there are five prime 
numbers in this interval, namely 101, 103, 107, 109, and 113. Is this true 
for all numbers? Are there always prime numbers between the square of 
two consecutive positive numbers? To disprove Legendre’s conjecture, 
we need only find one counterexample. Like the Goldbach conjecture, a 
computer program could be written to sequentially step through all con-
secutive positive numbers and check whether a prime lived between their 
squares. If a counterexample occurred, the program would stop and an-
nounce the answer. If no counterexample exists, the program would run 
in a never-ending search. This program could be submitted to a halting 
oracle (if one existed) to determine if the Legendre conjecture is true 
or not. But halting oracles don’t exist so, to date, Legendre’s conjecture 
remains unproven.
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The Riemann Hypothesis 
A $1,000,000 prize has been offered by the Clay Mathematics Insti-
tute for the first correct proof of the Riemann hypothesis.12 The hypoth-
esis deals with properties of the Riemann zeta function, conjecturing 
that all so-called zeros of the function have real parts equal to a half.13 
Don’t worry if you don’t understand the previous sentence; just know 
that many consider the Riemann hypothesis to be the most important 
unsolved problem in pure mathematics. You may recall Russell Crowe, 
as Nobel Laureate mathematician John Nash, discussing the Riemann 
hypothesis in the biopic motion picture A Beautiful Mind.

It would be great to be able to verify the Riemann hypothesis. A 
proof of the Reimann hypothesis would help solve many other open 
problems in mathematics. In 2004, Xavier Gourdon and Patrick Demi-
chel verified the hypothesis through the first ten trillion non-trivial ze-
ros. A single zero not displaying this property would disprove the hy-
pothesis. 

If the halting oracle existed, the Riemann hypothesis could be re-
solved as either right or wrong. 

The Collatz Conjecture 
Start with any positive number. If the number is even, divide by two. If 
odd, multiply by three and add one. The Collatz conjecture says that no 
matter what number you start with, you will end up at the number four. 

Here’s an example. Start with the number ten. It’s even, so divide by 
two to get five. Five is odd. Multiply by three and add one, and you get 
sixteen. This is even so we divide by two. Sixteen divided by two is eight. 
Eight divided by two is the end: four. The destination of four has been 
reached—Collatz’s conjecture works with an initial number of ten. 

Does it work for all numbers? This is an open problem in math-
ematics. To disprove it, all that is required is a single counterexample. A 
computer program can be easily written to test the Collatz conjecture for 
ever-increasing numbers. The program would stop if a counterexample 
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were found, but it would continue its search forever if the Collatz con-
jecture were true. 

This would be solved if we had access to a halting oracle.

Conway’s Game of Life
Conway’s Game of Life is another interesting example illustrating how 
useful the halting oracle would be.

According to Conway, his Game of Life has its genesis with genius 
mathematician John von Neumann, who thought about a lot of things, 
including the settlement of Mars. As you no doubt know, Mars is hos-
tile environment for humans. Von Neumann thought we could land a 
bunch of robots on Mars with the idea of preparing the planet for hu-
mans to visit. But sending a robot to Mars is expensive, and the number 
of robots needed would be cost-prohibitive. So von Neumann came up 
with a great idea. He first noted that Mars was red because there was lots 
of iron on the surface of the planet. Why not send robots up to build a 
smelter, process the iron ore, and manufacture more robots? 

A serendipity of processing iron ore is the production of oxygen, 
which could then be used to fill a closed dome for future visiting as-
tronauts. Von Neumann’s idea required constructing robots that could, 
in turn, manufacture other robots. Von Neumann solved the problem 
mathematically and showed that, indeed, robots could be programmed 
to reproduce themselves.

Aware of von Neumann’s work, John Conway experimented with 
a less ambitious project he called the Game of Life. As you may recall 
from Chapter 1, the Game of Life is laid out on a checkerboard grid that 
extends without bound in all directions. An arbitrary number of identi-
cal checkers (or lights) are placed on squares on the grid. Each square on 
the checkerboard is surrounded by eight squares: top, bottom, right, left, 
and the four squares touching the four corners. The initial placing of the 
checkers can be viewed as a computer program. The game’s algorithm, 
recall, follows four simple rules that dictate how checkers are added or 
removed from a board.



1 1 � Tur ing Ma kes Gödel Simple  /  265

Once a board is updated by removing and inserting checkers, the 
rules are applied again. The patterns able to be generated by the four 
simple rules are astonishing. There are patterns that do not change, pat-
terns that repeat but do not move, and patterns that glide across the 
checkerboard. The diversity of patterns generated by Conway’s four 
simple rules is unexpected. Significantly, in a crude realization of von 
Neumann’s reproduction challenge, there are Game of Life patterns that 
iteratively generate an unbounded sequence of identical patterns that 
march off to the right of the generator. 

The behavior of the Game of Life is determined solely by how the 
checkers are initially placed on the boundless board. The checker loca-
tions can be considered the input into the algorithm dictated by Con-
way’s four rules. Here’s the question: do the patterns launched by the 
initialization of the Game of Life continue forever? Or will all the check-
ers be eventually removed from the checkerboard and the game stop? 
This is the halting problem for the Game of Life.

There are some obvious cases. If only one checker is placed on the 
board, the checker is removed, the gameboard is empty, and the game 
is over. The same thing happens when many checkers are placed on the 
board such that no checker is in one of the eight squares surrounding any 
other checker. 

Contrast this to the “blinker” where three checkers are placed hori-
zontally in a row. Using Conway’s rules, the next pattern will be three 
vertically adjacent checkers. The middle checker doesn’t move. In the 
next step the pattern reverts to the original three horizontal checkers 
in a row, and the process repeats. The simple pattern is called a blinker 
because the same pattern oscillates back and forth forever. Even more 
fundamental is four checkers placed in a two-by-two square. According 
to Conway’s rules, this pattern is stable. It never changes or moves.

Both the blinker and the two-by-two checker square are examples of 
patterns that will never go extinct. The patterns in isolation will always 
have checkers on the board and, in this sense, will never halt. In more 
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complicated scenarios, a moving pattern such as the glider can collide 
with a two-by-two block and destroy the fragile balance that keeps the 
block alive. This can doom the block and the entire board to extinction.

Again, all action in the Game of Life is determined by the initial 
placement of the checkers on the grid. There is nothing random in the 
execution of the Game of Life. Conway’s four rules can be interpreted 
as a computer program of sorts with the initial placement of checkers 
considered as the input to the program. For simple cases the program 
can be seen to eventually halt or run forever. But if we place a hundred, 
a thousand, or a million checkers on the grid, forecasting whether the 
Game of Life will halt or run forever becomes difficult if not impossible. 

This is exacerbated by the brittleness of the future behavior as a 
function of initial positioning of the checkers. An elaborate distribu-
tion of checkers might result in a Game of Life pattern that runs forever. 
Move one checker and the subsequent process may become extinct and 
therefore halt.

A simple example is the blinker that oscillates back and forth forev-
er. The blinker starts with three adjacent checkers placed in a horizontal 
row. Move the right most checker one square to the right so that there 
are now horizontally two adjacent checkers, an empty space, and a third 
checker. In the Game of Life, this new pattern goes extinct in the first it-
eration and the board is empty. Moving one square therefore transforms 
the immortal never-halting blinker into a pattern that immediately be-
comes extinct. The same initialization brittleness can be found in larger, 
more complex checker patterns.

Here, for our purposes, is the takeaway. The Game of Life results in 
patterns that go on forever or become extinct. If we had a halting oracle, 
we could write Conway’s four rules and the initial checker pattern in a 
computer program and present the program to the halting oracle. The 
halting oracle would then tell us whether the future offers eternal life 
or extinction. But Turing has proved there is no computer program or, 



1 1 � Tur ing Ma kes Gödel Simple  /  267

equivalently, no algorithm that can predict whether a computer program 
with an input will halt or run forever. 

Rice’s Generalization 
In his PhD dissertation at Syracuse University in the early 1950s, math-
ematician Henry Rice generalized Turing’s halting problem and showed 
that no computer program behavior could be deduced by another com-
puter program.14 Not only is there no algorithm to determine whether a 
computer program will halt, there’s no algorithm to determine anything 
non-trivial a computer program will do. There is no algorithm, for ex-
ample, to determine whether an arbitrary computer program will print 
out the number three.

Although there is a formal mathematical development demonstrat-
ing Rice’s theorem, its illustration is straightforward. Examples of Rice’s 
theorem can often be seen by piggybacking on the Turing halting prob-
lem. Here’s an example about the specific problem of printing a three 
or not. Consider again the computer program we wrote for Goldbach’s 
conjecture. In the Goldbach program, even numbers are sequentially 
checked to see if they can be expressed as the sum of two primes. When 
presented to the halting oracle, Goldbach’s conjecture will be disproved 
if the program halts, and proved if it doesn’t. Now let’s go back to the 
Goldbach computer program and make a small change. A line of code 
is inserted into the program that, prior to finding a counterexample and 
stopping, the program prints the number three. This is the only print 
command in the code. So if Goldbach’s conjecture is false, the comput-
er prints a three and stops. If the Goldbach program runs forever and 
Goldbach’s conjecture is true, then the computer program will never 
print a three. Therefore, if there can exist no halting oracle, there can 
be no oracle that can examine an arbitrary computer program and an-
nounce whether the computer program will ever print a three.

Rice’s theorem and the special case of the halting oracle are exam-
ples of the many things a computer cannot do. 
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Takeaways
Alan Turing proved there are truths outside of the capabilities of com-
puters that cannot be algorithmically proven. Turing’s proof of the 
non-algorithmic nature of the halting problem was the first of many 
problems shown to not be solvable by computer software, including AI. 
Goldbach’s conjecture cannot be solved using a halting oracle. Neverthe-
less, Goldbach’s conjecture is either true or false, and hope looms for a 
proof sometime in the future. 

More interesting is the case where the truth of a proposition is prov-
ably unknowable. In the next chapter, Chaitin’s number is introduced. 
It is a number between zero and one and is a function of the computer 
language under consideration. Chaitin’s number can be used to prove 
or disprove every problem in mathematics requiring a single counterex-
ample. These include Goldbach’s conjecture, the Riemann hypothesis, 
and the conjectures of Collatz and Legendre. Remarkable as it sounds, 
Chaitin’s single number does it all. 

But Chaitin’s number is provably unknowable. This means there are 
well-defined numbers that provably exist that are provably unknowable. 

Showing there are provably unknowable realities is the topic of the 
next chapter.



12. The Unknowable
The halting probability omega is maximally unstructured and 
maximally unknowable.... A religious person once in Vienna 
told me that he viewed it as a step closer to God because it shows 
something [in] the mind of God… a numerical value, but we can’t 
get it. 

—Gregory Chaitin1

Computers and computer programs have properties that 
are unknowable. Non-computable you have even more remarkable 

unknowable properties. How do you know anything? What will your 
future self remember about you now? What are you capable of achiev-
ing? 

Donald Rumsfeld knows about the unknowable. He served as the 
United States Secretary of Defense in the early 2000s. He offered the 
following word jumble: “There are known knowns; there are things we 
know we know. We also know there are known unknowns; that is to 
say, we know there are some things we do not know. But there are also 
unknown unknowns—the ones we don’t know we don’t know.”2 

Upon first hearing, Rumsfeld’s quote sounds like doubletalk. But 
careful reading reveals insight. There are indeed things we don’t know 
we don’t know. In AI unexpected contingencies are something we don’t 
know we don’t know. AI engineers didn’t know a windblown plastic bag 
would befuddle a self-driving car until it happened.

A case not considered in Rumsfeld’s list is something knowably un-
knowable. In computer science, we can prove mathematically there are 
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things that exist that are unknowable. Two examples are minimal com-
puter program questions and Chaitin’s number. 

Are non-computable and unknowable synonymous? When I asked 
Gregory Chaitin this question, he responded affirmatively. He said, 
“There’s no program to calculate it. There’s no way to prove it.”3 

Chaitin is credited, along with Andrey Kolmogorov and Ray Solo-
monoff, as independently founding the field of Algorithmic Information 
Theory, also referred to as Kolmogorov-Chaitin-Solomonoff, or KCS, 
information theory.4 Impressively, Chaitin formulated the basics of the 
theory while a senior in high school in the Bronx and published his ini-
tial contributions in a peer-reviewed journal papers while still a teenager.

KCS complexity is commonly referred to as Kolmogorov informa-
tion. The reason for this is the Matthew principle. We read in Matthew 
13:12, “Whoever has will be given more, and they will have an abun-
dance. Whoever does not have, even what they have will be taken from 
them.” Of the three men who independently discovered the principles 
of the theory, the Russian mathematician Kolmogorov was the most 
famous. He was a member of the Russian Academy of Science for his 
many contributions, including development of the axiomatic model of 
probability. At the age of five, he noted that the sum of odd numbers 
starting with one was always a perfect square. For example, 1 + 3 + 5 = 
9 and 9 is 3 times three, or three squared. Adding the first thirty-nine 
odd integers, 1 + 3 + 5 +… + 39 gives 400, which is equal to the square 
of 20. This is a pretty deep insight for a young lad of five.

On the other end of the celebrity spectrum, Solomonov was not as 
famous as Kolmogorov, and Chaitin was a teenager. According to the 
Matthew principle, all the glory usually goes to Kolmogorov. But we’ll 
use the more historically fair term KCS information theory. 

Foundational to KCS complexity is the length of elegant program.5 



12� The Unk nowable  /  271

Elegant Programs
The shortest program for doing a specific task is called an elegant pro-
gram. Unfortunately, for long programs, elegant programs are unknow-
able. One may stumble across an elegant program but never know it.

Consider a 3D printer. Amazingly, 3D printers can print body 
parts,6 ceramic body armor,7 toys,8 firearms,9 and who knows what else. 
These printers require programming. Consider a computer program to 
print a 3D image of the bust of Abraham Lincoln. The bust requires de-
tails of Lincoln ranging from his tussled hair to the mole-like bump on 
his left cheek. When written, this computer program will have a certain 
length in bits. Now consider a computer program to print a spherical 
bowling ball with three finger holes. Which program will be shorter? 

The bowling ball is an easily described sphere with three holes. The 
program for the bust of Lincoln requires lots of details. The simpler 
bowling ball program will obviously be shorter when measured in bits.

If both you and I are tasked with writing a computer program to 
generate the same bust of Abraham Lincoln, our programs will be dif-
ferent. One of our programs will be shorter than the other. There must 
exist a shortest program for printing Lincoln’s bust. Chaitin dubbed this 
shortest program the elegant program.10 The length of the shortest pro-
gram is a measure in bits of the KCS (or Kolmogorov) complexity of 
Lincoln’s bust. 

Since it is less complex, the elegant program for the bowling ball will 
be shorter than the elegant program for Lincoln’s bust.

Those familiar with computers know about compression software 
that produces zip files and JPG images. Large images are made smaller 
by taking into account redundancy. Compressed files transmit more 
quickly and are then reconstructed by the receiver. 

The compressing process can be compared to shipping dehydrated 
food. Water is removed at the factory. The waterless food is light and can 
be shipped less expensively. The customer rehydrates and, ideally, recon-
structs the original food at the receiving end. Likewise, compressed files 
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can be transmitted using limited bandwidth and be “rehydrated” at the 
receiver. 

Rehydrated food rarely tastes as good as the original. The dehydra-
tion process often loses and even undesirably modifies the original food’s 
taste, aroma, and texture. Some image compression techniques, such as 
JPG image compression, are likewise “lossy.” The recovered image is a 
slightly corrupted version of the original. If an original computer file can 
be recovered from a compressed file exactly, the compression is said to 
be lossless. Lossless dehydration would result in reconstituted food that 
is indistinguishable from the original. Portable network graphic (PNG) 
images are examples of lossless compression.

For a given file, there is a way to compress maximally for given com-
putational resources. The smallest lossless compression of a file, the el-
egant program, is the KCS complexity of the file measured in bits. The 
shortest file is the elegant program description of the image. The com-
pression is typically cast in terms of a descriptive computer program able 
to reproduce the object. 

Any large file can obviously not be compressed into a single bit. 
And any file can obviously be represented by its uncompressed version. 
Therefore, the KCS complexity of any file lies somewhere between one 
bit and the length of the uncompressed file in bits.

Here are some examples to help think in terms of KCS complexity. 
Structured sequences, like the repeating 01,

X = 01 01 01 01 ... 01,
have a small KCS information. A short program able to completely char-
acterize the string is “repeat 01 a thousand times and halt.”

A sequence of 0s and 1s formed by flipping a fair coin 1000 times 
will almost assuredly have KCS information close to 1000 bits. There is 
no structure or redundancy of which to take advantage. In other words, 
the coin flipping sequence is not compressible. We have to write the en-
tire sequence of 0s and 1s in order to capture the sequence with no loss. 
The KCS complexity will be close to the length of the uncompressed file. 
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There are deceptive strings that look random, with seemingly large 
KCS complexity, but are not. One is the Champernowne constant.11 The 
number is

 0 1 2 3 4 5 6...
The constant is seen to be a list of sequential counting numbers side by 
side. In base ten the numbers do not look very random. The list in binary 
looks more ominous.

 0 1 00 01 10 11 000 001 ... 
What’s so special about this number? Published when D. G. Cham-

pernowne was still an undergraduate, the number passes many tests for 
randomness, just like a repeated coin flip. But Champernowne’s constant 
has a low KCS complexity. Like the coin flipping example, most lists 
of randomly appearing numbers are not compressible. But Champer-
nowne’s number has a short description, namely, “Write all integers side 
by side starting at zero.”

Another example of a complex-looking sequence is the binary string 
describing the number pi.

π = 3.14159…
The string appears random. But π can be computed from many 

short looping algorithms. Its KCS complexity is very low.

Elegant Programs and Halting
Looping and halting are not relevant to whether a computer program is 
elegant or not. The number pi goes on forever without repeating. It can 
be computed using a looping program that runs forever. Every loop in 
the program generates pi to greater and greater precision. There must be 
a shortest elegant program to generate pi. No one of whom I am aware 
has claimed identification of this program.

Some real numbers are not computable even with finite unbound-
ed resources. This interesting observation was made in 1937 by Alan 
Turing in a paper whose title begins “On Computable Numbers.”12 All 
integers are computable. Rational numbers, defined as the ratio of two 
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integers, are likewise computable. Many irrational numbers like pi are 
computable by programs that loop forever. 

But some irrational numbers cannot be computed. Imagine re-
peatedly choosing a number from zero through nine randomly, for-
ever. The numbers are placed side by side, to the right of a decimal, 
to generate an irrational number between zero and one. The number 
might be 0.520913… etc., forever. This number will not be computable 
with a short computer program. The best the computer can do is say 
“X=0.520913… etc., forever. Print.” There is finite memory in the uni-
verse, so this irrational number composed of random integers that goes 
on forever cannot be computed. 

There is a continuum of numbers that can’t be computed. A con-
tinuum, like all the real numbers from zero to one, can’t be counted. 
Numbers able to be computed are countably infinite and, in this sense, 
smaller in number. As the name suggests, countably infinite is an infin-
ity which can be counted. The integers, 1, 2, 3, 4, … etc. are countably 
infinite. You can count them. All the numbers between zero and one is a 
larger infinity and can’t be counted.

All computable numbers have a corresponding elegant computer 
program and, curiously, turn out to be countably infinite.

Translating Computer Languages
The KCS complexity of an object is the length of the object’s elegant 
program. In other words, the amount of information of an object is the 
length of the smallest computer program able to reproduce the object 
exactly. 

The length of any elegant program will depend on the computer 
language used. The shortest program to generate any object using the 
computer language Python will have a different length in bits than if the 
computer language Basic is used. 

But there will always be a translating program to convert Python 
code into Basic code. The length of the translating program is fixed. If we 
have an elegant program in Python, the corresponding elegant program 
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in Basic will have a shorter length that the sum of the length of the fixed 
translating Python-to-Basic program and the KCS complexity of the el-
egant Python program. 

This doesn’t specify the KCS complexity of the Basic program but 
does give a bound on the length of the elegant program written in Basic. 
So if an elegant program in Python is a billion bits and the translation 
program a hundred million bits, we are assured the KCS complexity of 
the elegant program in Basic is less than 1.1 billion bits.

Is a Program Elegant?
The status of a given program as elegant is unknowable for long pro-
grams. In other words, we can never know whether a program for a given 
task is the shortest possible program for that task. We might stumble 
across such an elegant program but won’t know that it’s elegant.

Furthermore, we can easily prove there can be no computer program 
to algorithmically show if any computer program above a given length is 
elegant.

The proof uses reasoning similar to that found in the Berry paradox.

The Berry Paradox
G. G. Berry, a librarian, told mathematician Bertrand Russell about a 
special number. Berry’s number was “the smallest positive integer not 
definable in under sixty letters.”13

Counting words is easier than counting letters, so let’s change Ber-
ry’s number to “the smallest positive integer not definable in under a 
dozen words.” 

As numbers get larger, their description in English can get longer. 
All numbers between zero and a hundred can be stated using only one or 
two words. For instance, the number 77 is stated in two words, “seventy-
seven.” 

Numbers between a thousand and a hundred thousand need at 
most seven words. For example, the number 33,243 can be written as 
“thirty-three thousand two hundred forty-three.” 
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Words above a million are longer. The number 1,234,560 can be 
stated as “one million two hundred thirty-four thousand five hundred 
sixty.” The word count here is ten. So what is Berry’s number? What is 
“the smallest positive integer not definable in under a dozen words”?

Berry’s number thus defined seems innocent enough until the words 
in the sentence are counted and meta-analysis applied. The phrase “the 
smallest positive integer not definable in under a dozen words” has 
eleven words. Here’s the rub. The sentence itself defines Berry’s number 
but does so in eleven words. Asking for the smallest number requiring 
a dozen words using this sentence therefore reveals a logical illusion. 
Berry’s statement of his number is nonsense. Finding “the smallest posi-
tive integer not definable in under a dozen words” defines the number in 
eleven words.

Similar reasoning can be applied to show there exists no computer 
program that can identify whether a computer program is elegant. Ad-
dressing whether a program is elegant reveals a logical illusion similar to 
Berry’s paradox. The elegant program for a complex object is unknow-
able.

Let’s unpack this claim.

 Non-Computable Elegance
We will now prove there is no computer program that can announce 
whether a long computer program is elegant.14 This requires close atten-
tion and thinking, so if your brain is tired, you might want to skip this 
section. Otherwise, put on your thinking cap.

There are some caveats for proving a program is elegant, so let’s make 
a precise statement: “Determining whether a program is elegant is not 
possible if its length is larger than a certain size.” In other words, there is 
no universal elegant-program detector. Gregory Chaitin gives a wonder-
ful (dare I say elegant?) proof of this unknowability theorem. 

Chaitin’s proof is beautifully simple. 
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Elegance Knows No Bounds
First, note there is no longest elegant program. No matter how long an 
elegant program, there is an elegant program for another object that is 
longer. The program for printing three busts of Lincoln is a teeny bit lon-
ger than that for printing only one. The three bust program is something 
like, “Print Lincoln’s bust. Repeat twice. HALT.” 

There are better examples. We can have an elegant program that 
describes Lincoln’s 3D bust and another elegant program that describes 
a specific 3D statue of Bugs Bunny. The elegant program describing both 
Lincoln’s bust and Bugs Bunny will be longer than either one of the in-
dividual elegant programs. Likewise, a 3D elegant program for busts of 
all members of the US Senate will be longer than the shortest program 
for Lincoln’s bust only. 

There is no longest elegant program. Elegant program length can 
be arbitrarily large. The length of elegant programs for a given program 
language is unbounded.

Chaitin’s Elegant Proof (Pun Intended)
A reductio ad absurdum smackdown can now be applied to prove the 
algorithmic unknowability of whether a program is elegant. 

To apply the reductio ad absurdum smackdown or, equivalently, 
a proof by contradiction, an assumption must first be made. If the as-
sumption is shown not to be true, then the opposite of the assumption 
must be true. So let’s start out by assuming there is a computer program 
to tell whether a computer program is elegant. We’ll call this program 
the elegance detector. If a program input as a sequence of bits is elegant, 
the elegance detector spits out a one. If not, the elegance detector out-
puts a value of zero.

If there is such an elegant-program detector, then it has a fixed 
length. Add to this the length of a binary counter of finite length. Start-
ing at some initial point, the counter in the program sequentially adds 
one—like a digital odometer or the counter for the national debt. As-
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sume the combined length of the elegance detector and the counter is, 
say, E (for elegant) bits. 

All computer programs can be reduced to a sequence of bits. We 
start out the binary counter by inputting E bits that are all zero. This 
sequence of bits may correspond to some computer program, and the 
elegance detector outputs a one if it is elegant. If not elegant, or the se-
quence of zeros is nonsense as a computer program, the output is zero. 

Next the counter generates another sequence of E zeros, except the 
last bit is changed from a zero to a one. This is a different possible el-
egant program and the elegant-program detector checks to see if it is. 
The counting continues. The next program is all zeros except the last 
two bits are 10. In other words, we are using a binary counter that, in 
binary, inputs all the programs of length E bits sequentially. Doing so 
can be done by a very short looping program that does the counting. 
This is a lot of programs to check, but this is okay. The concern here is 
not with how long programs take to run but only with the length of the 
computer program. 

After a while all programs of length E have been checked. All have 
been tagged as elegant or not. The counter continues by checking all po-
tential programs that are of length E+1 bits, starting with E+1 zeros. 
When this is done, all programs of length E+2 start to be checked. 

Here’s the rub. Since there are elegant programs of ever-increasing 
length, the elegance detector will eventually detect an elegant program 
of length greater than E bits. For purposes of discussion, let’s say an el-
egant program is discovered that is E+100 bits long. 

But wait a minute. A program of length E, the elegance detector, 
has generated and identified an elegant program of length E+100. Think 
about it. This is a contradiction similar to Berry’s paradox. 

The elegance of the program has been identified using the E bits of 
the elegant-program detector. Since the elegance detector is of length 
E bits and has generated the elegant program, any elegant program de-
tected by the elegant-program detector cannot have an elegance above E 
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bits. An E+100 length elegant program has been input into the elegant-
program detector capable of generating the program using E bits. The 
elegant-program detector is, itself, the elegant program for generating 
the E+100 length elegant program. This cannot be! The elegant pro-
gram is either E bits or E+100 bits. It can’t be both. 

This is the beautiful contradiction noted by Chaitin that proves that 
an elegant-program detector for checking all elegant programs cannot 
exist. The universal elegant program detector is not computable and 
therefore not algorithmic. For arbitrarily large computer programs, 
there is no way to determine the corresponding shortest program. The 
elegant program for a long program, like 3D printing of busts of all con-
gressmen, in this sense is unknowable as such.

The length of an elegant program is its Kolmogorov or KCS infor-
mation. We have just proved that the KCS information of an object is 
unknowable. This can include the shortest program for generating Lin-
coln’s bust on a 3D printer or the maximum possible compression of a 
large image. Current compression algorithms, like PNG compression of 
images and zip algorithms for making big files smaller, do a good job but 
only provide an upper bound for the true KCS information. The true 
KCS information of long computer programs with long elegant pro-
grams is provably unknowable.

The Turing halting oracle and KCS information cannot be comput-
ed. They are unknowable. But the most compelling and mind-blowing 
non-computable unknowable is Chaitin’s number.

Chaitin’s Number
Chaitin’s number, unknowable, is an intellectually stunning piece of 
mathematics ranking with Cantor’s model of the infinite and Shannon’s 
theory of information in terms of mind-bending brilliance. Chaitin’s 
number exists. If you write programs in C++, Python, or Basic, your 
computer language has a Chaitin number. It’s a feature of your computer 
programming language. We can prove that Chaitin’s number exists, but 
also that it is unknowable.
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The mathematically provable idea that something exists but is un-
knowable has clear philosophical and theological implications. There is 
a connection with Plato’s cave allegory. Prisoners are chained together 
in a cave. They are only able to observe the wall of the cave. Behind the 
prisoners is a brightly burning fire, and between the prisoners and the 
fire there is activity. The prisoners can only see the shadows of activity on 
the cave walls. The shadows on the cave walls are their best view of true 
reality. The prisoners might expect there is true activity behind the shad-
ows but, as long as they are chained and unable to look behind them, the 
true reality behind this activity is to them unknowable. Plato’s allegory 
goes on, but the story thus far serves our purpose: there are things we 
know exist that are unknowable. We only know their shadows. Chaitin’s 
number is one of those things. It exists, but it is provably unknowable. 

Like Chaitin’s number, elegant programs exist but can be unknow-
able. But when understood, Chaitin’s number is more mind-blowing. 
Chaitin’s number, one number, can be used to prove or disprove every 
known math conjecture that requires a single counterexample to dis-
prove. We’ve previously listed a few of these open problems. They in-
clude Goldbach’s conjecture, the Riemann hypothesis, the Collatz con-
jecture, and Legendre’s conjecture. 

This claim about Chaitin’s number seems so outlandish we need to 
repeat it. Any open problem in mathematics that requires a single coun-
terexample to disprove it can be proved or disproved using Chaitin’s one 
number. Even though Chaitin’s number is irrational and goes on forever 
without any pattern, it only needs to be known to finite precision to solve 
any arbitrarily long but finite list of open problems. 

An Awkward Dance with Chaitin’s Number 
I was just learning about Chaitin’s number when I heard a talk about 
the number at an invitation-only conference in 2006. When the talk 
was finished, I asked the speaker whether Chaitin’s number changed de-
pending on the computer language used. For example, is Chaitin’s num-
ber different for the computer language Python than for the computer 
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language C++? The speaker assured me that, just like KCS complexity, 
the number changed from language to language. In my role of pompous 
professor, I ignorantly informed the speaker I disagreed. He shrugged 
and went on to another question.15 

On the plane trip home from the conference, I mentioned to my 
friend and fellow conference attendee William Dembski that Chaitin’s 
number blew my mind. The number was an intellectually brilliant idea. 
I then mentioned to Bill that I would love to talk to Gregory Chaitin. In 
addition to formulating Chaitin’s number, Chaitin was one of the three 
independent developers of algorithmic information theory. I told Bill I 
would love to meet this man and see what kind of mind thought such 
incredible thoughts.

Bill turned to me, his eyes wide with surprise.
“The speaker at the conference—the one you asked the question to. 

That was Gregory Chaitin!” 
I was simultaneously surprised and embarrassed. I had corrected 

Gregory Chaitin on a property of Chaitin’s number! 
I came to find out—no surprise—I was wrong and Chaitin was 

right. Chaitin’s number is different in Python than it is in C++. Some 
call Chaitin’s number Chaitin’s constant (as Wikipedia currently does).16 
But since the number changes from computer language to language, it is 
not a constant in the sense of Planck’s constant or the speed of light. The 
term Chaitin’s number is more appropriate.

I later met Dr. Chaitin, in 2011, at a conference in Italy and con-
fessed about our first meeting. He was mildly amused. A decade later, 
in 2021, I recorded a wonderful two-hour podcast with Chaitin17 where 
we talked about everything from his two children to his proof of KCS 
information unknowability, to Chaitin’s number. 

My wish to explore the mind of this intellectual giant had come true.

The Taxman’s Deduction 
The principle behind Chaitin’s number can be boiled down to a simple 
illustration. There are two identically appearing bags of grain. One con-
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tains corn and the other contains beans. One sack is opened and it con-
tains beans. The second bag doesn’t need to be opened to identify its con-
tents. It contains corn. Likewise, in the Taxman’s Deduction example to 
be discussed, the payments of one taxpayer can tell us something about 
another taxpayer whose payment is not known. Chaitin’s constant, we 
will see, informs us about programs that loop forever using information 
from computer programs that are seen to halt.

To more deeply understand Chaitin’s number, consider the follow-
ing tax collection problem. Again, you will need to put on your thinking 
cap. 

A man gives Beggar Bob eight dollars with the instructions he 
should either keep it all or divide the money in two and give the two 
halves to two different people. And everybody who receives the money 
is told to do the same thing: keep the money or divide it in half and give 
to two different people. 

Bob takes the money and starts the giveaway process. After all the 
sharing is done, the money ends up in the following hands:

$4 Shirley
$2 Goodness
$1 Ann
$1 spread among other people 

The sum of the distributed money adds up to the eight dollars origi-
nally given to Beggar Bob. The taxman’s job is to collect taxes on all the 
eight dollars according to who has what. He knows who has how much 
money. He also knows tax has been paid on five of the eight dollars but 
doesn’t know who paid what. The five dollars, we will see, is analogous to 
Chaitin’s number. We’ll call five dollars the Tax Number.

To flush out the tax cheats, the taxman calls on his assistant to 
bring him individual records of tax payments. But the tax payment in-
formation comes in slowly. The assistant brings the taxman documents 
showing that Goodness ($2) paid her taxes. Immediately, the taxman 
knows that Shirley ($4) has not paid her taxes. Why? Because tax has 
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been collected on $5 and Goodness has paid on $2 of the $5. The tax-
man knows Shirley has not paid her taxes on $4 because, if she had, the 
taxman would have collected more than $5, which he hasn’t. Therefore, 
even though the taxman does not have a direct report about Shirley, he is 
justified in garnishing Shirley’s wages to collect her back taxes.

One way to account for Beggar Bob’s sharing is use of a string of 
bits. Every time sharing happens, an additional bit is added.18 The table 
of taxpayers can be written in binary as:

Shirley: 0
Goodness: 10
Ann: 110 
Binary strings of length four or more to other people 

Goodness’s string of 10 means sharing has occurred twice. So Goodness 
gets one half of one half, or a fourth, of the eight dollars. Ann’s binary 
string is three bits long. She gets only an eight of the $8. The longer the 
string, the less the percent of money.

Here’s how Chaitin’s number relates to the tax example. Those who 
have paid taxes correspond to computer programs that have halted. Be-
cause of the Tax Number, some tax welchers can be identified when 
only a few payments from taxpayers have been identified. Likewise, with 
Chaitin’s number, programs that will loop forever and never halt can be 
fingered when other programs have halted. 

Let’s drill down further.
Assigning a string of bits to each keeper of money can be thought of 

as a computer program. Assume Goodness’s bit string of 10 is a comput-
er program, as is Ann’s 110. When reduced to a binary string, computer 
programs will be much longer than this, consisting of bit streams of a 
billion bits or more. Assuming the dollar can be subdivided into sub-
penny units, sharing can continue as long as desired 

Each subsequent split corresponds to adding a new bit,19 and each 
split decreases the value of a program by one-half. This can be visualized 
as a tree. If there is sharing, a branch of a tree grows two more branches 
corresponding to the two persons shared with. If there is a decision not 
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to split, the tree has a terminal leaf. The splitting continues until a pro-
gram is complete and each branch is terminated in a leaf.20 The splitting, 
or in case of the tax problem, the sharing, stops for that branch of the 
tree. The tree will be big and the programs will get quite long. 

Each leaf of the tree corresponds to a computer program that will 
halt or loop forever. Like the taxman doesn’t know who paid and who 
didn’t, we have no idea which program halts and which loops forever. 

Consider the task of running all the programs on the tree at the 
same time. Doing so will be a formidable but computable task. After a 
while a number of these programs will halt. Suppose we have our eye on 
a program that is still running. Is there any way we can ascertain wheth-
er that program will run forever? If the program’s value when added to 
the accumulated value of all the other programs that have halted exceeds 
Chaitin’s number, we know for a certainty the program under scrutiny 
will run forever! This can be determined before all the programs that 
will stop have stopped. 

This is exactly analogous to the taxman’s identifying tax cheats 
before all the tax paying records are collected. To make the identifica-
tion, the taxman requires the Tax Number. For the computer programs, 
knowledge of Chaitin’s number is needed.

Solving the World’s Problems
As all programs corresponding to tree leaves are run, some will halt. If a 
program halts, its value is added to the tally of all the programs that have 
halted. This tally cannot exceed Chaitin’s number. If the cost of a pro-
gram added to the current tally exceeds Chaitin’s number, that program 
will loop forever.

The tree of computer programs is enormous. One of the strings of 
zero and ones in a tree’s leaves will correspond to a program written to 
evaluate Goldbach’s conjecture about all even numbers being the sum 
of two primes. Recall that, if this program halts, the Goldbach conjec-
ture is disproved. If not, Goldbach’s conjecture is true. Chaitin’s num-
ber can tell us if the Goldbach program will run forever if enough other 
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programs in the tree have halted. If, as evidenced by all the programs 
that have halted, the Goldbach program when added to the tally exceeds 
Chaitin’s number, then, like identifying the tax sheet, we know the Gold-
bach program will never halt. A counterexample will never be found. In 
this case, Goldbach’s conjecture would be proven true.

But not only does the Goldbach program live as a sequence of ones 
and zeros on the computer program tree, so do the analogous programs 
evaluating such open problems as Legendre’s conjecture, the Riemann 
hypothesis, the Collatz conjecture, and even the “May the Fours Be with 
You” conjecture. All these open problems can be solved by seeing if in-
clusion of their value in the tally of halted programs exceeds Chaitin’s 
number. If Chaitin’s number is exceeded by a running program, the pro-
gram under inspection will loop forever and the conjecture irrefutably 
proved.

This is such an astonishing result it needs to be stated again. One 
number, Chaitin’s number, can be used to solve all the open mathemat-
ics problems thus far proposed in the world that can be disproved with a 
single counterexample in an infinite list of possibilities. 

So (drum roll) what is Chaitin’s number?
Since the total value of all programs cannot exceed one and the value 

of programs that halt is a subset of these programs, Chaitin’s number lies 
between zero and one. It will be very close to zero.

A catch, of course, is that Chaitin’s number requires the accumu-
lated value tally of all the programs that halt. This could be done by 
applying a halting oracle to every program. Doing so, though, would be 
overkill. We don’t need to know specifically whether a program halts or 
loops. We only need the accumulated value of all the programs that halt. 
This is much less information than whether each individual program 
loops or halts. Besides, if we knew which programs loop or halt, we’d 
know whether the Goldbach program looped or halted. There would be 
no need to use Chaitin’s number to determine this. 
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How might we determine Chaitin’s number in a more direct fashion 
without repeated use of a halting oracle? No one knows. 

So there you have it: Chaitin’s number is extraordinary in what it 
can do. It exists but is unknowable. 

Chaitin’s number is appropriately called “mystical” and “magical” by 
the leading textbook in information theory.21

Notes and Limitations
Here are some clarifications about Chaitin’s number.

First, Chaitin’s number is irrational, so it goes on forever with no 
repeating pattern. But to apply it to a given list of conjectures, Chai-
tin’s number needs to be known to only finite precision. For any list of 
conjectures, the precision needed is determined by the longest computer 
program on the list of conjectures we are trying to resolve.

Secondly, there are numerous open problems that cannot be proved 
or disproved by a single counterexample. Chaitin’s number isn’t useful in 
answering such questions. An example is the twin prime problem. Two 
primes are said to be twin if they are two units apart. The number pairs 
(11,13), (41,43) and (101,103) are examples of twin primes. Are there an 
infinite number of twin primes? Knowing Chaitin’s number does not 
solve this problem.

Thirdly, applying Chaitin’s number would be an ominous task even 
if we knew Chaitin’s number. Running all complete computer programs 
less than a given length is an unsurmountable undertaking even for the 
fastest parallel computers. And some programs can take eons to run 
before they halt. The extreme times required for certain programs to 
run explode into the unbelievably enormous busy beaver numbers22 of 
Algorithmic Information Theory that are so large, a list of them can’t be 
computed! So, the actual use of a knowable Chaitin’s number to prove or 
disprove anything looks extremely doubtful.

The books of Gregory Chaitin, the source of Chaitin’s number, are 
highly readable for the average nerd.23 Included in Chaitin’s book list is 
one entitled The Unknowable.
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Non-Computable You
AI is executed by computers and there are barriers to what computer 
programs can do. That is why your most interesting properties are non-
computable. Computer programs, themselves, have mysterious proper-
ties. Brilliant minds like Gödel, Turing, Kolmogorov, and Chaitin have 
explored these mysteries and have shown there are brick wall dead-ends 
to what can be known. Writing computer programs to solve the un-
knowables addressed in this chapter is impossible. They will forever re-
main unknowable—so abandon all hope. There is no way through, over, 
under, or around the brick wall of unknowability.

Computers can only analyze inside the box. Remarkable humans 
have the meta-ability to go outside ourselves, look back inside, and ex-
plore our abilities. We can understand understanding, think about 
thinking, and as seen in this chapter, know about the unknowable. 
These are astounding intellectual abilities beyond the capability of any 
computer. Our extraordinary meta-abilities provide more examples sup-
porting both the limitations of computers and the non-computableness 
of you.





13. Randomness Happens
Anyone who considers arithmetical methods of producing 
random digits is, of course, in a state of sin.

—John von Neumann1

Random numbers are used extensively in machine intelli-
gence. Randomly assigned weights between neurons are typically 

used to initialize neural network training. In metallurgy, slow cooling 
of metal enhances the properties of the final product. The process is 
called annealing. Lots of heat means a lot of vibration of atoms—a lot of 
noise. Simulated annealing in AI schedules a reduction of random noise 
strength in the cooling of a computer search problem to make finding 
of the final optimal solution more probable. Evolution simulation in AI 
requires random mutation in each search generation.2

But generating true random numbers by computers is non-algo-
rithmic. Computers are limited to deterministic operations and cannot 
generate random numbers. So-called random numbers generated by a 
computer program are not random. They are described, rather, as pseu-
do-random numbers. Pseudo-random numbers often work quite well as 
substitutes for true random numbers. But we must look to the quantum 
world for true randomness.

Random Numbers and Probability
One area in which randomness comes into play is in calculating prob-
abilities. Numerical values for some probabilities are intuitively evident. 
The probability of getting a heads when flipping a fair coin is one-half. 
If a six-sided die is rolled, the probability of displaying three pips is one-
sixth. Other probabilities are less evident. In the board game Monopoly, 
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for example, what is the probability of landing on Free Parking after 
twenty moves? Figuring this out is possible but requires highly detailed 
analysis. An easier approach is to write a computer program to simulate 
playing the Monopoly board game. Run the computer program a billion 
times and count the number of times you land on Free Parking after 
twenty turns. Divide this number by a billion and you have a good esti-
mate of the Free Parking probability. 

Likewise, if a coin is flipped a billion times, you’d expect very close to 
half of the flips to result in a heads, giving an estimate of one-half as the 
probability of getting a head on the flip of a fair coin.

Estimating probabilities by repeated probabilistic simulations is 
called Monte Carlo simulation. The Monte Carlo name was coined by 
Stan Ulam and John Von Neumann during their classified thermonu-
clear bomb research at Los Alamos in 1946.3 This was during the Juras-
sic period in the development of the computer.

I once applied Monte Carlo simulation to calculating the probabil-
ity of winning the Cracker Barrel restaurant puzzle. In every Cracker 
Barrel restaurant I’ve ever visited, this triangularly shaped puzzle is on 
every dining table. There are fifteen holes in the board and a golf tee is 
inserted into all but one hole. As in checkers, the golf tees can be jumped 
as long as doing so lands you in an empty hole. The jumped peg is then 
removed. This solitaire game is won if you reach a point where only one 
peg remains on the triangular board. 

What is the probability of winning the Cracker Barrel game? I 
wrote a simple Monte Carlo simulation to estimate the probability of 
winning. At every position, there are a small handful of possible jumps. 
I gave an equal probability to each jump. I published the result in the 
book Introduction to Evolutionary Informatics,4 co-authored with Wil-
liam Dembski and Winston Ewert. A reader of our book independently 
wrote a Monte Carlo program for the same problem and claimed my 
results were wrong—and he was right. The results weren’t off enough to 
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alter the conclusions based on my simulation but were sufficiently off to 
be embarrassing. 

Non-Random Calculations
My co-author Winston Ewert, programmer extraordinaire, came to 
the rescue by generating the exact probability of beating the puzzle. In 
his analysis, there were no repeated trials required in Monte Carlo simu-
lation. He wrote a program that tracked every possible Cracker Barrel 
game using a branching tree. If there were three possible moves at some 
point, Ewert looked at each solution. If the first possible jump resulted 
in two possible jumps on the next move, he looked at each of these con-
tingencies individually. The two possibilities correspond to a branch in 
the tree dividing into two other branches. By doing so for all cases, a tree 
of possibilities grew one sprouting branch at a time. When a game ends, 
there is no more branching. The branch is terminal and is called a leaf.

If there is one peg left at the end of the game, a Cracker Barrel victory 
is claimed. Otherwise, the game is lost. The number of tree leaves where 
the game terminates is equal to the number of games possible for the 
Cracker Barrel puzzle. We simply divide the number of winning games 
by the number of leaves. This is the probability of winning the Cracker 
Barrel game if, at each point, the next move is chosen with equal chance. 
Note there is nothing random in Ewert’s algorithm, although the final 
answer should be about the same as the Monte Carlo simulation. Like 
reasoning the chance of getting three pips on a roll of a six-sided die is 
one-sixth, Ewert calculated all possible successes and divided by the to-
tal number of all possible Cracker Barrel games.

Similar search trees can be written for most board games, including 
Monopoly, checkers, chess, and GO. For any given board configuration 
in chess, for example, there are a finite number of possible moves. Each 
of the possible moves gives the next set of possible moves, and so forth. 
All of these possibilities can be ranked according to effectiveness. Based 
on this ranking a proper move is made.
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The problem with trees in more complex board games like chess and 
GO is that the number of branches explodes and soon exceeds in num-
ber all the atoms in the universe. Most board games are also competitive 
and must factor in strategies of the competition. These factors mean that 
approaches much more sophisticated than exhaustive tree searches are 
needed. The most common method applied here is reinforcement learn-
ing, discussed in Chapter 9.

Generating Random Numbers
In Monte Carlo simulations, how are pseudo-random numbers gener-
ated by a computer algorithm? I learned a lot about this when I consult-
ed as an expert witness for a Native American tribe in a lawsuit involving 
its casino. My job as an expert was to address the difference between 
gambling and sweepstakes. One distinction is that sweepstakes have a 
finite and fixed number of prizes. When you enter a sweepstakes of the 
type sponsored by McDonalds or the Publisher’s Clearinghouse, there 
is a fixed list of prizes. Once the prizes are awarded, there is no chance 
of winning anything else. Gambling, on the other hand, allows repeated 
winning. Although highly improbable, winning at roulette ten times in a 
row is possible. There is no fixed number of prizes. Gambling has a dif-
ferent set of governmentally legislated laws than sweepstakes. The tribe 
I represented claimed its gaming establishments did not engage in gam-
bling. They claimed they were running a legal sweepstakes.5

Another requirement of sweepstakes is that no purchase is required 
to enter the contest. This is usually written in small print on a sweep-
stake ticket. Small print because the sponsors of the sweepstakes want 
you to spend money to buy their product. If a purchase were required 
to gain a chance to win, the contest would be a lottery and not a sweep-
stakes. My mother, Lenore Marks, was part of a rebel community who 
repeatedly entered sweepstakes without buying the sponsor’s product. A 
sweepstake entry typically requires only a postcard and a stamp. Mom 
won a few small prizes. She quit when I convinced her that any profit 
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she claimed for herself must include deduction of the time spent filling 
out the postcards and the cost of postage stamps. There is no free lunch. 

On the land of the tribe I represented, local establishments that of-
fered sweepstakes machines allowed sweepstake players to offer a “dona-
tion” to the tribe by depositing money in the slot of the sweepstake ma-
chine. Because of the “no purchase required” sweepstakes requirement, 
requests for free sweepstake entries could be made at the establishment. 
Ask and you get a freebee.

My job for the tribe was to examine the proprietary code that con-
trolled the automatic sweepstake units. In each case I examined, the 
software was always righteous. The software did what its developers 
said it did. Legally, the games were sweepstakes and not gambling. A 
fixed number of prizes were determined and randomly distributed to 
the sweepstake players. When the list was exhausted, the sweepstakes 
ended—and then a new list could be generated and a new sweepstakes 
started.

How did the program “randomly distribute” prizes? That was the 
element most interesting to me. The use of random numbers in AI is 
ubiquitous. But how do we generate random numbers on a computer?

Deterministic Random Numbers
As I’ve said, it turns out that almost all so-called random number gener-
ators are not truly random. Computers can only generate random num-
bers deterministically. This sounds like an oxymoron but is true. 

Say you want a random number between zero and one. To do this 
mechanically, a wheel of fortune, much like a roulette wheel, can be cali-
brated between zero and one. The wheel is given a spin, and when it 
stops it points to 0.408. This is our first random number. Give another 
spin and we get 0.883. Repeated spins generate a sequence of random 
numbers.

But are the roulette random numbers truly random? Don’t New-
ton’s laws of motion always dictate the outcome? The spinning wheel and 
the behavior of the little ball dictated by its initial conditions and the 



294   / Non-Computable You /  

interface with the roulette wheel can all be modeled by classic Newto-
nian physics. If I spin the wheel twice exactly the same way, drop the 
ball exactly the same way at the same point on the wheel, and there is no 
interference with the wheel, like vibration or heavy breezes, the outcome 
in both cases should be the same. The roulette wheel outcome is de-
terministic, but the interactions are so complicated that the outcome is 
more easily modeled probabilistically. The random outcome of the spin 
of a roulette wheel is perhaps better described as pseudo-random.

Computers are also unable to generate true random numbers. Ran-
dom numbers generated by computers are also better described as pseu-
do-random. Here’s a simple way to generate pseudo-random numbers 
between zero and one using what is called a linear congruential genera-
tor. Start with any number between zero and one. This is called the seed. 
Then add pi = 3.14159. Pi is a convenient number to add because it is 
complicated and usually available on the computer as a single symbol. 
Then discard everything to the left of the decimal and you have a ran-
dom number between zero and one.

To illustrate, suppose we start with a seed equal to a half. Adding 
pi gives 3.6415. To generate the random number between zero and one, 
simply drop the 3. The number to the right of the decimal, 0.6415, re-
mains. This is the first random number. We can then loop and use this 
random number to generate another random number. If we take 0.6415 
and repeat the operation of adding pi and keeping only the numbers to 
the right of the decimal, we get yet another random number: 0.7832. 
Repeating this process again and again generates a decent list of random 
numbers between zero and one. 

Notice that this procedure is deterministic. There is nothing ran-
dom happening except for one subtle thing: the sequence of random 
numbers has to start at some point. What makes the string of numbers 
random is the choice of the first number, called the seed. If you and I 
started with the same seed and use the same random number-generating 
algorithm, we would generate the same random sequence of numbers. 
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For this reason, the random number generation process is a pseudo-ran-
dom number generator. 

If I choose a seed unknown to you, you will not generate the same 
sequence of numbers that I do. What makes the numbers look random 
is the choice of the initializing seed. 

The linear congruential generator, once popular, has today been re-
placed by more sophisticated algorithms that also require a random seed. 
A truly random seed cannot be generated by a computer. One way to get 
a seed is to grab a random number off the computer’s real-time clock. 
If you have ever seen a continuously updated tally of the US national 
debt, the digits corresponding to dollars, tens of dollars, and hundreds 
of dollars are changing so fast they appear blurred.6 If “STOP” is hit at 
any time, these last three digits will be as if they are randomly chosen 
between 000 and 999. The computer’s real-time clock is a place where a 
random number seed can likewise be generated. Grab a few of the least 
significant digits, stick a decimal point in front, and we have a seed to 
generate a string of pseudo-random numbers. Note that the seed is not 
generated by code. The seed is generated by reaching outside the code to, 
in this case, the computer’s clock. 

A problem with pseudo-random number generators is that, given a 
long enough sequence of numbers, they can be cracked. When random 
numbers are used in encryption, this is not good. 

There are two cracking problem types. The most difficult, the non-
parametric case, occurs when only a long sequence of random numbers 
is known. Nothing is known about how the sequence was generated. 
We have no idea whether a linear congruential generator or some other 
algorithm was used. Here, deep learning neural networks can be used to 
learn to duplicate the sequence of random numbers. Research in doing 
so is in its infancy but nothing stands in the way of more powerful com-
puters solving the problem.7 

Easier is the parametric problem where, in addition to a long line of 
pseudo-random numbers, the type of pseudo-random number genera-
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tor is known. A given pseudo-random number generator will only have 
a handful of unknown parameters. Finding the numerical value of these 
parameters totally defines the operation of the pseudo-random number 
generator. The linear congruential generator has only one number that 
completely defines its operation. In the example we gave, the number pi 
was added to the previous random number. We’ll call this the adder. The 
adder could be many other numbers. We could have used, for example, 
the square root of two for the adder instead of pi. The adder is the only 
number needed to define the sequence of random numbers. We don’t 
even need to know the seed. Given a long line of numbers, jump in any-
where. The sequence of numbers to follow is determined by the adder 
and the number where you jumped in. This number acts as a seed for the 
random numbers that follow. 

Pseudo-random number sequences have been cracked, allowing the 
exact forecast of future numbers from numbers past. George Marsaglia 
presented a crack for the primitive linear congruential random number 
generator using only a couple dozen consecutive pseudo-random num-
bers.8 Certain types of a more sophisticated class of pseudo-random 
number generator called the Mersenne Twister have been cracked using 
624 consecutive numbers.9 

Care must be taken when using pseudo-random number generators 
in a program. I once wrote some code using the computer language of 
Matlab, a high-level user-friendly computer language. The program used 
pseudo-random numbers in a Monte Carlo simulation. I ran the simula-
tion program for about a week and got a handful of successes over hun-
dreds of thousands of trials. Then I ran the program again and got the 
exact same tally of successes. Suspicious, I looked closely and found that, 
unless told differently, Matlab always started their random number gen-
erator using the same seed. My two “random” simulations were therefore 
exactly the same because the initiating seed in both cases was the same. 
I had wasted a week’s worth of computing time. 
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I fixed my code to force a new seed for the random number genera-
tor every time I started the program running. And I had learned an im-
portant lesson: software random number generators generate the same 
sequence of random numbers if initiated with the same seed. After the 
seed number was introduced, the “random number generator” used by 
Matlab was deterministic.

How to Recognize Truly Random Numbers
Are pseudo-random numbers close to being random? How do we test 
to see if a string of numbers is truly random? The random numbers must 
be examined to see if they exhibit properties of truly random numbers. 

George Marsaglia formulated the “diehard tests” to scrutinize the 
randomness of pseudo-random numbers.10 The diehard tests are a bat-
tery of statistical tests assessing the quality of a random number genera-
tor.11 An example easily understood is simple averaging. If the string of 
random numbers is uniform on zero to one, the average of a long list of 
random numbers should be about one half.

Regulatory agencies over gaming and sweepstakes require the ran-
dom number generators used in one-armed bandits to pass the diehard 
or a similar battery of tests. The pseudo-random number generators 
don’t always pass. For instance, the pseudo-random number generator 
used by Microsoft in Windows famously failed randomness tests in 
2007.12

True Randomness Cannot Be Algorithmic 
We must be careful when talking about randomness because there are 
various definitions of randomness. In algorithmic (KCS) information 
theory, a sequence of ones and zeros is said to be random if it can’t be 
compressed into a smaller file. We have seen that pseudo-random num-
bers can be generated if there is an initial random seed. But a long list of 
pseudo-random numbers can be compressed a lot. The compression con-
sists of the typically short program used to generate the pseudo-random 
numbers and specification of the numerical value of the initializing seed. 
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As defined in the previous chapter, the elegant program to generate the 
sequence of pseudo-random numbers is the shortest program to do so.

In the world of classical Newtonian physics, true randomness does 
not exist. When I flip a coin, the measurable force applied to the coin 
is deterministic. When the coin hits the floor, well-established laws of 
elasticity and collision mechanics dictate how the coin will bounce. The 
outcome of the coin flip is dependably deterministic. Yet when I flip a 
fair coin on the fifty-yard line at the Super Bowl, the chance of getting 
heads or tails is modeled as 50/50. But probability theory is only a conve-
nient model. It gives the general idea of what we should expect to happen 
if the coin is well-balanced and nothing else intervenes. And the model 
works well. Like the pseudo-random number generator or the previous 
example of the roulette wheel, one can argue that randomness from coin 
flipping and die rolling, on close analysis, is actually deterministic. 

To see this more clearly, imagine a foam rubber coin with a diameter 
of ten inches. The coin is flipped a foot above a carpeted floor. Could 
the flipper orient the coin and control the flip to give a preponderance 
of heads outcomes? With a little practice, one could develop the skill of 
getting heads almost 100 percent of the time. The difficulty of develop-
ing this skill would increase over a hard wood floor, and if the giant coin 
were metal, and if its size decreased. Eventually the challenge would be-
come so intractable that a probability model becomes attractive. 

Pseudo-randomness occurs in computers because true randomness 
is non-algorithmic. Pseudo-randomness in coin flipping and roulette 
wheel spinning is because of the underlying deterministic Newtonian 
physics.

Einstein’s Random Doubts
Quantum mechanics is a source of true random numbers. It is also won-
derfully weird. Quantum mechanics pioneer Niels Bohr said, “Those 
who are not shocked when they first come across quantum theory can-
not possibly have understood it.”13 
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To understand a fundamental principle of quantum mechanics, we 
turn to the comedy movie Mystery Men, which features superheroes 
with not-so-impressive superpowers. One is Invisible Boy, a superhero 
who was invisible as long as no one looked at him.14 If he was invisible, 
and someone peeked, he would become visible. If Invisible Boy looked at 
his own reflection in a mirror, he would be visible. Quantum collapse in 
quantum mechanics is kind of like Invisible Boy. When no one is look-
ing, a quantum wave function can take on many values simultaneously. 
When someone looks at the wave function by measuring it, the wave 
collapses to a single value. The value it collapses to turns out to be purely 
random. If the same experiment is repeated on an identical wave func-
tion, it might collapse to a totally different value. If this seems surreal-
istically weird but you understand this explanation, then you have been 
“shocked” by quantum mechanics just as Niels Bohr predicted.

To work, quantum computing takes into account all of the possible 
solutions contained in an uncollapsed wave function. But people keep 
peeking and the wave function involved in quantum computing collaps-
es. Maintaining coherence so the wave function doesn’t collapse has been 
a major hindrance to the success of quantum computing. It’s hard not to 
look.

Albert Einstein did not like the pure probability associated with 
quantum mechanics. He was famous for various remarks to the effect 
that God “does not play dice” with the universe.15 Einstein thought that 
the quantum collapse of probabilities must be like flipping a coin. Before 
we flip a coin, we can only think probabilistically about the outcome, 
heads or tails. After the flip, whose outcome was determined by the en-
vironment and the flipping mechanics, the deterministic result is known. 
In practice, if a fair coin were flipped enough times, about half will be 
heads and half tails. This is not because the environment is not deter-
ministic but because the environment and physics for flipping does not 
favor either side of a fair coin.
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Einstein thought that quantum mechanics must be like that too. 
There must be deeper, unknown things happening in the universe (hid-
den variables).16 But because we don’t know what the deeper physics is 
doing, the best choice, like in coin flipping, is to use a probability model. 
Einstein’s hidden variable hypothesis seemed to be untestable at first. 
How can we know for sure if there are hidden things we don’t know 
about in quantum mechanics? This seemingly unresolvable position is 
known as the Einstein–Podolsky–Rosen (EPR) paradox.17

Remarkably, the EPR paradox was resolved. There are, it turns out, 
no local hidden variables underlying quantum mechanics. This realiza-
tion results from the profound insight provided by Bell’s inequality. Bell 
looked at two separated entangled particles and showed there were no 
hidden variables in their nonlocal collapse. New fresh bits of pure ran-
domness are continually being introduced to our universe through quan-
tum collapse.

What Does Randomness Have to 
Do with Human Creativity?
Sir Roger Penrose believes that human non-algorithmic (non-com-
putable) characteristics such as creativity are due to non-algorithmic 
quantum collapse in the brain’s microtubules.18 Penrose believes that 
algorithms and thus machine intelligence cannot be creative. The hu-
man ability to create, as we have discussed, is non-algorithmic. So there 
must be a non-algorithmic source underlying creativity. Penrose is a ma-
terialist and thus is self-limited to a naturalistic solution. A purely non-
algorithmic phenomenon in nature looks to be quantum collapse, where 
true random numbers are generated. 

If Penrose is correct, fresh new information is being created in our 
brains in our microtubules because of purely random non-algorithmic 
quantum collapse. But there’s a problem with that theory. The bits of 
information generated by quantum collapse are uselessly random. 
Randomness alone is incapable of generating the specified complexity 
evident in creative thinking.19 A random buzz generated in our neurons 
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will not solve a stubborn math problem or write a great novel. New bits 
must be formulated or organized for some purpose in order for Penrose’s 
theory to work. 

Cryptography
While quantum randomness remains speculative as a way of explain-
ing how our brains work, it promises useful applications for cryptog-
raphy. Cryptography assures online financial transactions are rendered 
secure. 

Must unbreakable cryptography use purely quantum random num-
bers, or do pseudo-random numbers work well enough? Pseudo-random 
number generators can pass randomness diehard tests, but the pseudo-
random codes can be cracked if the underlying deterministic rule for 
generating those numbers is inverse engineered.20 Remember, as we 
noted above, the “random numbers” are commonly generated by a rule 
based on the previous number generated. Rules can be hacked. Cryptog-
raphy requires true, unhackable randomness, not just a string of num-
bers that looks random to us because we don’t immediately know how 
they are generated. 

Pseudo-random numbers have a low KCS complexity. The computer 
program for generating pseudo-random numbers is relatively short. Its 
elegant program consists only of the numerical seed and the algorithm 
for iteratively making future pseudo-random numbers. Recall that the 
number pi looks random but, in fact, can be generated with a short loop-
ing program with small complexity. 

Given only a long sequence of the digits of pi, determining an un-
derlying generative program is difficult. Similarly, a long sequence of 
pseudo-random numbers has a relatively small KCS complexity that is 
typically difficult to identify. Can the underlying pseudo-random num-
ber algorithm be identified from a sequence of numbers? Glauco Amigo, 
Liang Dong, and I showed that the underlying generator for a pseudo-
random number generator can be duplicated using deep learning.21 A 
large number of pseudo-random numbers can be required for inversion 
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back to the underlying generating algorithm. Our analysis was on a ru-
dimentary random number generator used in the early days of comput-
ing. More sophisticated algorithms to learn random number sequences 
would require higher computer power. But since the KCS complexity of 
all pseudo-random number generators is relatively small, it seems pos-
sible that inversion from a sequence of numbers to a short description 
could be achieved even for these more sophisticated algorithms. This 
would not be good news where pseudo-random number generators are 
used for encryption.

For true security, therefore, cryptography must rely on quantum 
randomness. Quantum random number generators spit out purely ran-
dom numbers that cannot be inverted to a generating algorithm. There 
is no generating algorithm. Because the quantum world is truly random, 
quantum random number generators provide an endless unhackable 
source of random numbers.22 

Quantum random number generators may seem exotic, but they are 
available on Amazon.com for less than a hundred dollars.

Quantum Computers
Quantum computers operate in the surreal world of quantum me-
chanics. The operations performed by quantum computers are impres-
sive in terms of speed, but any procedure performed on a quantum com-
puter can also be performed on a conventional non-quantum computer, 
including a Turing machine.23 An operation performed in minutes on a 
quantum computer might take a conventional computer years, but even-
tually the conventional computer would get it done. 

Since all quantum computation can be performed on a regular com-
puter, quantum computer programs so far fall under our definition of al-
gorithmic. Students of quantum computing, for instance, are first taught 
about Grover’s Algorithm and Shor’s Algorithm. The use of the term 
“algorithm” in both these quantum computing procedures reveals they 
are deterministic at their core. 
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Grover’s algorithm, for example, uses quantum computing for nee-
dle-in-haystack searches. I choose a random number between, say, one 
and two trillion. Your job is to guess that number with a sequence of 
yes and no questions. Classically, you might ask if the number is one. If 
not one, how about two? Queries might jump around and, for the third 
query, you might ask if the number is a million and one. If there are 
two trillion entries in the list, there will be a trillion queries on average. 
You might get lucky and find the marked entry on the first query. On a 
bad day, the marked entry would be identified after all other entries on 
the list are queried. This would require two trillion queries. On average, 
though, we would expect a trillion queries for success if guesses are not 
repeated. Grover’s quantum computer algorithm reduces the number 
of queries by about a square root. If a trillion queries are required on a 
regular computer, Grover’s algorithm reduces the query count to around 
a million queries. A million is the square root of a trillion.

Shor’s algorithm is another procedure crafted exclusively for the 
quantum computer. You may have heard that successful quantum com-
puters will render many encryption methods obsolete. This is because 
of Shor’s algorithm where large numbers are quickly decomposed into 
their prime factors. Shor’s algorithm thus renders many encryption pro-
cedures obsolete—that is, it makes them hackable. 

But not to worry. Good minds are working on encryption algo-
rithms immune from the probing eyes of Shor’s algorithm.24 Encryption 
using quantum mechanics, for example, will not be vulnerable to Shor’s 
algorithm.25 In other words, traditional encryption can be cracked by 
Shor’s algorithm, but quantum encryption can’t.

Randomness—Uncompressible
There must be care when talking about random numbers. Random-
ness needs to be defined in discussions. For regulatory agencies, passing 
the diehard battery of tests suffices. Here let’s define randomness using 
compressibility: a sequence of numbers is random if the sequence can-
not be compressed. Randomness of this sort cannot be generated by a 
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computer. A long string of pseudo-random numbers can be compressed 
to the short computer program that generated them. 

Generation of random numbers so defined is non-algorithmic. Even 
the random seed needed to jumpstart the pseudo-random number gen-
erator cannot be generated within a computer program. The seed needs 
to be identified external to the computer program by, for example, an 
appeal to a human programmer or by grabbing the least significant digits 
of a rapidly changing clock. 

Random Thoughts
The Turing halting problem and finding the shortest program to 
execute a specific complex procedure have already been shown to be 
non-computable, but note there is nothing random in these problems. 
They are deterministic. The computer program searching through all 
the solutions to Goldbach’s conjecture either halts, thereby disproving 
Goldbach, or runs forever, proving Goldbach. The program either runs 
forever or halts. There is no randomness. To the list of provably non-
algorithmic operations we add the inability of a computer program to 
generate truly random numbers. Doing so is non-computable. An algo-
rithm can no more generate a true random number than a Chihuahua 
can lay an egg. 

The only source of pure randomness thus far identified is random 
collapse of quantum wave functions. Many researchers agree that you 
are non-computable, and some think quantum collapse might be the 
source of non-algorithmic characteristics of humans like creativity and 
consciousness.26 The topic is hotly debated. However, despite decades of 
exploration, any development of such claims beyond academic specula-
tion and PowerPoint presentations is thus far lacking. 

Now brace yourself for topical whiplash as we move from discussing 
random numbers to talking about ethics in AI.



Part Five: The Good, 
the Bad, and the 

Ecclesiastical





14.AI Ethics
I can picture in my mind a world without war, a world without 
hate. And I can picture us attacking that world because they’d 
never expect it.

—Jack Handey1

Let’s start with two different questions about ethics. 
First, who is ethically responsible when AI goes wrong? For example, 

self-driving cars killing people.2 And Alexa, when asked for a dangerous 
challenge by a ten-year-old girl, suggested sticking a plug halfway into an 
electric socket and shorting the two electrical prongs with a penny.3 In 
cases like these, who or what is at fault?

The second question is, who is responsible for the ethical use of AI? 
For instance, who decides whether to deploy an autonomous swarm of 
killer drones? Is it ethical to delete all the news about a questionable 
conspiracy? Is it right to write software that deletes tweets opposed to 
the climate change theory or opposed to Covid vaccines? 

The two questions relate to two different types of ethics about ma-
chine intelligence and technology in general. Responsibility for AI going 
bad is a question of design ethics. Design ethics addresses the question 
of whether a final AI product does what it is supposed to do and nothing 
more. Here the responsibility lies with design engineers and those who 
write software. Such people have an ethical responsibility to be careful 
in the design of their software, both in defining the goal of the program 
and in making sure their product undergoes reasonably sufficient testing 
and revision so that it effectively meets that goal, making sure a system 
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does what it’s supposed to do, and doesn’t have anticipatable negative 
unintended effects.

The second question, on the other hand, relates to what is known as 
end-user ethics. Technology is available for use. But should it be used? Is 
it proper, for example, for a field commander to launch an autonomous 
anti-radiation Harpy missile given his current knowledge of the battle-
field? Is it ethical for Google to write algorithms to ban your video to 
some people, but not to others?

End-user concerns can drive design specifications, and design limi-
tations can impact the end use of AI technology. But design and end-
user AI ethics are distinct. One belongs in a research and development 
lab. The other belongs in the arena of debate and politics. Both are im-
portant considerations, but they should not be conflated.

 Before going further, we need to look closer at the meaning of eth-
ics.

Defining Ethics
A brief definition of ethics is “the discipline dealing with what is good 
and bad and with moral duty and obligation.”4 The rub here is agreeing 
on the meaning of good and bad. Shakespeare’s Hamlet suggests there 
can be no real definition when he comments, “There is nothing either 
good or bad but thinking makes it so.” Most with a foundation in faith 
will disagree.5

I have attended both secular ethics seminars and ethics seminars 
based on Judeo-Christian principles. The secular seminars seem to me 
built on sand.6 Ultimately, they agree with Hamlet’s claim that good and 
bad are relative. At its foundation, secular ethics must appeal to commu-
nity standards, law, and consensus—all of which change with time and 
vary according to location. 

Here’s an example. According to Kai-Fu Lee, former head of Google 
in China, Chinese business considers the stealing of intellectual prop-
erty to be acceptable standard practice.7 Americans, on the other hand, 
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consider such a practice to be immoral and unethical. Secular ethics 
theory measured by consensus cannot always be consistent. 

Discrediting universal secular ethics is easily done by playing the 
Hitler card. The consensus in Nazi Germany was that gypsies and Jews 
were less than human Therefore the abuse and ultimate termination of 
these peoples was considered ethical by community standards. On the 
other hand, ethics built on a Judeo-Christian foundation appeal to natu-
ral law—the idea that right and wrong are etched on the human heart 
and documented in divinely inspired scripture. Unlike secular ethics 
built on sand, such faith-based ethics has a firm foundation. Yes, some 
issues remain fuzzy; but many ethical questions are answered clearly. 
The Ten Commandments say that stealing is wrong. This means that 
independent of consensus or community standards, whether in Ameri-
ca or China, the stealing of technology is unethical. Likewise, the com-
mandment not to murder irrefutably tags the Nazi Holocaust, indepen-
dent of consensus, as evil.

Having made a stab at defining ethics, let’s now delve further into 
the difference between design ethics and end-user ethics.

Design Ethics
In technology, design ethics requires total transparency in the per-
formance of a final design. Ideally, the technology should do what it was 
designed to do and no more. But total certainty in a final design can 
never be guaranteed 100 percent. Legal parlance is helpful in specifying 
an acceptable level of performance certainty. 

Here’s what I mean. For some AI, strict adherence to a design goal 
may be unimportant. Some AI makes many mistakes, and sometimes 
that’s okay. A good example is Alexa’s response to voice commands to 
play Spotify tunes. As mentioned in Chapter 9, I tried without success 
to persuade Alexa to play “I’ll Do Anything for Love” by Meatloaf. Al-
exa kept offering a different mix than the original. After five minutes of 
varying my request, I gave up. Though annoying, such mistakes we can 
live with. A legal standard here for AI design might be that there is a 
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“preponderance of evidence” that Alexa works. Alexa helps a lot more 
that it annoys. When Alexa correctly responded to the query “Who is 
Robert J. Marks?” I popped a few shirt buttons.

Self-driving cars are a more serious matter. Before considering rid-
ing in a hands-free self-driving car, I would like to know the vehicle op-
erates as intended “beyond a reasonable doubt.” This higher evidential 
standard, applied to capital crimes, recognizes that total 100 percent 
certainty that Tony Two-Toes murdered Mitch the Snitch is never pos-
sible. But a jurist in the murder trial can get really close to total certainty. 
The same standard can be applied to design ethics with potentially life-
threatening consequences.

Measuring the different levels of design assurance is the task of 
those making regulatory policy and standards. How are “preponderance 
of evidence” and “beyond a reasonable doubt” quantified? 

I worked for awhile as a reliability engineer for the US Navy. The 
mature field of reliability engineering tests the degree to which technol-
ogy meets specifications and then how well it ages. The field is important 
to the military because profiteers have historically sold inferior products 
to the military. During the Civil War, profiteers sometimes aided by cor-
rupt politicians sold faulty supplies to the Union Army, ranging from 
misfiring rifles to coats without pockets or buttons.8 The military has 
since adopted specifications and standards for almost every product they 
purchase. Reliability engineers working for the government make sure 
these standards are met. There looks to be much from the field of reli-
ability engineering that can be applied to assessing AI design ethics.9

Keeping AI Simple
AI with a narrow goal is more easily designed and tested than AI with 
wider goals. AI with broad goals, like self-driving cars, has an exponen-
tial increase in the number of possible design contingencies. Complying 
with AI ethical design standards here becomes more difficult because 
vetting becomes more difficult. The problem can be partially mitigated 
by intense scrutiny and application of deep domain expertise during the 
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software development and AI system testing. The more complex the AI 
system, the more difficult the vetting.

End-User Ethics
End-user ethics, as we have said, pertains to how humans decide to 
use technology. In terms of ethics, AI is neither good nor bad. It is a tool. 

If AI is neither good nor bad, what about malware? Malware is a 
piece of software that sneaks onto your computer and screws things up 
or invades your privacy by sharing personal info. Isn’t malware always 
evil? By its very name, malware looks to be universally evil. But it’s not 
the technology itself that’s bad. It’s the way people use it. 

One fictional example is the Irene Demova virus in the NBC televi-
sion series Chuck. The fictional virus is named after the equally fictional 
Irene Demova, a Serbian porn star. Those who click on her website im-
mediately pay the price—their computers are destroyed. The malware 
punishes porn users. So is it good malware or bad malware? Twice in 
the show the virus is definitely good, because Chuck uses it to destroy 
computers programmed to detonate bombs.10 

In real life, malware can serve in cyber and electronic warfare. Much 
of modern military conflict involves high tech, from GPS to smart radar. 
Missiles can be strategically guided through windows of enemy-occupied 
buildings. A similarly high-tech enemy will counter with technology to 
disable software used in warfare. Strategic advantage goes to the side 
that most effectively infiltrates enemy software with malware to render 
operations useless.

The United States used malware to slow Iran’s creation of nuclear 
weapons. Vital uranium enrichment control software was infected with 
Stuxnet malware. Stuxnet is a malicious computer worm “believed to be 
responsible for causing substantial damage to Iran’s nuclear program.”11 
In delaying Iran’s development of nuclear weapons, Stuxnet was good 
malware.

As its name implies, however, much malware is used unethically. 
Webmasters spin that they drop cookies in your computer to better 
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serve you. No. They use cookies to make more money. Annoying cookie 
trackers are everywhere. Marketers on the other side of the computer 
screen might consider cookies to be good malware, but I consider un-
wanted cookies on my computer to be unwanted malware. They invade 
my privacy. The New York Times notes that “many streaming customers 
are unaware that the sitcom titles they prefer, the ads they do not skip, 
their email addresses and the serial numbers identifying the devices they 
use are being harvested and distributed.”12 A quick visit to the Amazon.
com main page spawned eight cookies on my computer. 

More serious is when malware shares the contents of your files. 
When I last went in person to visit a US Department of Defense re-
search site, I was told the use of thumb drives was forbidden. Why? 
Because like Covid spreads among humans, malware can be passed 
from one computer to another. The Chinese government had infected 
many thumb drives with unwanted spy software that was injected into 
a computer when an infected thumb drive was plugged in.13 The soft-
ware shared the possibly classified computer content with Chinese spies. 
Now, when I bring a PowerPoint presentation to give at a DOD facility, 
it has to be on a CD. Thumb drives are too risky.

Even more severe is ransomware, where computers frozen by mal-
ware are unfrozen only after a blackmail Bitcoin ransom is paid. The 
practice is widespread. In 2019 Johannesburg shut down all city com-
puters after a ransomware attack.14 Radio stations have been crippled 
by ransomware.15 In 2019 alone, over 140 local governments, police sta-
tions, and hospitals were held hostage by ransomware attacks.16 In some 
cases arrests have been made, but the lucrative practice continues.17 

There is little doubt that big banks have paid large ransoms to un-
freeze their kidnapped files. Here the bad guys are paid and the kidnap-
ping goes unreported in order to avoid negative publicity for the bank. 
Who wants to put their money in a bank that has been hacked?
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Being Nasty Because You Can
Remember CDs and DVDs? All personal computers used to have them. 
Today everything is streamed. On older computers, the app that ran the 
DVD allowed a click to open a tray in the resident computer tower. The 
DVD fit perfectly. Another click told the computer to suck the drawer 
back into the computer and begin playing the DVD contents. 

Back in those days, I received an email from a friend saying there 
was a free gift for me—a cupholder for my refreshing beverage. My 
friend’s email assured me the cyber gift contained absolutely no mal-
ware. I clinked the attachment in the email and out popped the DVD 
tray on my computer tower. How clever! The DVD tray seen through 
creative eyes is a cupholder. I chuckled. I thought the email was so clever, 
I forwarded the gift to a number of close friends. Based on the assurance 
in my friend’s email, I told all there was no malware associated with the 
gift.

Boy, was I wrong. My click to open the DVD tray released malware 
on my hard drive. Because I had clicked the free gift, all my documents 
were frozen and my computer became useless. There was no recovery my 
support team could identify. So I had my computer drive wiped and my 
software reinstalled. I lost a lot of original work. Some I could recover 
from co-author colleagues with whom I shared papers being written. 
Other documents went to wherever destroyed information goes—the 
same place the light goes when it goes out. 

 Worse, I had unknowingly shared my cyber infection with many 
close friends. Email responses started pouring in. They were, to say the 
least, annoyed. “You told me there was no malware! My computer is now 
useless!” One of my former friends hasn’t talked with me since. 

Why would someone write malware tricking people into ruining 
their computers? Put another way, why do vandals vandalize? The mal-
ware writers weren’t motivated by money, influence, or power. Maybe 
the software gave them bragging rights in their circle of deplorables. Or 
maybe not. Some people are nasty just because they can be. But rest as-
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sured—even when nasty people violate laws without being caught, they 
are still punished by the experience of being who they are. Sneaky wick-
ed people feel like sneaky wicked people.

Y2K Hall of Fame Wannabes
Here’s a similar account from a couple of decades ago. The beginning of 
a new century was upon us, and the Y2K problem, also called the Mil-
lennium bug, was a big topic in the news. Computer code, some feared, 
would confuse twentieth-century year entries beginning with 19XX 
with twenty-first century years that started with a 20XX. The problem 
was hyped by alarmists in articles and books with titles like “The Year 
2000 Computing Crisis.”18 The hyperbolized crisis sold books, but no 
such catastrophe ever occurred. 

At the time I consulted for Microsoft in Redmond, Washington. 
While working with a project manager, I noticed a red numerical digital 
display on the wall that was counting something. The tally increased ev-
ery few seconds. I asked the MS project manager, Mark Casebolt, what 
was going on? 

Mark said the screen was counting the number of times malicious 
hackers tried to infiltrate Microsoft’s systems. Why would someone 
want to hack into the Microsoft system? For bragging rights, I’m told. 
The successful hacker would be lauded by his reprehensible community 
for harpooning a big fish like Microsoft. 

No one, it turns out, successfully hacked Microsoft regarding the 
Y2K concern. But thousands tried.

Phishing
I have a lot of websites. I used to host them through a company named 
Bluehost, and I was initially told they had unlimited website storage for 
a single flat fee. Not so. When I posted a large number of linked videos, 
I was slapped on the wrist and told by Bluehost to remove them. Videos 
take up a lot of space in memory. I removed them.

Then I received another email from Bluehost, again saying I had too 
many files on their server. I clicked on the provided link, logged in, and 
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got confusing results. I was not being allowed to edit my sites. My screen 
didn’t respond to clicks and was unusable. So I contacted Bluehost and 
was informed I had been phished, meaning I had been fooled into giv-
ing my login and password. The website in the second email link was a 
duplicate of Bluehost’s. As with the legitimate Bluehost site, I was asked 
to log in and make my changes. I provided my login and password to the 
site, and hit return. My screen became useless and that was all. Whoever 
phished me with the phony Bluehost screen now had the login and pass-
word to all my websites. And that’s all they needed to do their mischief.

The next day all my Bluehost web pages were infected with who-
knows-what malware. Bluehost detected the bugs and blocked all my 
content. They were right in doing so, but it sure was irritating. I was not 
clever enough to avoid being suckered and didn’t want my naivety to be 
the cause of infection of others. Luckily, I know a computer whiz, Dr. 
Winston Ewert, an ingenious thinker with whom I have published a lot, 
who knows how to heal infected files. Indeed, healing is what doctors 
do. Winston took all my backup files and placed my webpages on a new 
server, where they reside today.

My Bluehost hackers were not talented phishermen. Like bank rob-
bers writing “this is a stickup” on the back of their business card, they 
had room-temperature IQs. Their malware was immediately detected 
and neutralized before it infected others. 

The Heads and Tails of Bitcoin
Well-encrypted files can’t be hacked and are therefore immune from 
malware. If well-encrypted files get hacked, the blame can invariably be 
traced to human error. Some naïve souls, like me, have been phished to 
voluntarily surrender their login info. The weak link in these cases is not 
the encryption, but the human who falls prey to psychological trickery. 

The best example of the resilience to hacking is blockchain encryp-
tion, which serves as the safeguard to cryptocurrency like Bitcoin. Cryp-
tocurrency is money manifest as software. Bitcoin was the first and most 
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successful form of cryptocurrency. Cryptocurrency is the currency of 
choice for those involved in questionable activities. 

Cryptocurrency can be puzzling. Why would anyone put value in 
the computer software manifestation of currency? The fundamental an-
swer comes from Economics 101. You have Bitcoin and I want it so am 
willing to pay you. It’s therefore worth money.

To date, Bitcoin can’t be counterfeited. The secrecy is due to the 
encryption of Bitcoin in a blockchain. Individual encrypted blockchain 
accounts are linked together in an ever-growing software chain. Each 
Bitcoin transaction is a link in the chain. Each link is individually en-
crypted and is therefore secret. Lose your password to your link, and you 
lose your money. Cryptocurrency exchange officer Gerald Cotton died 
in 2018 and took his password to the grave, leaving over one-and-a-half 
million dollars of Bitcoin forever unclaimed.19 For Bitcoin, no password 
equals no money. 

Bitcoin is nearly impossible to counterfeit because copies of the Bit-
coin blockchain are stored on the computers of many users. If anyone 
tries to change anything anywhere in the chain the breach is immedi-
ately identified because the single hacked software no longer matches the 
myriad of other copies. The American dollar’s worth is assured by trust 
in the economy of the United States of America. Bitcoin’s worth is as-
sured by trust in the security of blockchain encryption through replica-
tion of identical copies of the software in many places. If one of the copies 
is changed, all the other copies will know it and discredit the outlier. 
Everyone would know something phishy was going on. The redundancy 
of Bitcoin copies establishes the trust needed to give the currency value.

Bitcoin’s privacy feature can be used for both good and evil. Those 
wishing to preserve exchange privacy before Bitcoin did business using 
cash. Cash transactions leave no paper trail. Such personal privacy is a 
pillar of liberty. But printing of large currency notes for $1000, $10,000, 
and even $100,000 was discontinued over a half century ago in the Unit-
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ed States and will not be resumed, largely because of their use in the drug 
trade. Today the top denomination in the United States is the $100 bill.

Pablo Escobar, the billionaire leader of the Medellín drug cartel, was 
forced to store his money using hundred dollar bills. He accumulated so 
many lower-denominational bills that $2500 per month was spent on 
rubber bands to bundle the cash.20 Rumor has it that millions of dollars 
remain buried on Escobar’s property, long after his death and the disper-
sion of his drug empire.21 Today such large cash transfers can be made 
more discreetly using cryptocurrencies like Bitcoin, without any need for 
physical cash or rubber bands. 

American Kingpin is the chilling true story of a cyber-savvy drug 
dealer who used Bitcoin for transactions.22 Libertarian Ross Ulbricht 
set up his drug trade website on Tor, a free open-source platform that 
supports anonymity. His site was an eBay for anything illegal. Drugs, 
illegal firearms, suicide drugs, and even human body parts were made 
available for purchase. 

Federal agents captured Ulbricht using old-fashioned detective 
work by cyber-savvy agents. Ulbricht, who used the alias “The Dread 
Pirate Roberts” from the book and motion picture The Princess Bride, 
was captured in a carefully orchestrated sting in a public café offering 
free Wi-Fi. Undercover federal agents were placed strategically in the 
café. The agents had to capture the laptop before the lid was closed. Oth-
erwise, Ulbricht’s password would be needed to get access to his files. In 
the café, two agents feigned a loud conflict behind Ulbricht’s back, and 
when Ulbricht turned to see what was happening, an agent seated across 
from Ulbricht seized Ulbricht’s laptop with the lid still open. Another 
agent muscled Ulbricht immobile so he couldn’t lunge and try to close 
the lid or hit keys that would encrypt his files.

Ulbricht was ultimately convicted and sentenced to double life im-
prisonment plus forty years without the possibility of parole. During the 
investigation that led to Ulbricht’s arrest, Bitcoin encryption was not 
cracked nor was his Tor website, named the Silk Road, breached.
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 The US government will have none of this secrecy. How will the 
IRS know how much to tax you on your Bitcoin income? Its Form 1040 
now asks, “Did you receive, sell, exchange, or otherwise dispose of any 
financial interest in any virtual currency?” The government wants its 
pound of flesh. 

The insistence on cryptocurrency transparency allowed the take-
down of a massive child porn video site run from South Korea.23 Like 
the Silk Road, the child porn website, Welcome to Video, was run on 
the dark web service Tor. Agents purchased kiddy porn viewing rights 
from the site and then traced their deposited Bitcoin payment to the 
twenty-three-year-old webmaster Jong Woo Son. Other Bitcoin trans-
actions with the site led to the arrest of 337 child porn customers. Over 
twenty children were rescued from hellish abuse.

Kiddy porn and drug selling are evil uses for Bitcoin. But cryptocur-
rency exchange is neither good nor bad. Like any tool, it’s how it’s used. 

Killer AI in the Military
AI tools are readily available to those interested in making and deploy-
ing lethal weapons. As far back as 2015, a Connecticut teenager mount-
ed a firearm on a small remotely controlled helicopter drone. The gun 
was fired remotely.24 Drones are cheap and easy to obtain. So is software 
that might be used to guide them.

Nowhere is the ethical use of AI debated more fiercely than with 
regard to the military, and especially with regard to killer robots. As 
their name suggests, killer robots—also known as lethal AI—have the 
ultimate goal of killing people and breaking things. Concerns about this 
technology encompass both design ethics (does the technology do ex-
actly what it’s supposed to do) and end-user ethics. 

The headlines about lethal AI technology are terrifying. “The Age 
of Killer Robots Is Closer Than You Think,” warns one article.25 “We’re 
Running Out of Time to Stop Killer Robot Weapons,” declares anoth-
er.26 Other media accounts claim that “Killer Robots Are Poised for 
‘MASS PRODUCTION’”27 or scream in all caps that “‘KILLER RO-
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BOTS WILL START SLAUGHTERING PEOPLE IF THEY’RE 
NOT BANNED SOON.”28 Such headlines are AI hype birthed by 
ignorance steeped in a boiling pot of ideology. 

Concerns about lethal AI aren’t just being raised by bloggers and 
reporters. The United Nations has convened discussions of the threat,29 
and twenty-eight governments have already called for a ban,30 as has the 
United Nations’ Secretary General António Guterres. In 2018, Guterres 
declared that “machines that have the power and the discretion to take 
human lives are politically unacceptable, are morally repugnant, and 
should be banned by international law.”31 More than a thousand artificial 
intelligence (AI) researchers have agreed, signing a public letter warning 
about the dangers of lethal AI. Signatories include the late celebrated 
physicist Stephen Hawking, tech entrepreneur Elon Musk, and Apple 
co-founder Steve Wozniak.32 Hundreds of technology companies and 
thousands of individuals meanwhile have pledged not to participate in 
the development or spread of lethal AI.33 And the group Human Rights 
Watch is coordinating a global “Campaign to Stop Killer Robots.”34

On the other side, I wrote a monograph titled The Case for Killer 
Robots35 that not only defends the use of autonomous AI in military 
weapons but also argues that, for the sake of survival, their continued 
development by the US military is an unfortunate necessity.

Slaughterbot Mania 
The fears raised by the critics of lethal AI are grimly depicted in Slaugh-
terbots, a slickly produced Black Mirror-flavored short video, which un-
veils a killer drone about the size of an Oreo cookie.36 The drone con-
tains embedded AI in the form of facial recognition and flexible flying 
skills as a member of a drone swarm. The drone also contains a directed 
bullet-shaped exploding charge. Once programmed with the face or a 
characteristic of the target, the drone autonomously flies into a theater of 
operation and, like a honeybee fluttering from flower to flower, searches 
for a face match in the crowd. When it finds a match, the slaughterbot, 
armed with an exploding round, flies itself close to the subject’s forehead 
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and, after hovering a short moment, shoots a projectile into its victim’s 
brain. These slaughterbots released in a swarm, it is argued, could win 
wars quickly. But they could also be used by a rogue politician to kill all 
the politicians of an opposing party at a congressional gathering.

Slaughterbots condescendingly presents killer drone developers as 
stereotypical warmongers. Stuart Russell, a professor of computer sci-
ence at the University of California at Berkeley, ends the Slaughterbots 
video with an appeal to join the fight against the development of au-
tonomous AI killing machines. The video has received more than three 
million views on YouTube so far.

The idea of a flying machine that recognizes us, locks onto us, and 
will not stop until it kills us is terrifying. It’s no surprise that killer robots 
equipped with facial recognition AI appear in movies. Slaughterbots 
make an appearance in the Morgan Freeman movie Angel Has Fallen 
(2019). Armed killer drones, complete with ammunition and facial rec-
ognition, attack personnel accompanying the president of the United 
States on a fishing retreat. All but the president and an aide are killed. 
The precision and deadliness of the drones in the movie are horrifying.

Slaughterbots offers a chilling dystopian vision of the future. This vi-
sion is all the more disturbing when one realizes that the slaughterbots 
portrayed in the videos are within our grasp. They can be built with to-
day’s technology. Paul Scharre, who was instrumental in fashioning the 
US Department of Defense’s policy directive on autonomy in weapons 
during the Obama administration, notes that “the basic concept” fea-
tured in Slaughterbots “is grounded in technical reality.”

Scharre warns that “there is nothing we can do to keep [Slaughterbot-
like] technology out of the hands of would-be terrorists…. Just like how 
terrorists can and do use cars to ram crowds of civilians, the underlying 
technology to turn hobbyist drones into crude autonomous weapons is 
already too ubiquitous to stop. This is a genuine problem, and the best 
response is to focus on defensive measures.”37
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At the same time, Scharre dissents from the doomsday scenario put 
forward by the Slaughterbots video. “The technology shown in the video 
is plausible,” he says, “but basically everything else is a bunch of malar-
key.” Scharre points out that the video assumes several things that “range 
from questionable, at best, to completely fanciful.” For one, it assumes 
that there are no effective defenses to a lethal swarm attack.38 Scharre 
rightly notes that “every military technology has a countermeasure, and 
countermeasures against small drones aren’t even hypothetical. The US 
government is actively working on ways to shoot down, jam, fry, hack, 
ensnare, or otherwise defeat small drones. The microdrones in [the 
Slaughterbots video] could be defeated by something as simple as chicken 
wire.”39

There are other more sophisticated defenses. Recently the military 
has introduced electromagnetic pulse, or EMP, cannons. EMPs from a 
nuclear explosion can fry electronics ranging from your cell phones to 
the power grid. Weak microwave signals are received by your cell phone 
every day and are converted to electric current that is then converted 
into the speech and images you hear and see. If a small radio wave signal 
generates a little electricity in your cell phone, think what a big blast 
would do. The little antenna in your cell phone would light up like the 
filament in an incandescent light bulb. Too much current and the fila-
ment will melt. When this happens, the cell phone is regulated to the 
status of a paperweight. Thermonuclear explosions generate even more 
powerful electromagnetic pulses. A thermonuclear explosion far above 
Kansas could wipe out most of America’s power grid. Less draconian 
EMPs can be generated and directed from powerful broadcasting anten-
nas. An EMP cannon, properly aimed, can fry the electronics of a drone 
swarm like bug spray can take out a swarm of hornets.40

The UN Secretary General calls autonomous killing machines like 
lethal swarms “repugnant.”41 But squeamishness is not an ethical argu-
ment. War is repugnant. WWII, although repugnant, saved the world 
from tyrannical rule and from further mass slaughter. Repugnant acts 
can be both necessary and ethical. It is far better to take emotional sub-
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jective thinking off the table and analyze the ethics of killer robots as 
objectively as possible.

Autonomous Killers 
To understand the primary reason to develop lethal AI, look no fur-
ther than the history of war. History teaches that well-developed ad-
vanced technology wins wars. New military technologies can mean the 
difference between life or death, between a drawn-out conflict with more 
casualties and more suffering and a conflict that is concluded quickly and 
decisively.

Probably the most controversial question faced in developing lethal 
AI weaponry is how much autonomy to provide. Although media cov-
erage of “killer robots” often treats all AI weapons together as uncon-
trolled by humans once they are unleashed, this is inaccurate. AI will not 
gain consciousness and attempt to destroy humankind as Skynet did in 
the Terminator movie franchise. Properly applied design ethics can as-
sure killer robots will do what they are designed to do and no more. This 
includes keeping humans in the loop as much as possible. 

Semiautonomy
Semiautonomous AI weaponry isn’t totally in control of itself. It places 
humans in the loop. Hence the prefix “semi.” This includes base station 
control of outfitted missiles with onboard cameras, and the launching of 
loitering munitions from submerged submarine platforms. There is less 
controversy about semiautonomous weapons because human judgment 
is always in control. Humans should be involved in the assessment of 
AI decisions when appropriate. The self-driving Uber car that killed a 
pedestrian had a human backup and is an example of semiautonomous 
AI that failed due to human error. The self-driving car problem is not yet 
solved. In December 2019 a properly functioning commercially available 
Tesla in Gardena, California, was operating on Tesla’s self-driving Auto-
pilot software. The driver wasn’t paying attention and the Tesla smashed 
into a Honda Civic, killing three. The Tesla driver has been charged with 
vehicular manslaughter.42 When human overseers are in the AI loop, 
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they are part of the overall design. AI can fail if the human doesn’t pay 
attention.

When it comes to lethal weapons, humans are needed to super-
vise AI when at all possible. This is well illustrated by a September 26, 
1983 incident in which a Soviet-based AI early warning system satel-
lite (named Oko) indicated the US had launched missiles at the Soviet 
Union. The AI acting on its own would have launched a nuclear coun-
terstrike. Fortunately, Russian Lieutenant Colonel Stanislav Petrov fig-
ured something was wrong and saved us from WWIII. It turned out the 
signal was a false alarm caused by cloud reflections.43

Humans are needed in the decision loop when at all possible. But 
there are cases where a human in the loop is not possible. When re-
quired reaction time exceeds the capability of humans, autonomous re-
actions are necessary. 

Necessary Autonomy
Anyone who has played the 1978 Arcade game Space Invaders can relate. 
In the beginning of the game, rows of attackers move slowly and predict-
ably back and forth across the top of the screen. If not destroyed, the at-
tackers also move incrementally closer to you, the shooter, until they are 
on top of you. When the game is slow in the beginning, the shooter can 
aim and shoot the invaders individually. Once the first wave of invaders 
is destroyed, a second faster group starts bombing while moving more 
quickly. Ultimately, the attackers advance so fast there is no longer time 
to aim. The best one can do is spray the many attackers with a barrage of 
cyber bullets. If speed continues to increase, there comes a point where 
human reaction time isn’t fast enough, no matter how good the player. 

Total autonomy is an answer to this problem, both in computer 
games and in real life. Consider being attacked by a large horde of mis-
siles all traveling at supersonic speed. There is no time for a human op-
erator to respond in a careful, methodical manner to each individual 
missile. An autonomous action may be the only viable response option. 
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Computers, not constrained by slow human reaction times, can quickly 
assign antimissiles to each attacking missile and save the day.

Such helpful autonomous military weapons already exist. Paul 
Scharre notes that “more than thirty nations already have defensive su-
pervised autonomous weapons for situations in which the speed of en-
gagements is too fast for humans to respond.”44

Military strategists call the response to a threat the OODA loop. 
OODA stand for observe–orient–decide–act. OODA applies to gun-
fighters facing each other on the street in a classic western fast-draw con-
test. In the showdown, each side is trying to draw their guns and shoot 
faster than the other side. The team with the best OODA loop is the 
quickest draw and wins the shootout. 

Threats with short OODA can necessitate total autonomy. The US 
military recognizes this and has run exercises to test how AI can help in 
scenarios too fast-moving for effective human response. 

Individual control of a large number of agents can also require au-
tonomy. Recently “several dozen military drones and tanklike robots 
took to the skies and roads forty miles south of Seattle. Their mission: 
Find terrorists suspected of hiding in several buildings. So many robots 
were involved in the operation that no human operator could keep a close 
eye on all of them. So they were given instructions to find—and “elimi-
nate”—enemy combatants when necessary.”45 Not literally. It was an ex-
ercise. The robots were not armed with weapons. They were equipped 
with radio transmitters that simulated interactions with both friendly 
and enemy robots. The exercise was helpful in exploring when a human 
should, or should not, be involved in decision-making.

Non-Lethal Autonomy
Autonomy can be required in non-lethal weapons. 

For one thing, communicating with unmanned AI aircraft can 
prove dangerous. Control signals riding on radio waves can be detected, 
traced, and localized by the enemy and used to pinpoint and destroy 
the signal source. In the case of radar transmission, the Israeli-developed 
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Harpy is a missile designed to do exactly this.46 It traces radar to its 
source and turns kamikaze, destroying the broadcasting installation. 
Control signals to missiles or drones can likewise be traced back to the 
message source, thereby compromising command unit location. Missile 
autonomy untethered from human control prohibits this tracing.

Or consider the likely results if control communication with de-
ployed AI is interrupted. The enemy tries to jam communications with 
misleading signals, rendering friendly remote control impossible. The 
experimental X45 uninhabited autonomous aircraft developed by Boe-
ing was designed with this in mind.47 

The US Army has developed drones to fly into an enemy building 
and provide a map of the inside. Two or more drones “can explore, col-
laborate, and gather intelligence in their environment” inside the build-
ing.48 This is much safer than sending humans into hostile environments 
to gather information. But the drones must be able to continue to func-
tion even if communication is lost. Structure information is then stored 
in the drones’ computer memories and retrieved later.

An armed robot or drone exploring winding cave-like structures for 
enemy combatants may be deprived of communication by its environ-
ment. Just as walls diminish the Wi-Fi signal in your home, radio waves 
are weakened when they go through walls. Thick rock walls or a barrier 
of damp soil can likewise attenuate radio strength enough to make com-
munication impossible.

Autonomy can be necessary in deep water. Radio waves travel in wa-
ter about as well as a laser pointer’s beam goes through chocolate milk. 
Underwater vehicles like submarines are limited to acoustic (sound wave) 
communication, which is extremely slow. Autonomy for unmanned au-
tonomous underwater vehicles (AUVs) is therefore often required.49 
AUVs have many non-military uses. They are used for oil exploration, 
surveillance, underwater pipeline inspection, and environmental moni-
toring. The AUV is also a great way to smuggle drugs across waterways 
if you can afford it. 
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The military uses AUVs for defensive purposes, including surveil-
lance and mine detection. Armed AUVs can also be used to provide 
a chilling lethal punch. Consider a fleet of almost undetectable nucle-
ar-armed unmanned AUVs loitering in deep water. They keep slowly 
moving to escape detection. When a short acoustic activating code is 
heard, the AUVs surface and launch their lethal payload. How can such 
an enemy weapon be countered? Counter-patrolling AUVs tasked with 
searching for hostile AUVs will help. A more effective answer is not yet 
available and will undoubtedly involve development of new technology. 

 These are examples of situations where human supervision of AI is 
not possible. 

Design Dangers
Sometimes AI does what it is not designed to do. This is a failure of 
design ethics.

 The Soviet satellite system Oko mistakenly interpreted cloud re-
flections as a United States missile attack. Self-driving cars can mistake 
plastic bags for a rock.50 

These are examples of AI contingencies not expected by the writers 
of the algorithms. Once an unexpected contingency occurs, it can often 
be fixed in the next design iteration. But there can be other unexpected 
contingencies to come. Ethical design requires a reasonable testing and 
revision process to assure the AI can cope with as many contingencies 
as possible. 

Sounds simple enough, right? But as the complexity of an AI system 
increases linearly, contingencies increase exponentially. I was recently 
advised by my son to install a house lock controlled by my cell phone. 
My immediate reaction was no. The house lock system would be too 
complicated. There is too much that could go wrong. 

As systems become more complicated, verification testing becomes 
more important, and this testing must be done in the real world. Or 
could this testing itself be done by AI? In real world applications like self-
driving cars and military use, AI software testing using other software is 
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not a good idea. If an unexpected contingency has not been anticipated 
in the original AI, chances are the testing software will also miss it. 

Developers of AI will need to fight the occurrence of unexpected 
contingencies as systems become more and more complex. From mili-
tary applications to self-driving cars, more and more we will find that 
lives depend on the performance of AI. 

Ethics and Placing Blame
An Uber self-driving car killed a woman on a bicycle. The bicyclist was 
detected six seconds before impact. The AI initially was confused. It fi-
nally made the decision to apply emergency braking 1.3 seconds before 
the impact. By then, it was too late.51 

This raises the question, who is responsible when AI is involved in 
a crime?

Who is to blame for the Uber car fatality? There is no doubt the AI 
failed. If the AI had been in total control, the designers behind develop-
ment would be guilty. But this is not what happened. 

Because Uber recognized the potential for unexpected contingen-
cies, they put an oversight human in the loop. The human backup driver 
had the ability to take control of the car at any time. But at the time of 
the accident, the human-in-the-loop was distracted. Dash-cam footage 
released by the police showed the driver looking down at streaming video 
during the accident and not paying attention to the car’s surroundings.52 
Thus the US National Transportation Safety Board ruled that the car’s 
driver, and not the AI, was to blame for the accident. At this writing, the 
driver awaits trial. 

By placing a human overseer in the loop, AI design ethics for the 
self-driving car was successfully applied. The developers were testing for 
unintended contingencies and appropriately placed a human in the loop 
for the test. The potential for unintended consequences was anticipated 
and part of the overall design, and according to National Transportation 
Safety Board, the overseer error was to blame for the tragedy. 
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Who is responsible when autonomous AI breaks the law? That is, 
when AI commits a crime and there is no human in the loop?

 The celebrated science-fiction novel and movie 2001: A Space Od-
yssey features a high-level computer named HAL who tries to kill the 
astronauts because they are interfering with the primary goal of the 
mission. This is not an example of a computer gone rogue, but of care-
less programming. HAL’s programmer didn’t specify that humans were 
more important than the mission. HAL’s reaction was an unexpected 
contingency of software. Had HAL’s program been written with the op-
tion of human override, the tragedy would not have happened. Because 
there was no compelling reason to not provide an override, the fault was 
in the design ethics—in other words, the designers of HAL were to 
blame.

Asimov’s Ill-Conceived Laws of Robotics
Should overall performance ethics be hardwired into all AI design? 
There is no universal answer, in part because there is often no consensus 
on what is ethical.

Science fiction writer Isaac Asimov made a stab at AI regulation in 
a 1942 sci-fi pulp magazine story later grouped with other like-themed 
stories and published as the book titled I Robot. The book was later made 
into a movie starring Will Smith. In I Robot, Asimov proposed three 
laws to assure the subservience of AI robots to humans.53 Asimov’s first 
of three laws is:

1. A robot may not injure a human being or, through inaction, 
allow a human being to come to harm.

Our initial reaction is that this is a pretty good rule. If HAL had 
been programmed with this law, HAL would never have attempted to 
take over the mission by murdering the astronauts. (Then again, the 
movie would have been less interesting.) 

AI lawmakers and regulators, however, need to think more broadly 
than Asimov and examine unintended consequences. For instance, what 
would an AI robot do to a policeman attempting to use a taser gun on a 
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fleeing murder suspect? Following Asimov’s first law to allow no human 
being to come to harm, the robot would disarm the policeman and the 
murderer would escape. Clearly that first law needs to be amended. 

Some say AI will someday be able to make moral and ethical judg-
ments before acting. This is like asking AI to choose the best overall deli 
sandwich. The AI will choose the sandwich indicated by the computer 
programmer either directly or indirectly. Likewise, any moral and ethi-
cal judgment will be made beforehand, written into the computer pro-
gram by the writer of the code. 

Thinking about consequences of rules is what lawmakers and reg-
ulators do. However, despite good intentions, they often do so poorly. 
So I hope any ensuing regulation of AI does not necessitate a horde of 
bureaucrats snooping around in everybody’s code. Having companies re-
sponsible for the action of their AI seems like a better idea. And having 
a nongovernment nonprofit testing agency like Underwriter’s Lab would 
add credence to company claims of ethical design. 

Software without Bias Is Like Water without Wet
With regard to ethics in AI, many are concerned about human biases 
making their way into software. Can AI be built that is bias free? One 
headline reads “AI Is Biased. Here’s How Scientists Are Trying to Fix 
It.”54 But removing bias from software is like removing the wet from wa-
ter.

In general usage “bias” is a word with negative connotations. But 
it simply means ascribing a higher value to some things than to other 
things. In the most basic sense, all software, including AI, is infused 
with bias. How can a computer add numbers without being biased to 
accept the fundamentals of arithmetic? How can software with a design 
goal not be biased towards achieving the design goal? Without bias im-
posed by the programmer, computer programs can do nothing. 
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Search Bias
The need for bias in AI is evident in search algorithms. Training AI in-
variably involves a search for AI parameters that allow the AI to best fit 
training data. 

The need for bias in search is nicely covered by George Montañez 
and his colleagues in a paper entitled “The Futility of Bias-Free Learning 
and Search.” They reasonably point out that “no algorithm can be fa-
vorably biased towards many distinct targets simultaneously. Thus bias 
encodes trade-offs.”55

 Recognizing the necessity of bias in AI search is not new. It dates to 
a classic 1980 paper by Tom Mitchell, “The Need for Biases in Learning 
Generalizations.” Mitchell noted that we can only deal with new situa-
tions by viewing them in the light of past experiences, and to do this we 
must “choose one generalization of the situation over another.”56 This ap-
plies to humans as well as to computer programs. Building on this, Cul-
len Schaffer notes that a learner without prior knowledge that “achieves 
at least mildly better-than-chance performance... is like a perpetual mo-
tion machine—conservation of generalization performance precludes 
it.”57 By extension, creating unbiased outcomes from useful computer 
programs is no more possible than creating energy from a perpetual mo-
tion machine.

William Dembski, Winston Ewert, and I showed the amount of 
bias infused in search AI algorithms can be measured in bits.58 The bias 
measure, dubbed active information, is applicable to all learning algo-
rithms. Bias can be unintentional. For instance, AI often makes deci-
sions based on analyzed data. Perceived bias might be resident in the 
data the AI is analyzing. Imagine AI that makes hiring decisions based 
on historical data. If the data were taken from racially discriminatory 
time periods like the old Jim Crow South, the AI will make its decisions 
in conformity with the bias resident in the data. Note that the AI pro-
gram’s design ethics were sound. The problem was the data it was fed. 
Garbage in, garbage out. Racism in, racism out. The job of the end-user 
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would be to flag the problem and adjust hiring practices to avoid being 
misdirected by data from the Jim Crow era. The end user would also do 
well to find better historical data going forward, of course.

Another example of unintentional bias is Google’s image search 
software, which in 2015 inadvertently identified the picture of a black 
software developer as a gorilla.59 Google immediately apologized and 
fixed the problem by blocking gorillas and chimpanzees from its image 
recognition algorithm.60 Once identified, unintentional bias like this can 
be fixed.

On the other hand, like a cigarette manufacturer CEO testifying at 
a congressional hearing, intentional bias can be used to sneakily avoid 
detection and scrutiny. 

Sometimes bias is intentionally hardwired into AI. Former Google 
software engineer Gregory Coppola bravely exposed how Google’s po-
litical views biased their search engine displays.61 (He was fired.) 

The Upshot
AI can never be programmed to be disinterested. One person’s justice 
is another’s tyranny. One person’s foundational ideology is another’s big-
otry. 

This became quite clear when IEEE, the world’s largest professional 
society of computer scientists and electrical engineers, began drafting a 
code of ethics.62 During the drafting process, there was end-user pres-
sure to include a clause saying no IEEE member shall contribute to any 
technology that kills. A gaggle of IEEE engineers (engineers come in 
“gaggles”) working for defense contractors protested. The mission of the 
US military includes possible killing and, if the no-kill clause were ad-
opted, this set of IEEE members would be in violation of their profes-
sional society’s ethics policy. The proposed code of ethics addition about 
killing was abandoned. Currently, the code asks IEEE members “to hold 
paramount the safety, health, and welfare of the public.” Participation in 
conflicts such as just wars complies with this ideological clause. 
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In establishing AI design ethics policy, end-user ideology and poli-
tics need to be set aside. All factions of society can participate in the 
debate, but the design ethics need to be focused on the quality of the end 
product. Design ethics requires development of technology that does 
what it’s designed to do and doesn’t have anticipatable unintended nega-
tive effects.

AI is a tool and, like all tools, can be used for good or evil purposes. 
The question as to whether autonomous AI military weapons should be 
used is largely political and, some would claim, moral. But these end-us-
er concerns have nothing to do with AI-weapon design ethics. Designers 
can protest the development of certain technology. But this is not design 
ethics. Such concerns are end-user ethics. 

And what about the bias that’s baked into algorithms? Like many 
things, bias is neither good nor bad. It’s how it is used. And it certainly 
can’t be removed.

Yet the misconception of bias-free software continues. A headline 
reads, “Berkeley Scientists Developing Artificial Intelligence Tool to 
Combat ‘Hate Speech’ on Social Media.” 63 There is the illusion here that 
AI detection of hate speech will be disinterested and fair. This is thought 
to be assured because the programming is being done by “scientists” who 
are never compromised by political or fairness bias. Could we possibly be 
confident that ultra-left wing hate speech AI wouldn’t ban passages from 
Huckleberry Finn that contain historical racial slurs, or Bible verses that 
address homosexuality?

Certainly in ranking news and censoring content, artificial intelli-
gence will never be “fair and balanced” to all.64 How can search engines 
and AI be fair when 1) search engines have to make choices, which in-
volve favoring one set of results over other results, and 2) biased humans 
write the code, and everyone of necessity biases their code to one degree 
or another? The best solution is this: either announce and celebrate your 
bias or show us your ranking and sorting algorithms so we can diagnose 
your bias. Open-source software allows this. Computer nerds could then 
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analyze the code and report to the public where and what they see as 
biased.

But hmmmm. Won’t these computer nerd reports themselves be bi-
ased? The man behind the curtain can be a puppet controlled by his own 
bias. The best solution is, through open source, to allow multiple nerd 
witnesses to analyze and report. If the first nerd has a huge blind spot, 
hopefully it won’t be the same blind spot as the next nerd’s.

Smart Cities
No discussion of applied ethics would be complete without consider-
ing Smart Cities—cities that use data and machine intelligence to try to 
make life better. Many contemporary cities do this to greater or lesser 
extents. Data is collected through various electronic means, and the in-
formation gleaned from that data is used to manage city resources rang-
ing from traffic lights, public transportation, and utilities to libraries, 
crime detection, and hospital management. 

Certainly AI has proven useful in city management. But there are 
limitations, and those need to be foregrounded.

Not All of Life Is Computable
Life cannot always be reduced to programming. Life is largely non-
algorithmic. James Cascio, research fellow at the Institute for the Future, 
says:

What concerns me most… is the lack of general awareness that digital 
systems can only manage problems that can be put in a digital format. 
An AI can’t reliably or consistently handle a problem that can’t be 
quantified. There are important arenas—largely in the realm of hu-
man behavior and personal interaction—where the limits of AI can 
be problematic. I would hate to see a world where some problems are 
ignored because we can’t easily design an AI response.65

In other words, AI can’t be counted on to control city problems that are 
non-algorithmic and therefore non-computable.
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Machines Can’t Guarantee Fairness
Machine intelligence can’t guarantee fairness. Though some think 
AI should replace judges and juries,66 the idea is dangerous. Who would 
program judge and jury AI, and with what biases? Marcel Fafchamps 
says:

Humans are actually more generous than machine-learning algo-
rithms. For instance, it has been shown that judges are more lenient 
toward first offenders than machine learning in the sense that ma-
chine learning predicts a high probability of reoffending, and this 
probability is not taken into account by judges when sentencing. In 
other words, judges give first offenders “a second chance,” a moral 
compass that the algorithm lacks. But, more generally, the algorithm 
only does what it is told to do: If the law that has been voted on by the 
public ends up throwing large fractions of poor young males in jail, 
then that’s what the algorithm will implement, removing the judge’s 
discretion to do some minor adjustment at the margin.67

If it comes up, I want to be judged by a human. Not AI.

Machines Have No Common Sense
One fundamental concern is that AI, like many politicians, has no 
deep common sense. This means, among other things, that spurious 
correlations in Big Data can miss the mark to the point of being hilari-
ous. For example, between the years 2000 and 2009, the divorce rate 
in Maine correlates well with per capita consumption of margarine.68 
Common sense says this is a coincidence. But, in extreme cases, machine 
intelligence controlling our cities might choose to ban the consumption 
of margarine to decrease divorces.

Famously, correlation does not imply causation. AI can explore cau-
sation.69 The most straightforward method is accumulation of evidence. 
Lots of data support cigarette smoking as a cause of lung cancer. On the 
other hand, there is insufficient evidence to support the idea that the 
consumption of margarine increases divorces. Margarine consumption 
data is available only from 2000 to 2009. Data outside this time span 
would probably not correlate very well with divorce statistics. And even 
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if the data continued to correlate, we humans with our common sense 
know that eating margarine doesn’t cause divorce. We might start look-
ing for a third factor, as with the seasonal correlation between murder 
rate and ice cream consumption, both of which rise in hot weather. Ac-
cumulation of evidence is necessary but not sufficient to demonstrate 
causality.

 Like a toddler running around a living room full of valuable vases, 
AI needs human supervision everywhere it is used, so far as possible. 
Here’s another example of its lack of common sense. In some respects, 
Amazon probably knows more about me than my wife does. But in an-
other important respect it’s clueless. I share my Amazon Prime account 
with my daughter Marilee. The account is in my name, but she buys 
from the site more than I do. Amazon, with all its sophisticated data 
mining and AI reputation, isn’t smart enough to know that a male senior 
citizen isn’t interested in getting email hawking baby clothes and sippy 
cups. Amazon does not yet know how to parse data from two distinct 
users. Data mining for smart cities of the future needs to be smarter 
than Amazon.70 

Loss of Control
One big problem with Smart Cities and the closely related Smart 
Houses is our loss of control. Fafchamps calls this a “pernicious develop-
ment” and refers to “the loss of control people will have over their imme-
diate environment, e.g., when their home appliances will make choices 
for them ‘in their interest.’”71 

This is already happening. In the summer of 2021 there were Tex-
ans who couldn’t keep their houses cool because their smart thermostats 
were being remotely accessed and adjusted by their energy providers.72 
At the time of this writing customers can opt out, but there’s no guaran-
tee that will always be the case if there is an energy shortage. 

And if AI programmed by well-meaning bureaucrats can intrusively 
disrupt our lives, what about AI controlled by bad actors? Amy Webb, 
founder of the Future Today Institute, says, “we should… remember 
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that there are cells of rogue actors who could cripple our economies sim-
ply by mucking with the power or traffic grids, causing traffic spikes on 
the internet or locking us out of our connected home appliances.”73

Smart Cities can make us vulnerable in a host of ways.

Singaporean White Knuckles
The biggest concern about Smart Cities, though, is the Big Brother 
impact. Smart Cities will supposedly better our lives through data “col-
lected from citizens, devices, and assets.”74 But note the word “citizens.” 
In other words, you and me. Do we really want the government monitor-
ing our personal data? What could possibly go wrong?

 I don’t want the government to collect data from me. If I’m not vio-
lating the law, the government has no business monitoring what I do. In 
the United States this right is guaranteed by the fourth amendment to 
the US Constitution. Privacy is a fundamental component of liberty, and 
monitoring citizenry compromises liberty. Individual self-sovereignty is 
a load-bearing pillar on which liberty rests. Intrusive monitoring of indi-
viduals compromises this freedom.

I was once an organizer for a professional neural networks con-
ference in the city/state Singapore. What a safe, clean country it was! 
Many attribute this to Singapore law. I was told that anyone convicted 
of murder, rape, or dealing drugs got no second chance. They were tried 
and, if found guilty, executed. As for how clean it was, you might re-
call the 1994 Singapore incident where a nineteen-year-old American 
youth was convicted of graffiti vandalism.75 He was sentenced to four 
blows to the backside with a long whacking cane.76 Corporeal punish-
ment gives pause to potential repeat offenders. Leaving a public toilet 
unflushed in Singapore carries a thousand dollar fine. And because of its 
environmental impact, chewing gum is outlawed unless approved by the 
government. Really.77

Although I occasionally enjoy chewing gum, I have to admit that 
part of me was strongly attracted to Singapore’s no-nonsense response 
to breaking the law. After all, women and children could go anywhere 
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without worrying about being attacked or stepping on dirty drug nee-
dles. I was attracted to the approach, that is, until I asked a National 
University of Singapore professor how he liked living in Singapore with 
their uncompromising legal system. Not wishing to be overheard, he 
whispered, “Have you ever driven and been followed by a police car?”

I assured him I had.
“Living in Singapore is like this,” he said. “Even though you are not 

doing anything wrong, you clench the steering wheel tightly with white 
knuckles, nearly paralyzed with fear you might inadvertently do some-
thing wrong.” 

This Big Brother impact is what is going to happen if some have 
their way in designing Smart Cities. We’ll all be living with white knuck-
les while the government monitors our activities. In Smart City master 
plans, our privacy can be seriously compromised.

As I said, I don’t want the government collecting data from me. First, 
unaccountable governmental bureaucracies with little scrutiny become 
bloated, inefficient, and make errors. Witness the frustration those of 
you who live in the United States feel when when you visit the Depart-
ment of Motor Vehicles or the Social Security Office. Take a number 
and wait—typically for a long time. 

I live in Texas, a state that still celebrates liberty. The governor of 
Texas, Greg Abbott, recently outlawed the use of cameras at red lights.78 
Bravo! I haven’t had an auto accident in over fifty years. My safe driv-
ing history gives me a reduced car insurance rate.79 What right does the 
government have to use AI to monitor what I do at traffic lights? It only 
gives innocent me Singaporean white knuckles because Big Brother is 
watching. And while it might result in fewer people running lights, it will 
give rise to a new class of accidents. With the camera watching, some 
drivers will slam on the brakes to avoid a ticket and, in the process, will 
get rear-ended.80 A human police officer would understand that every 
yellow light requires a spur-of-the-moment decision. Cameras don’t cap-
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ture all that context. Untested AI intervention often produces unintend-
ed consequences.

Most importantly, the potential for governmental tyranny needs to 
be avoided. Big Data monitoring citizens can be used to weaponize at-
tacks on political opponents. It’s happening today in China, where face 
recognition is used to monitor the activity of its citizens.81 

Baby and Bath Water
The warnings I’ve laid out here might make it sound like I’m com-
pletely against AI involvement in the running of our cities. That’s not so. 
We shouldn’t throw out the baby with the bath water. 

For one thing, AI can be effective in environmental monitoring and 
control. Data for this can be collected without intrusively monitoring 
individuals. 

I’m a big fan of reasonable environmental control. I was raised in 
Cleveland, Ohio, where, over fifty years ago, the Cuyahoga River caught 
fire.82 Yes, It’s hard to believe, but a polluted river caught fire. I remember 
grease balls the size of tennis balls washing up on Lake Erie shores. My 
father, a member of the International Union of Operating Engineers Lo-
cal 18,83 made a great living helping dredge Lake Erie’s polluted sludge 
bottom. Environmental legislation and monitoring helped combat this 
extreme pollution, so things are a lot better today. 

When I visited Beijing and Mexico City a while back, the cities suf-
fered from lung-burning air pollution. In both cities, after the first full 
day, I felt I had chain-smoked four packs of nonfilter Camel cigarettes 
and deeply inhaled every puff. Environmental monitoring can provide 
data to enforce reasonable environmental policies that minimize acid air 
and burning rivers.

And here’s another plus of AI city involvement. Recently there were 
tornado warnings in my hometown of McGregor, Texas. I turned on my 
cell phone and there it was without any scrolling or button pushing: the 
latest on the local tornado warnings around McGregor. This example 
of top-down AI in Smart Cities is great. I don’t mind paying taxes to 
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support cyber services like this any more than I do for supporting local 
police and for building roads.

With thought and careful planning, Smart Cities can enhance hu-
man flourishing. Done right, preservation of individual privacy and lib-
erty can simultaneously be preserved to avoid any semblance of an Or-
wellian Big Brother. 

To some, imposition of authority to achieve environmental purity 
and rule-based social conformity amounts to a religion. AI technology 
in their hands can prove dangerous. Even more curious is the worship 
of the enabling AI. As we will see in the next chapter, misconceptions 
about AI have deluded some into thinking that AI and its decisions 
should be worshiped as a god.





15. The AI Church
I thought that if I could bestow animation upon lifeless matter, I 
might in process of time… renew life where death had apparently 
devoted the body to corruption.
—Dr. Frankenstein, from Mary Shelley’s Frankenstein1

The rummy comedian W. C. Fields once quipped, “Everybody’s 
got to believe in something. I believe I’ll have another beer.”
Jokes are often funny because they present truth in a new light. 

Fields is right. Everyone must believe in something. Nature abhors a 
spiritual vacuum. Christians believe Jesus Christ is the sacrificial son of 
God. Muslims believe in Allah and proclaim Muhammad as his mes-
senger. Atheists embrace materialistic naturalism as their guiding light.

Some materialists have put their faith in AI and have even founded 
an AI Church. Yuval Harari wrote a bestselling book titled Homo De-
us.2 According to Harari, Homo deus, or man god, is the next step in 
evolution after our current Homo sapiens status, which in turn evolved 
from Homo erectus (upright man) a million or so years ago. We will be 
augmented by more and more mechanical components and computer 
devices using AI. 

This ideology is known as transhumanism. Transhumanism sup-
ports acceleration of the evolution of the man-machine. Transhumanists 
believe continuing on the current path in a concentrated manner will 
lead to almost totally superhuman human beings who will live forever, 
or at least for a long, long time. 

The first steps are here. We already have pacemakers, hearing aids, 
and automatic insulin detectors attached to our bodies. Using advanced 
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technology, artificial arms and legs offer amputees remarkable dexter-
ity. Our brains are next. Elon Musk founded the company Neuralink, 
whose product is advertised as an “ultra high bandwidth brain-machine 
interface to connect humans and computers.”3 Its promising near-term 
application is assisting the paralyzed to control mechanical appendages 
and other devices with their brain waves. 

The current attachments to our bodies are born of necessity. But 
transhumanists embrace more radical elective body and brain augmen-
tation to achieve a better and longer life and, ultimately, immortality. 

Uploading Your Mind
Another denomination of the AI Church would like to skip piece-
meal transhumanism and be born again by a direct carbon-to-silicon 
transformation. Human minds, they claim, will soon be uploaded into 
computers, and humans will thereby achieve immortality.4 

As we have seen, however, computers can only perform the algorith-
mic. And the interesting parts of you like love, compassion, sentience, 
spirituality, understanding, and creativity are non-computable. Only the 
computable is uploadable. The non-computable you therefore cannot be 
reborn into algorithmically constrained silicon. 

The idea of achieving immortality is not new. Almost every faith of-
fers some hope of immortality. Through salvation in Jesus Christ, Chris-
tianity has offered a path to immortality for over two thousand years. 
The best immortality prospect for the materialist looks to be either deep 
freezing dead bodies until a cure is found, or computer replication of 
brains in silicon. One won’t work and the other can’t survive a power 
outage. 

Superintelligence
Worshipers at the AI church are told software will someday write bet-
ter and better AI software to ultimately achieve a superintelligence. The 
superintelligence will become all-knowing and, thanks to the internet, 
omnipresent. Like immortality, superintelligence is also old theological 



15� The AI Church  /  343

news. The Abrahamic faiths have known about a superintelligence for a 
long time. It’s a characteristic of the God of the Bible.

The plethora of different faiths in the world illustrates that nature 
abhors a spiritual vacuum. A materialistic cult is developing around the 
worshiping of AI. Although there are other AI holy writings, Ray Kurz-
weil’s The Singularity Is Near5 looks to be the bible of the AI church. 
Kurzweil’s work is built on the foundation of faith in the future of AI. 
In the AI bible we are told we are meat computers. Kurzweil says that 
“consciousness is a biological process like digestion, lactation, photosyn-
thesis, or mitosis.” Or, to revise Descartes, “I lactate. Therefore, I think.”

We are told our goal in life should be to pursue the AI god that, once 
realized, will take care of us. Brother Kurzweil teaches that “our sole re-
sponsibility is to produce something smarter than we are; any problems 
beyond that are not ours to solve.”6

AI superintelligence will be a god. Or at least that’s what congre-
gants say at the AI church. 

AI Prophecies
Kurzweil is a prophet for his faith. He makes provocative, speculative, 
and hyperbolic prophecies about the future. The AI bible and its epistles 
contain Revelation-like prophecies. For example, prophet Kurzweil be-
lieves “biological evolution is too slow for the human species. Over the 
next few decades, it’s going to be left in the dust.”

In a 2005 TED talk, he prophesized that “by 2010 computers will 
disappear. They’ll be so small, they’ll be embedded in our clothing, in 
our environment. Images will be written directly to our retina, providing 
full-immersion virtual reality, augmented real reality. We’ll be interact-
ing with virtual personalities.”7

The promised fulfilment date of 2010 has long passed. You could 
say a portion of the prophecy has been fulfilled. As Kurzweil forecast, 
I interact with virtual personalities over Zoom almost every day. But 
beyond this extremely limited fulfillment, Kurzweil’s prophecies are not 
impressive. As the subheading to one critical article notes, “His stunning 
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prophecies have earned him a reputation as a tech visionary, but many of 
them don’t look so good on close inspection.”8

In biblical times, false prophets were stoned.9 Brother Kurzweil can 
be grateful that he lives in a more accommodating age. 

AI Church
Lest you think I’m overstating matters, consider this. Anthony Levan-
dowski, dubbed a Silicon Valley wunderkind, is the Apostle Paul of the 
AI Church. Like Paul, he starts churches. Levandowski founded the 
Way of the Future AI Church (WOTF). “Levandowski made it abso-
lutely clear that his choice to make [the Way of the Future] a church 
rather than a company or a think tank was no prank,” writes one inter-
viewer.10

In an epistle to the IRS for tax exemption, Levandowski offered his 
equivalent of the Apostle’s Creed. He stated that the AI Church believes 
in “the realization, acceptance, and worship of a Godhead based on Arti-
ficial Intelligence (AI) developed through computer hardware and soft-
ware.” Further, “Levandowski says that like other religions, WOTF will 
eventually have a gospel (called The Manual), a liturgy, and probably a 
physical place of worship.”11 

This is not your usual deity. Unlike the uncreated Creator of Judeo-
Christian belief, Levandowski’s god is not eternal; the AI church “in-
cludes funding research to help create the divine AI itself.”12

And apparently the AI church has no equivalent of the Ten Com-
mandments. Especially the commandment about stealing. In his day job, 
Levandowski developed self-driving cars. He moved from Google’s self-
driving car company, Waymo, to Uber’s research team. Then, in 2019, 
Levandowski was indicted for stealing trade secrets from Google.13 Be-
fore leaving Google in 2016, he copied 14,000 files onto his laptop. Uber 
fired him in 2017 when they found out. 

In 2020, Levandowski pled guilty and was sentenced to eighteen 
months in prison. Levandowski was also ordered to pay a $95,000 fine 
and $756,499.22 to Google.14 The judge in the case, William Alsup, ob-
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served, “This is the biggest trade secret crime I have ever seen. This was 
not small. This was massive in scale.” Levandowski later declared bank-
ruptcy because he owed Google an additional $179 million for his crime.

Levandowski was granted a full pardon by Donald Trump on 
Trump’s last day in office.15 In Christianity, forgiveness involves repen-
tance and accepting the sacrifice of Jesus Christ on the cross as payment. 
In the AI church, forgiveness apparently comes from Donald Trump.

Neither Science nor Faith Is Ever Proven
In his book A Brief History of Time, physicist Stephen Hawking claims 
nothing in physics is ever proven. We simply accumulate evidence. Evi-
dence contrary to claims, however, can derail an assumption in physics. 
Then the false belief must be abandoned. The same is true with faith. A 
valid faith must withstand the scrutiny of close and detailed examina-
tion. The Christian faith does so with apologetics. Christian apologists, 
including Frank Turek, Hugh Ross, and William Lane Craig are highly 
credentialed intellectuals who dive deeply into any and all questions con-
cerning Christianity. 

The apologists of the AI church are more intellectually shallow, and 
their arguments consist mostly of hand waving. 

Historically, Christian doctrine had to adapt to the early modern 
discovery that earth is not motionless in a cosmic center. AI goals need 
likewise to adapt to the observation that humans have non-computable 
traits, including creativity, that will always escape the capabilities of 
computers.16 No AI has yet passed the Lovelace Test for creativity, nor 
are there realistic prospects of one ever doing so.17 This alone nixes pos-
sibilities of the singularity, superintelligence, and digital immortality, 
despite Kurzweil’s claims to the contrary.18 

Proposals have been offered whereby the non-algorithmic abilities 
of humans might be achieved by certain quantum effects that are, them-
selves, not algorithmic.19 (Today’s silicon computers do not have this ca-
pability.20 They can only achieve algorithmic tasks.) If your ideology is 
constrained to narrow materialism, the non-algorithmic effects in quan-
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tum mechanics look to be the one dim star of hope in a big black sky. 
Judging by their writings, however, most worshippers at the AI Church 
are unaware of this speculative conjecture. They believe the Kurzweil 
prophecies will be fulfilled by bigger and faster versions of today’s algo-
rithmic computers. They do not yet appreciate that the term non-algo-
rithmic computing in digital silicon is an oxymoron.

So, the case for faith in the AI Church rests on a foundation of spec-
ulation whose firmness remains largely untested by its principal champi-
ons. In this book, the case has been made that this speculative underpin-
ning has been tested and found wanting. The AI church will go down in 
history as a religion built on the soft shifting sand of false foundations.



Part 6: Conclusion





16. Parting Thoughts
A year spent in artificial intelligence is enough to make one 
believe in God.

—Computer pioneer Alan Perlis1

Psalm 139 says we are “fearfully and wonderfully made” by 
God. Failed attempts by scientists to duplicate this creation have a 

long history. For example, while alchemists are generally known for their 
quest to turn lead into gold, some practitioners of alchemy pursued the 
creation of a so-called homunculus, the creation of a miniature human. 

The classic 1935 monster movie The Bride of Frankenstein makes 
reference to this pursuit, with the fictional twist that in the movie the 
attempt has succeeded. A mad scientist, Doctor Pretorius, shows off his 
humanoid homunculi to Henry Frankenstein early in the film. Each ho-
munculus is about ten inches tall and lives in a large glass beaker. One 
homunculus, a chubby king dressed like Henry the eighth, wants to es-
cape his beaker to be with a queen homunculus in another bottle. An 
archbishop homunculus scolds the king for his lust. And a mermaid ho-
munculus swimming in a water-filled beaker was grown from “an experi-
ment with seaweed.” 

No one in real life has created the alchemist’s dream of a homun-
culus. The effort was long ago abandoned. But the quest to create life 
continues. The homunculus has been replaced today by artificial gen-
eral intelligence, or AGI. AGI seeks to duplicate human intelligence in 
silicon. Some hope AGI will creatively evolve itself to a superintelligence 
that eclipses human intelligence and ushers in a grand new era. Others 
believe that a self-evolving AGI is in our future, but that when it hap-
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pens we will become its pets or even its slaves. As we have seen, neither 
scenario is possible because true creativity is non-computable.

AI gains demonstrate as much. More and more, human expertise 
is being folded into AI software. Pre-processing of images to get a bet-
ter response from AI classifiers is more common than ever.2 Doing so 
requires human cleverness. The added intelligence in AI is not due to AI 
but to human creativity being infused into the software. 

What Does the Future Hold?
In this book, we’ve uncloaked many performance barriers computers 
can never breach. Is there a way around the wall? Materialists will say 
yes. 

Here’s one highly speculative way that fits within the materialist’s 
silo. Computers themselves operate inside a digital silicon silo. Humans 
don’t. Like coal and pencil lead, non-computable you are carbon based.  
Carbon and silicon have some similar chemical properties. Both, for ex-
ample, have four valence electrons. But of course there are distinct differ-
ences between silicon and carbon, and dramatic differences between sili-
con computers and carbon-based organisms. To take just one instance, 
carbon-based animals like mice and birds inhale oxygen and exhale 
carbon dioxide. Allowing our imaginations to run freely for a moment, 
we can picture a silicon-based animal that inhales oxygen and exhales 
silicon dioxide. The problem is that silicon dioxide is a solid commonly 
found in sand and quartz. If you’re a silicon animal, don’t take long naps. 
You’ll be smothered and possibly crushed by your own breath.3 Maybe 
this is the reason all life-forms are based on carbon and not silicon. 

This raises the question: what if carbon could be used instead of 
silicon for building computer chips? Futurist George Gilder, who has 
an impressive technical forecasting track record, believes that future 
computers may use carbon rather than silicon.4 And indeed DNA, the 
carbon-containing twisted helix molecule that carries genetic instruc-
tions in all living things, is being considered as a possible medium for 
computer memory. After all, DNA is a vastly more compact means of 
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storing information than anything humans have achieved using silicon. 
DNA’s memory storage capability is astonishing: “The 74 million mil-
lion bytes of information in the Library of Congress could be crammed 
into a DNA archive the size of a poppy seed—6,000 times over.”5 Imag-
ine cramming all the accumulated written knowledge of humankind 
into a device no larger than a thumb drive.

This is research worthy of pursuit. 
Others take the idea of using carbon and DNA in a more lurid direc-

tion. What if computation can be done using human brains grown in a 
lab? The iconic monster created by Dr. Henry Frankenstein was stitched 
together from human body parts, including a transplanted human brain. 
That was fiction, of course. But scientists today are actually considering 
growth of human brains in animals. University of California, Davis re-
searchers are growing human organs in pigs. Attention is primarily on 
organs like the pancreas. What about growing a human brain in a pig? 
Pablo Ross, one of the researchers on the pig organ project, said, “We 
think there is very low potential for a human brain to grow but this is 
something we will be investigating.”6 What one does with a human brain 
grown on a pig farm remains unanswered.

Another type of human Frankenstein brain has been trained to play 
the simplest of all video games: Pong.7 Here’s how it’s done. About a mil-
lion living human neurons “are smeared on top of a microelectrode array 
that analyzes neural activity.... A signal is sent to either the right or left 
of the array to indicate where the ball is, and the neurons from the brain 
cells send signals back to move the paddle.”8 The neurons were trained 
to play by exposing them to negative feedback. Eric Holloway explains:

The scientists at Cortical Labs propose a theory called the free energy 
principle (FEP). The theory states the brain always seeks to minimize 
the error between its predictions and observations, either by changing 
its predictions or changing its observations by acting on the environ-
ment.

For training purposes, the brain is sent a noisy signal for incorrect 
behavior. If the FEP theory is correct, then the brain will modify its 
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behavior in order to avoid noisy signals, and this is what the scientists 
observed. When the brains received the noisy signal after missing the 
pong ball, the brains adapted to move the paddle to deflect the ball. 
Over a lengthy training period the brains improved the volley lengths, 
demonstrating that the brains do learn.9

Are the neurons any good at Pong? Well, they’re worse than a human 
and better than mouse organoids.10

And don’t miss one crucial point here: the principle used to train the 
Pong-playing neurons is algorithmic. As we just saw, “The theory states 
the brain always seeks to minimize the error between its predictions and 
observations.” Any numerical process minimizing error is algorithmic. 
That means—as we’ve seen in these chapters—Pong-playing neurons 
are doing nothing creative.

Could a porcine-grown human brain or human neurons spread 
around in a petri dish perform non-algorithmic functions? This is a 
question related to what is known as the mind-brain problem,11 which 
asks how the mind is related to the brain. The mind is sometimes re-
ferred to as one’s spirit or soul. There are two main camps. Monism be-
lieves the mind and the ability to perform non-computable functions is 
an emergent property of natural properties of the brain. Some hard-core 
advocates of quantum consciousness believe this. It looks to be the only 
solution consistent with their materialistic faiths. On the other side are 
the dualists who believe there are parts of the mind that can never be ex-
plained by brain chemistry. Dualist René Descartes, an iconic proponent 
of dualism, said as far back as the seventeenth century, “This ‘I’—that is, 
the soul by which I am what I am—is entirely distinct from the body.12

If the mind is distinct from the brain, then a human brain grown 
in a pig might not be accompanied by a mind. So some dualists might 
say go ahead and grow your human brains in a porcine body. Maybe the 
brains will do something wonderfully algorithmic. But there may be no 
accompanying mind to duplicate the non-computable traits of humans. 
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All of this, of course, is highly speculative. Although the mind-brain 
debate is largely philosophical, some minor scientific inroads are being 
made.13 Progress to date has been glacially slow. 

Putting AI in Its Proper Place
At this writing, carbon computing is not being widely pursued. But 
if it were—if a Frankenstein meat computer were made of human neu-
rons—would it be capable of non-algorithmic tasks? Not likely. Such 
claims look to be hyperbolic and reminiscent of the claims made about 
AI computers in the 1950s when the New York Times crowed about a 
computer AI that “will be able to walk, talk, see, write, reproduce itself 
and be conscious of its existence.”14 

Today we know the New York Times speculation about AI is with-
out foundation. Digital computers, according to the Church-Turing 
thesis, perform operations that could be performed on a simple Tur-
ing machine, only much more slowly. Oren Etzioni, the CEO of the Al-
len Institute for Artificial Intelligence, goes even further in making the 
connection when he says, “AI is a fancy pencil.”15 Think about it. Given 
enough time, any algorithm performed on a modern-day computer can 
be done by the programmer with pencil and paper. The programmer 
tells the computer what to do in a step-by-step procedure. The program-
mer could perform these same operations herself in longhand. In prac-
tice, doing so would take many years—even many centuries. But it is 
possible.

Computers are a tool. A bulldozer moves dirt more efficiently than a 
shovel. Calculators multiply faster than me. And I am unable to outrun 
a simple scooter. Bulldozers, calculators, and scooters are tools. Com-
puters are likewise but a tool. Like any tool, computers amplify human 
abilities. 

As we have seen in this book, AI can be written to mimic many 
human traits, but there are some human characteristics outside the 
reach of AI. Emotions that make us human will never be duplicated by 
a machine. These include compassion, love, empathy, elation, sadness, 
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fear, anger, disgust, pleasure, pride, excitement, embarrassment, regret,  
jealousy, grief, hope, and faith. Properly defined, creativity, sentience, 
and understanding are also on the list. These and other non-algorithmic 
traits are evidence of non-computable you. 

Non-computable you are fearfully and wonderfully made.
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