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Abstract
Recently Díaz, Hössjer and Marks (DHM) presented a Bayesian framework to meas-
ure cosmological tuning (either fine or coarse) that uses maximum entropy (maxent) 
distributions on unbounded sample spaces as priors for the parameters of the physi-
cal models (https://​doi.​org/​10.​1088/​1475-​7516/​2021/​07/​020). The DHM framework 
stands in contrast to previous attempts to measure tuning that rely on a uniform prior 
assumption. However, since the parameters of the models often take values in spaces 
of infinite size, the uniformity assumption is unwarranted. This is known as the nor-
malization problem. In this paper we explain why and how the DHM framework not 
only evades the normalization problem but also circumvents other objections to the 
tuning measurement like the so called weak anthropic principle, the selection of a 
single maxent distribution and, importantly, the lack of invariance of maxent distri-
butions with respect to data transformations. We also propose to treat fine-tuning as 
an emergence problem to avoid infinite loops in the prior distribution of hyperpa-
rameters (common to all Bayesian analysis), and explain that previous attempts to 
measure tuning using uniform priors are particular cases of the DHM framework. 
Finally, we prove a theorem, explaining when tuning is fine or coarse for different 
families of distributions. The theorem is summarized in a table for ease of reference, 
and the tuning of three physical parameters is analyzed using the conclusions of the 
theorem.
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1  Introduction

Cosmological fine-tuning is the idea that, in order for life to exist, the constants of 
nature must belong to intervals of very low probability. This definition, good for 
mnemotechnical purposes, can be made more rigorous by considering not only the 
constants individually, but also multiple ratios between them, and boundary condi-
tions of the universe. For instance, the ratio of the strong nuclear force to the weak 
nuclear force seems to be fine-tuned for life [1, Ch. 4], or the difference between 
masses of the two lightest quarks (which corresponds to a ratio between their expo-
nentials) also seems fine-tuned [2]. Accordingly, the fine-tuning problem seems to 
be divided into two stages, given that we know which are the relevant constants: 

	 (i)	 Finding the interval I ∈ ℝ in which the constant, or the ratio between two 
constants, has to be in order for life to exist.

	 (ii)	 Finding the probability of such an interval, P(I).

Step (i) has been the subject of in-depth research in past decades. And, since life-
permitting intervals are usually small, many say there is fine tuning. But, step (ii)—
the probability of the interval in question—is the sole indicator of whether or not 
there is fine tuning. A small P(I), not a small I, indicates whether tuning is fine or 
coarse.

Adams gives a comprehensive technical review of the state-of-the art of fine-tun-
ing [3]. His review makes clear how physics has advanced in determining what are 
the intervals that permit life for several fundamental constants of nature, that is step 
(i). But by his own reckoning, the theory still falls short of knowing how to meas-
ure the probabilities of these intervals—step (ii). However, to say something definite 
about the tuning of a constant of nature (or the ratio of two such constants) X, with 
observed value x, whether it is either fine or coarse, the probability of its life-permit-
ting interval I = IX must be measured.

Step (i) is indeed suggestive, but only after completing step (ii) a conclusion can 
be attained. Interval I might be small and yet have a large probability. But I might be 
very large too with very low probability. It is not only I, but also the prior assump-
tions on X (before observing I) that determine P(I). This situation, counterintuitive 
as it seems, has the potential of turning around some fine-tuning conclusions. Since, 
on the one hand, for some constant x, its life-permitting interval IX might be small, 
but P(IX) high, some constants that were regarded as finely tuned might not be. On 
the other hand, if IX is large, even infinitely large, but P(IX) is small, some constants, 
ratios of constants, or boundary conditions, formerly regarded as coarse-tuned might 
be fine-tuned. McGrew and McGrew look to be the first to note that small intervals 
can correspond to large probabilities [4]. Likewise, large intervals can have a small 
probability.

Attempts to calculate relevant probabilities have been done in the past. They all 
rely on a Bayesian statistical approach, whereby X is regarded as a parameter of a 
statistical model, with a distribution that reflects our prior knowledge or credence 
about X. The crucial issue is to determine the prior distribution of X. Most of the 
past attempts have assumed a uniform prior distribution in order to measure the 
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relevant probability (see, among others, [5–9]). This is problematic because using 
uniformity is impossible when the space in which the life-permitting interval IX is 
taking values has infinite measure [10, 11].

2 � Insufficient Reason and the Normalization Problem

In 1933 the Russian mathematician Andrei Kolmogorov introduced the axioms of 
probability opening the door to rigorous mathematical research into the theory of 
randomness [12]. Since these axioms are important in the discussion that follows, 
they are here reproduced. Let us start with a sample space Ω . As its name hints, 
this space comprises the set from which events can be sampled. In particular, the 
constant of nature X (or the ratio of two such constants) belongs to Ω . A probability 
measure P over Ω (that corresponds to the various values X potentially could have, 
whether these values result in a life-permitting universe or not) must satisfy the next 
three axioms: 

1.	 Unitarity: 

2.	 Nonnegativitity: for an event E ⊂ Ω , 

3.	 �-additivity: any countable sequence of disjoint events E1,E2,… satisfies 

For instance, assuming that Ω admits a length, denoted by | ⋅ | , and that |Ω| is finite, 
it is possible to assign to each interval I ∈ Ω a probability |I|∕|Ω| . In this way, a 
uniform distribution is obtained. Of course, an uncountable number of other assign-
ments of probabilities that satisfy Kolmogorov’s axioms are also possible. However, 
the uniform distribution has a special place in probability.

Jacob Bernoulli, one of the founding fathers of probability, proposed in his time 
what is now called the principle of insufficient reason (PrOIR) [13], also reissued 
by Laplace as the principle of indifference. From the viewpoint of the continuous 
sample spaces of interest in cosmological fine-tuning, this principle asserts that in 
the absence of any prior knowledge, given that the sample space has finite length 
(noted as |Ω| < ∞ ), a uniform distribution should be assumed (though it is a matter 
of interpretation whether uniformity implies stochasticity or not).

The intuition behind the PrOIR has been vindicated in diverse areas like optimi-
zation and learning, Bayesian statistics, and information theory. In optimization and 
learning, the No-Free-Lunch theorems show that no search does better on average 
than a blind search, i.e., a search of the target according to uniform distributions 
[14, 15]. In Bayesian statistics, the uniform probability is used as a non-informative 

(1)P(Ω) = 1

(2)P(E) ≥ 0.

(3)P

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

P(Ei).
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prior [16]; in information theory, maximum entropy provides the biggest support for 
the PrOIR, since the maximum entropy distribution is selected not for the negative 
reason of not possessing additional knowledge, but for the positive one that it mini-
mizes the bias under the current knowledge of the problem [17, 18]. This last point 
is important, because, besides maximum entropy providing a positive criterium to 
choose the uniform distribution as the default, a generalization is allowed beyond 
settings in which Ω has finite length.

2.1 � Normalization

In 2001, McGrew et al. offered a powerful criticism of fine-tuning arguments [10]. 
They warned that even though the PrOIR can only be applied when Ω has finite 
length, some defenders of fine-tuning were using it to find the probabilities of inter-
est when this length was infinite. Therefore, they argued, the PrOIR cannot be 
invoked in order to calculate the probabilities of most fine-tuning events, since the 
relevant spaces where the constants take values often have infinite cardinality.

Their criticism is right. In the continuum, the uniform distribution is only defined 
for sample spaces of finite length [19]. However, in the limit uniformity ceases to be 
a probability distribution and there is no well-defined limit for sequences of trun-
cated uniform distributions.1

This does not mean, however, that it is impossible to obtain a probability distribu-
tion for Ω = ℝ

+ . For example, the assignation of a cumulative distribution function 
F(x) = P((0, x]) = 1 − e−x for each x ∈ ℝ

+ defines P uniquely. For this reason we 
refer to F as the distribution that P corresponds to, or the prior distribution of X. The 
above mentioned choice of F is known as the “exponential distribution with mean 
parameter 1” and it satisfies Kolmogorov’s axioms. Thus, it is not possible to assign 

1  The following argument for the nonexistence of a uniform distribution on Ω = R+ does not make 
use of the starting assumption that this distribution has a constant density on R+ (which immedi-
ately would lead to a contradiction that this density integrates to 1). To showcase that a sequence of 
truncated uniform distributions on [0,  N] does not have a well-defined limit as N → ∞ , another type 
of argument is presented here. This will point to the fact that first imposing an upper boundary N on 
X, and then using the PrOIR is but arbitrary. In order to motivate that a uniform distribution does not 
exist on the infinite-sized positive real line Ω = ℝ

+ , we first consider, ΩN = (0,N] , and assume with-
out loss of generality that N is a positive integer. Then make partition of ΩN into N subintervals of 
length 1: I1 = (0, 1], I2 = (1, 2],… , IN = (N − 1,N] . The uniform distribution assigns probability 
1/N to each of these subintervals, since PN (Ii) = |Ii|∕|ΩN | = 1∕N , for i ∈ {1,…N} . Therefore, as N 
approaches infinity (noted N → ∞ ), ΩN approaches the whole set of positive real numbers Ω = ℝ

+ . If 
PN were to approach a limiting distribution P on Ω , then P would have a continuous distribution since 
P({x}) ≤ lim supN→∞ PN (I[x] ∪ I[x]+1) = 0 for any x ∈ Ω , with I0 interpreted as the empty set. But since P 
(if it exists) has a continuous distribution it follows that PN (Ii) → 0 = P(Ii) , for all i ∈ ℕ . From this, 

 as N → ∞ . That is, in the limit, 1 = 0 . This is a contradiction. (Notice that the first equality was obtained 
by unitarity (1) and the second by �-additivity (3).) The reason for the contradiction is that the sequence 
of probability measures {PN} does not satisfy a property called tightness [20, pp. 7–13], since the proba-
bility mass escapes to infinity. This implies that {PN} does not converge to any limiting probability meas-
ure P, in particular not to a uniform distribution on Ω.

(4)1 = P(Ω) =

∞∑
i=1

P(Ii) = 0,
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a uniform distribution to a sample space of infinite length. But, as showed, it would 
be mistaken to assume from this that no distribution at all exists for such a space.

Indeed, there is always the possibility to have a small length but a large probabil-
ity [4]. Nevertheless, the opposite situation is also true: it is possible for a set to have 
large length but small probability.2

This observation leads to a whole reconfiguration of the fine-tuning problem, 
since it is perfectly possible that some constants with small life-permitting intervals 
are not fine-tuned (not having small probabilities), but it is also possible that some 
constants whose life-permitting intervals are large, even infinite, are very finely 
tuned (having very small probabilities). Although in several cases a small interval 
leads indeed to a small probability, this is not always the case. In the end it is not 
size that matters, but probability.

3 � The Way Out: Maximum Entropy

The appeal of the PrOIR resides in the fact that, since no better knowledge is at 
hand, all intervals of the same size must have the same probability. Otherwise an 
unwarranted addition of information would be committed [21]. However, the prin-
ciple does not apply when Ω has infinite length. In fact, since no uniform distribu-
tion is possible in this scenario, some intervals of identical size will have different 
probabilities. Is there any way out? Is there a more general principle that supersedes 
Bernoulli’s PrOIR?

In two succesive papers, Edwin T. Jaynes proposed the principle of maximum 
entropy (maxent) which, among other things, subsumed the PrOIR [17, 18]. There 
are two main differences between maxent and the PrOIR: First, maxent selects its 
distribution for the positive reason that it maximally reduces bias among all distribu-
tions which share the same amount/lack of information (it is “maximally noncommit-
tal with regard to missing information”, as Jaynes put it), instead of the negative one 
of selecting a distribution for not having reasons to do otherwise. Second, maxent 
can be generalized to distributions in unbounded spaces, provided that appropriate 
restrictions over some of its moments are placed (see Appendix 1 and [22, 23]). Nev-
ertheless, when Ω is a bounded interval, maxent still coincides with the PrOIR in that 
it selects the uniform distribution over Ω if no moment constraints are imposed.3

Note that informational entropy is analogous to thermodynamical entropy, but 
the two concepts are not equivalent. Abstract informational systems move asymp-
totically towards maximum entropy configurations even in unbounded spaces, to 
2  For instance, continuing with the example of the exponential distribution of mean 1, even though 
the interval I =

(
1020,∞

)
 has infinite length, P(I) = exp

(
−1020

)
≈ 0 . On the other hand, although 

I1 = (0, 1] , for which |I1|∕|Ω| = 1∕∞ = 0 , the probability of I1 is P(I1) = 1 − e−1 ≈ 0.63.
3  In more detail, let Ω = [a, b] . Among all continuous distribution F with F([a, b]) = 1 , the continuous 
version Hc(F) of the entropy (defined in (15) of Appendix 1) is maximized by the uniform density

when no moment restrictions are imposed. This follows by putting d = 0 in (16). On the other hand, 

f (x) =
1

b − a
, a ≤ x ≤ b,
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the point of reaching the limit; whereas physical systems only take place in finite 
settings that at most can be approximated to maximum entropy distributions in 
unbounded spaces without ever reaching the limit.4 In fact, if Y1, Y2,… is a sequence 
of independent and identically distributed random variables with variance 1, the 
entropy of the normalized sum

is monotonically increasing [24]. Moreover, the entropy of this sum converges to the 
entropy of a standard Gaussian random variable [25].5 The distribution FX of X in 
(5) can be interpreted as prior knowledge about X, and this distribution is the cumu-
lative effect of n components Y1,… , Yn . A higher entropy of FX corresponds to less 
prior knowledge about X. Therefore, the fact that the entropy of FX increases with n, 
towards the entropy of a standard normal distribution, indicates that the prior knowl-
edge about X decreases the more random components it involves.

In conclusion, under some restrictions, the maxent distribution over a relevant 
space maximizes the amount of uncertainty, or, analogously, minimizes the amount 
of prior knowledge. It is therefore the most conservative choice of prior distribu-
tion to make. The principle of maxent also allows the generalization of the PrOIR 
to unbounded spaces. These features will be exploited to solve the normalization 
problem.

4 � Back to Fine‑Tuning

To understand fine-tuning, its underlying reasoning must be grasped first. To 
do so, imagine a constant of nature, let us call it x. Fine-tuning assumes that 
x is a realization of a random variable X, and that there is an interval I = IX 
where X must be realized for the universe to permit life. For instance, the gravi-
tational constant x = Gobs by experimentation is taken to be approximately 
(6.67408 ± 0.00031) × 10−11 m3 kg−1 s−2 [26]. And Sect.  5.2 will use a life-per-
mitting interval IG = Gobs

[
1 − 10−100, 1 + 10−100

]
 . From the perspective of fine-tun-

ing, x is an observation of a variable X = G , with a certain prior distribution on a 
pre-specified sample space.

(5)X = Xn =
Y1 +⋯Yn√

n

Footnote 3 (continued)
when Ω = ℝ is unbounded, it is necessary to impose at least one moment restriction ( d ≥ 1 ) on F in 
order for f to be integrable.
4  For instance, pressure decreasing from the Earth as a function of distance can be approximated by a 
limiting exponential distribution, but it does not reach the limit. See Sect. 4.1 below.
5  The standard Gaussian distribution maximizes entropy (is maxent) over all distributions in ℝ with vari-
ance 1; this is a consequence of (16) in Appendix  1, with d = 2 , M1(x) = x , �1 = 0 , M2(x) = x2 , and 
�2 = 1.



1 3

Foundations of Physics            (2023) 53:1 	 Page 7 of 29      1 

Another possibility is to have a ratio of two constants. Ratios add another layer 
of complexity, because tuning should be measured by considering each term in the 
ratio as a random variable. Gravity, for instance, is usually not considered alone in 
fine-tuning analysis. Rather, it typically appears in some ratio involving another con-
stant of nature. For instance, Paul Davies considers the ratio x = Gobs∕H

2
Pl

 , where 
HPl is Hubble’s constant at the Planck time after the big bang [27, pp. 88–89].

With these considerations, the following procedure to measure the tuning prob-
abilities was proposed in [28]: 

1.	 Determine the right sample space Ω (e.g. if it is discrete, continuous, finite, infi-
nite, ℕ , ℝ+ , ℝ , ℝn , etc.)

2.	 Determine the constraints on the distribution F of X (e.g., if some event E ⊂ Ω 
has a known probability; if some of its moments are finite, or finite and known; 
etc.).6

3.	 For Ω in Step 1 and the constraints in Step 2, find the family F  of maxent distribu-
tions F.

4.	 Find the maximum probability TPmax = max{F(I);F ∈ F} for the life-permitting 
interval I, over the family of distributions found in Step 3.

This four-points structure will be used in the present paper to explain concepts, but 
it will also be extended in many ways. The four steps are described in more detail in 
Subsects. 4.1–4.4. For Step 1, Subsect. 4.1 argues extensively why an infinite sam-
ple space is warranted. For Step 2, Subsect. 4.2 interprets the constraints on F as 
prior knowledge. Subsection 4.3 explains how optimization under side constraints is 
used in Step 3 to find a class F  of prior distributions, and proposes a solution for the 
lack-of-invariance problem of maxent distributions. Finally, Subsect.  4.4 explains 
how Step 4, with its upper bounds on the maximal tuning probability, solves prob-
lems like the weak anthropic principle and the selection of a single point with a 
maxent distribution.

4.1 � Determining the Right Sample Space

Trivial as it seems, this step is at the core of the normalization objection, since some 
have proposed working with sample spaces of finite length. The ad-hoc nature of 
a space forced to have finite length has been criticized by some authors [10, 11]. 
Barnes, on the other side, presents two arguments defending the choice of a uniform 
sample space [6]. First, he seems to subscribe to Jaynes’ philosophy of not work-
ing with infinities that don’t have a clear physical interpretation, although they are 
mathematically well-defined [29, Ch. 15]. Second, Barnes defends that the limits in 
which our theories can be tested before they break must also serve as limits for the 

6  More formally, these constraints are expressed as E[Mi(X)] = �i for i = 1,… , d . A known probability 
�i for the event E corresponds to choosing Mi(x) = 1(x ∈ E) , whereas an ordinary moment restriction 
corresponds to Mi(x) = xi . Appendix  1 explains how the maxent distribution F of X is obtained from 
these constraints.
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sample spaces where the random variables producing the constants could take their 
values. Sections 4.1.1 and 4.1.2 review these two objections against infinite samples 
spaces (or more generally, objections against working with infinities) and argue that 
both of them have deficiencies. Then Sect. 4.1.3 highlights that allowance of infini-
ties opens the door to very useful asymptotic methods.

4.1.1 � On the Limits Imposed by Scientific Observation

Consider the second point Barnes raises. This is a common position in physics, 
perhaps due to its experimentalist nature. In fact, Azhar and Loeb validate Barnes’ 
reasoning [30]. Barnes cites as example the Cavendish experiment, in which, to 
measure gravity, a mass hangs from a rod. According to him, since the experiment 
does not allow for an arbitrarily large mass, because it will break the rod, the pos-
sible range of G cannot be infinite. However, such an argument is unconvincing. 
First of all, the failure of the experiment because the rod was crushed does not rule 
out apriori that G could take other values; in fact, it would keep the possibility of 
stronger G very much alive! Second, even with the success of the experiment, a uni-
verse in which the gravitational constant takes extremely large values is logically 
conceivable. In fact, to assume that a given constant of nature x is a realization of 
a non-degenerate random variable X and then to proceed by arbitrarily limiting the 
values that X can take might seem far-fetched.7 Very large values of the gravitational 
constant remain logically possible in some hypothetical universe, even if they would 
cause the universe to crash against itself. The right conclusion is not that the gravita-
tional constant cannot take such values, but that such a universe does not permit the 
existence of life. Therefore, the probability of X attaining these values must be taken 
into account, although these values fall outside the life-permitting interval IX.

4.1.2 � On the Philosophical Objections to Infinities

As for Barnes’ first point, Ellis et  al. have defended the non-existence of actual 
infinities in physical reality, but mention that Weierstrass’ �–� prescription resolved 
mathematical paradoxes, and thereby opened the way to a rigorous study of the field 
of mathematical analysis [31]. We wholeheartedly agree. It is obvious that actual 
infinites cannot be observed in the real world, but nothing precludes its careful use 
in mathematics, in particular in probability. Rejecting infinites because some people 
have made mistakes while manipulating them is like throwing the baby out with the 
bath water.

Had calculus and mechanics waited until the formalization of the concept of limit 
(the �–� prescription), they would ever have seen the light of day. Despite the fact 
that calculus depends on the concept of limit, neither Newton nor Leibniz formally 
defined it. Not even Euler. The definition of limit was only formalized by Cauchy 

7  A random variable X is degenerate if P(X = x) = 1 that is, if X is constant with probability 1; which 
is a maximum entropy distribution for the restriction Mi(y) = 1(y ∈ {x}) . On the other hand, X is a non-
degenerate random variable if it is not degenerate.
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more than 150 years after the invention of calculus [32]. Science is an edifice built 
step by little step, and no theory is mature at birth.8

Now, in probability, criticisms of treatments of infinity usually focus on the �
-additivity axiom (3), arguing that it must be replaced by a simpler additivity axiom:

for n ∈ ℕ ; that is, additivity only over a finite number of events. This is the approach 
taken by the so-called Bayesian de Finetti school of probability [33].

However, Jaynes, a Bayesian himself, starts his book by saying: “[W]hen all is 
said and done, we find ourselves, to our own surprise, in agreement with Kolmogo-
rov and in disagreement with his critics, on nearly all technical issues... In short, we 
regard our system of probability as not contradicting Kolmogorov’s, but rather seek-
ing a deeper logical foundation that permits its extension in the directions that are 
needed for modern applications” [29, p. xxi]. What Jaynes means is that he agrees 
with Kolmogorov’s �-additivity axiom of probability (3). Moreover, Jaynes even 
criticizes the de Finetti school for its rejection of �-additivity and its devious use of 
finite additivity that leads to many paradoxes.

In fact, Jaynes referred to William Feller, one of the main contributors to mod-
ern probability in the twentieth century and a staunch critic of the de Finetti school 
[34, 35]: “Feller saw this instantly, warned the reader against it, and proceeded to 
develop his own theory in a way that avoids the many useless and unnecessary para-
doxes that arise from it.” And Jaynes followed this comment by a footnote: “Since 
we disagree with Feller so often on conceptual issues, we are glad to agree with him 
nearly in all technical ones. He was, after all, a very great contributor to the techni-
cal means for solving sampling theory problems, and practically everything he did is 
useful to us in our wider endeavors” [29, p. 466].

Thus, despite Jaynes’ idiosyncrasies, he found himself agreeing with Kolmogorov 
and Feller, two of the major contributors to modern probability theory, on basically 
all technical aspects. Moreover, since consistency is the name of the game in math-
ematics, and Feller’s development avoided paradoxes, there seems to be no reason to 
reject the modern formal measure-theoretic approach to probability.

Probability indeed developed in much more formal ways to escape many of these 
paradoxes. For instance, in order to avoid conditioning on events of zero prob-
ability (one of the Jaynes’ biggest concerns, as dividing by zero would be equiva-
lent to multiplying by infinity), Doob defined conditional probability with respect 
to (sub)-�-fields [36]. He was following Kolmogorov’s previous construction in 
terms of the Radon–Nikodym derivative [12]. Measure theory does not disguise 
infinites, as Barnes suggests [6], just as high-school algebra does not disguise an 
infinite in y = 1∕x , given that care is not taken with the domain of the function. In 
fact, the measure-theoretic approach using the Radon–Nikodym derivative allowed 

(6)P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P(Ei),

8  In fact, no scientific theory has ever been final!
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to circumvent the problems of dividing by 0 (see for instance [37, p.  343] and 
Appendix 2).

4.1.3 � On the Usefulness of Asymptotic Results

From a practical viewpoint, both mathematically and scientifically, proper uses 
of infinity in probability and statistics have been extremely important. Moreover, 
most of these developments are continuously used in applications by physicists. All 
asymptotic theory is by definition sustained on the proper application of infinity, and 
typically the asymptotic framework requires infinite sample spaces and/or data sets 
of infinite size. For instance, Bayesian consistency says that the posterior distribu-
tion converges to a one-point distribution at the observed value of the parameter 
when the size of the data set increases towards infinity [38].

To mention but one important example, Brownian motion (whose theory was 
pushed forward by Einstein as a physical application [39]), with increments assumed 
to have a normal distribution and therefore also having an unbounded sample space, 
is the scaling limit of a random walk—a property known as the invariance principle. 
This principle has been extremely fruitful also for theoretical developments both in 
the finite random walk setting and for the approximating Brownian motion limit. 
For instance, probabilists draw inspiration from Brownian motion intuitions for their 
treatment of random walks (see, e.g., [40]). The invariance principle is “a major 
tool in deriving results for random walks from those of Brownian motion, and vice 
versa. Both directions can be useful: In some cases the fact that Brownian motion is 
a continuous time process is an advantage over discrete time random walks...In other 
cases it is a major advantage that (simple) random walk is a discrete object and com-
binatorial arguments can be the right tool to derive important features” [41, p. 4].

Moreover, the fact that the entropy of the normalized sum (5) increases towards 
the entropy of a standard normal distribution (which in turn is maxent over all dis-
tributions in ℝ with mean 0 and variance 1), in agreement with the Central Limit 
Theorem (CLT), strongly suggests that the entropy of continuous distributions is a 
meaningful concept even for spaces of infinite Lebesgue measure. In particular, Eq. 
(5) might influence our choice of priors. If we know apriori that X is the cumulative 
effect of a large but unknown number n of components Y1∕

√
n, ...Yn∕

√
n , it is rea-

sonable to assign a normal prior to X, not only because of the CLT, but also because 
of the principle of maximum entropy.

4.2 � Determining the Constraints

Constraints are needed to find the distribution that best explains the current state of 
knowledge. Despite the name, these types of constraints serve a good purpose. They 
mean knowledge—and since knowledge constrains randomness, knowledge also 
reduces uncertainty [42]. Step 2 of the procedure for finding tuning probabilities 
determines which probability distributions to use. As such, different types of apriori 
knowledge (constraints) will lead to different selections of probability distribution 
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functions, even over the same sample space, and such differences might affect in 
turn the probability of the life-permitting interval.

Now, knowledge that a restriction exists and the exact value of such a restriction 
sets a bar so high it is seldom reached. Of course if these two things are known, such 
knowledge must be used. However, in practice some kind of restriction is known to 
apply, while its particular value is unknown. For instance, it might be the case that X 
has a finite expected value, E(X) < ∞ , but there is not enough information to deter-
mine the exact value of E(X).

More generally, the parameters of the distributions are usually some of their 
moments. This generates an interesting dynamic in that fine-tuning is a study of the 
physical parameters (such as X) of a physical model that are randomized, but that 
to be analyzed probabilistically one needs to assume the existence of other statisti-
cal hyperparameters � that govern the distribution of X. Then it is possible to meta-
analyse the tuning of this new set of hyperparameters of the random model, going 
up in never-ending loops. This is in fact an inescapable epistemological situation 
at the very heart of mathematics and logic [43–45], and only a problem from the 
reductionist viewpoint. Nonetheless this reductionist approach will not hold water. 
A better approach, as has been acknowledged by Nobel Prize winners like Phillip 
Anderson and Robert Laughlin, is to take different levels of complexity studying 
problems according to each level, because “more is different” [46, 47]. In the current 
setting, it means that fine-tuning can, and must, be seen as a problem of emergence, 
sometimes studied at the level of the parametric space, that is, the sample space Ω 
for X, others at the level of the space Θ of the hyperparameters, others at the level of 
hyper-hyper parameters � ∈ Ξ that govern the distribution of the hyperparameters 
� ∈ Θ , and so on.

Through this lens, a crucial part of the analysis of tuning is mathematical mod-
eling, and cosmological fine-tuning is one particular instantiation. Every mathe-
matical model, whether developed for theoretical or applied purposes, will require 
parameters, and those parameters can always be analyzed from a fine-tuning per-
spective [48, 49].

4.3 � Find the Family of Maximum Entropy Distributions

The prior distribution F of X, or the family F  of prior distributions, must be selected 
by giving a probability of occurrence that is as fair as possible with respect to all 
the unknown options. As stated in Sect.  4.2, these considerations do not relate to 
physical considerations, but are based on assumptions of prior knowledge. There-
fore, this assumed knowledge should reduce the uncertainty in terms of hyperparam-
eters, and this reduction must be reflected in the election of the prior distributions. 
This is attained when the distribution of maximum entropy is selected. Maximum 
entropy distributions keep fixed what is known—the constraints in Step 2—while 
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randomizing as much as possible all that is not known. In this sense, the distribution 
function of interest represents the known unknowns (see, e.g., [50]).9

There are three possibilities here: 

1.	 A distribution function of maximum entropy does not exist ( F  is empty).
2.	 The knowledge we possess (the restrictions we add) produces only one distribu-

tion function ( F = {F} contains one single distribution F).
3.	 The knowledge we possess admits more than one distribution function ( |F| > 1).

In the first case, the constraints are contradictory so that a maximum entropy distri-
bution does not exist. Imagine, for instance, that the researcher requires a negative 
expected value for a random variable that is only positive, or a positive variance 
of a degenerate random variable. This means that the assumptions, or the model 
itself, needs to be reformulated. However, since the constant of nature does exist, 
at the very least the degenerate random variable must exist.10 Nevertheless, by the 
very essence of the fine-tuning problem, the observed constant of nature x = xobs 
is assumed to be the realization of a random variable X that can take multiple val-
ues. Therefore fine-tuning requires a non-degenerate random variable, which in turn 
implies a non-zero scale parameter (e.g., a positive variance, when it exists).

The second case ensues when knowledge warrants the selection of a single maxi-
mum entropy distribution. This is the case, for instance, when the constraints of Step 
2 correspond to a bounded sample space and no moments of F are known ( d = 0 ), 
obtaining a uniform distribution, in agreement with past fine-tuning analyses [5–9]. 
The constraints of Step 2 could also be that d moments of F are known. This occurs, 
for instance, when there is a single ( d = 1 ) constraint on the expected value of X 
and the sample space is the nonnegative portion of the real line and additionally the 
mean is known to be � . Then the unique maximum entropy distribution over this 
space corresponds to the exponential distribution with mean parameter �.11 Or if 
X is a Weibull random variable with scale parameter 𝜃1 = 𝜆 > 0 and shape param-
eter 𝜃2 = k > 0 , it has maximum entropy distribution over all distributions in ℝ+ 
such that E(Xk) = �k and E(lnX) = ln � − �E∕k , where �E is the Euler-Mascheroni 
constant:12

9  Take, for instance, Ω = {x1, x2, x3} . In the absence of further knowledge, the Shannon entropy H(F) 
in (14) in Appendix 1 is maximized by a uniform distribution F on Ω , with �1 = �2 = �3 = 1∕3 , and 
�i = F({xi}) . However, let us assume that �1 = E[M1(X)] = 1∕2 = �1 , with M1(x) = 1(x = x1) , rep-
resents information that is known to the researcher. Under this constraint H(F) is maximized by 
(�1,�2,�3) = (1∕2, 1∕4, 1∕4) . Therefore, the knowledge of the probability of the event {x1} , redistributes 
the remaining probability equally among the events {x2} and {x3}.
10  In this scenario, there is no fine-tuning. For a constant of nature with value x, this cor-
responds to choosing d = 1 and M1(y) = 1(y ∈ {x}) , which in this scenario corresponds to 
�1 = E[M1(X)] = P(X = {x}) = 1 (see footnotes 6 and 7 and (16) in Appendix 1).
11  This corresponds to choosing d = 1 and M1(x) = x in (8).
12  This corresponds to choosing d = 2 , M1(x) = xk and M2(x) = ln(x) in (8).
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In a similar way, different maximum entropy distributions are produced under vari-
ous restrictions over the same space [23].

As for the third case, when there is knowledge that a restriction exists but the 
exact value of the restriction is not known, a family of maximum entropy distri-
butions is obtained. Continuing with the previous example, let Ω = ℝ

+ . If the 
researcher only knows that the random variable X has finite first moment E(X) = � , 
but the exact value of � is unknown (i.e., E(X) < ∞ ), then there is a family of maxi-
mum entropy distributions to consider, not only a single one. In this particular case, 
an uncountable number of exponential distributions with densities f (x;�) = e−x∕�∕� 
results, where � takes values along the positive real line, i.e. Θ = ℝ

+.
More generally, for � = (�1,… , �d) , a finite-dimensional vector of hyperparam-

eters in a given parameter space Θ ⊂ ℝ
d , the maximum entropy distribution of X 

belongs to a class

where F(⋅ ;�) is the maxent distribution corresponding to the d moment constraints

for i = 1,… , d . For instance, by an appropriate choice of d, Mi and �i , this provides 
a solution for fine-tuning to the problem of maxent not being invariant with respect 
to transformations of data [51].13

4.4 � Find the Probability of the Life‑Permitting Interval

Remember that the goal is to calculate the probability of a constant of nature X 
falling in its life-permitting interval IX . To do this, with a Bayesian approach, the 
observed value xobs of this constant is taken as a realization of a random variable X, 
and the event of interest is {X ∈ IX} . Having found the relevant family F  of prior 
distributions of X in Step 3, the tuning probabilities

�E = lim
n→∞

(
− ln n +

n∑
i=1

1

i

)
.

(7)F = {F(⋅ ; �), such that � ∈ Θ},

(8)E[Mi(X)] = �i,

(10)TP (�) = F(IX;�)

13  In more detail, suppose Yi = Gi(X) is a strictly increasing and differentiable transformations of X, with 
gi(x) = G�

i
(x) , for i = 1,… , d . Then, if F and Fi refer to the distributions of X and Yi , and f = F� is the 

density of X, it can be shown that 

 where Mi(x) = log[gi(x)] , and Hc is the continuous entropy of (15) in Appendix  1. The max-
ent distribution Fi therefore corresponds to the distribution F that maximizes Hc(F) + �i when 
�i = E[Mi(X)] varies. From this it follows that the maxent distributions of F1,… ,Fd are all mem-
bers of F = {F(⋅;�); � = (�1,… , �d) ∈ Θ} , with Θ ranging over all permissible constraints on 
(E[M1(X)],… ,E[Md(X)]).

(9)Hc(Fi) = Hc(F) + E[Mi(X)],
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that X is tuned to lie in IX , for different � in Θ , are obtainable. The conservative 
approach is then to take the value �max that maximizes the tuning probability TP (�) , 
and to put

Note in particular that the maximal tuning probability (11) does not depend on any 
distributional assumptions on the hyperparameters � in terms of hyper-hyperparam-
eters � . Thereby TPmax to some extent avoids the loop of hierarchical meta-assump-
tions, described in Sect. 4.2. However, the parameter space Θ must still be chosen 
apriori, with which the hierarchy under analysis is pre-specified.

When d = 1 and � = E(X) , taking the observed value xobs of the constant of 
nature as estimator 𝜃̂ = xobs of the mean of the random variable X to find an estimate 
F̂(⋅) = F(⋅;𝜃̂) of the maxent distribution F over Ω with mean xobs might be tempting. 
That is, using a sample of size 1. There is nothing intrinsically wrong in statistical 
terms with samples of size 1. In fact, a sample of size 1 from F is still an unbiased 
estimator of the first moment of F. Now, according to the weak anthropic princi-
ple, this single observation is biased in a deeper sense: since we live in a habitable 
universe, we are constrained in our sample of size 1 to only observe values that per-
mit life. The weak anthropic principle is thus a problem of selection bias [52]. The 
setting in (11) provides the full resolution to the weak anthropic principle for any 
number d of moment constraints. Namely, instead of taking the observed value of 
the constant of nature in our universe to determine the probability, all the possi-
ble maxent distributions in the family F  are taken into account, and the one that is 
selected maximizes the probability of {X ∈ IX} . In fact, when d = 1 and � = E(X) , 
(11) also addresses and solves another concern by McGrew, according to which a 
unique maxent distribution is assumed and then a single observation xobs of X is 
taken as a possibly biased estimate of the mean E(X) of X [53].

In proper terms then, (11) does not obtain an exact tuning probability, but an 
upper bound to it. This, among other things, implies that whenever this method 
detects fine-tuning for a particular model (i.e., a low probability of X ∈ IX ), fine-
tuning is indeed present. However, when it detects coarse-tuning (i.e., a high prob-
ability of X ∈ IX ), there is no guarantee that the actual tuning is coarse. The expla-
nation is that, when taking the conservative approach of selecting the value �max 
that maximizes the probability of the event {X ∈ IX} over the family of distributions 
F = {F(⋅ ; �); � ∈ Θ} , then

where �real corresponds to the actual value of the parameter. Therefore, if TPmax is 
small, TP (�real) is also small. However, if TPmax is large, the procedure cannot detect 
whether TP (�real) is large or small.

To put it in statistical terms, if negatives and positives correspond to fine and 
coarse tuning respectively, the rate of false negatives is zero whereas the rate of false 
positives cannot be determined. Thus, when TPmax is large, it does not mean that 
there is coarse-tuning, but that the four-steps method of Sect. 4.3 is inconclusive for 
determining fine-tuning.

(11)TPmax = max
�∈Θ

TP (�) = F
(
IX;�max

)
.

TPmax ≥ TP (�real),
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5 � Examples

In this section the life permitting interval of X is assumed to have the form

when the observed value xobs of X is nonzero, with 𝜖 > 0 a dimensionless constant 
that quantifies half the relative size of IX . Appendix 3 gives general formulas for the 
maximal tuning probability

as a function of � and the family F  of prior distributions of X.
Appendix 3 demonstrates that the maximal tuning probability in (13) is pro-

portional to � for one-dimensional ( d = 1 ) families of priors, with constants 
of proportionality C1 for the scale-family and C2 for the location-family of pri-
ors respectively; see (49). Consequently, for these scenarios a small � implies 
fine-tuning.

For the two-dimensional ( d = 2 ) form-scale and location-scale families, the 
maximal tuning probability is proportional to �

√
S , where 0 < S ≤ ∞ is the maxi-

mum signal-to-noise ratio of the family of priors. The larger S is, the less we 
assume about the family of priors, with S = ∞ corresponding to a scenario in 
which degenerate one-point prior distributions are allowed. Appendix  3 shows 
that the maximal tuning probability is proportional to �

√
S as long as this product 

remains small, whereas it equals 1 for S = ∞ . Consequently, an interval with a 
small relative size � implies a small maximal fine-tuning probability if the max-
imum signal-to-noise ratio S is of smaller order than �−2 , but possibly a large 
coarse-tuning probability if the order of S is larger than �−2.

In Sects. 5.1–5.3, three examples illustrate this approach to find the maximal 
tuning probability; the critical density of the universe, gravitation, and the ampli-
tude of primordial fluctuations.

5.1 � Critical Density of the Universe

According to [27, p. 89], the critical density of the universe �crit cannot take val-
ues outside the life-permitting interval

That is, in accordance with (12), I�crit can be expressed as �crit[1 − �, 1 + �] , for 
dimensionless � that is half the relative size of I�crit . Since � = 10−60 , it is clearly very 
small ( 𝜖 ≪ 1 ). Also, since the density cannot be negative, tuning of the critical den-
sity is evaluated for ℝ+ in Table 1. In this case, in two of the three relevant scenarios 
of Table 1 the tuning is fine: 

(12)I = IX = xobs[1 − �, 1 + �],

(13)TPmax = TPmax(�,F)

I�crit =
[
�crit − �crit10

−60, �crit + �crit10
−60

]
.
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1.	 When the distribution function of the critical density belongs to the scale family, 
with TPmax = 2 × 10−60C1 , with C1 = e−1 for the family of exponential distribu-
tions.

2.	 When the distribution function of the critical density belongs to a form-
and-scale family (for instance, the gamma or Weibull families), with 
TPmax = 2 × 10−60

√
S∕2�  , provided the signal-to-noise ratio of the prior is 

bounded above by S and 
√
S ≪ 1060.

As per the second row of Table 1, fine-tuning cannot be detected when the prior dis-
tribution of the critical density belongs to the form-and-scale family and no restric-
tions are imposed on the signal-to-noise ratio (i.e., S = ∞).

5.2 � Gravitational Force

When observing the ratio X of the gravitational constant Gobs to the contribution 
from vacuum energy to the cosmological constant Λvac , according to Davies [27, 
p. 107], gravitation cannot fall outside the life-permitting interval

For simplicity we will refer to the ratio X = G∕Λvac as a gravitational random varia-
ble. Analogously to (12) and the previous example, its life-permitting interval IX can 
be expressed as xobs[1 − �, 1 + �] , for dimensionless � = 10−100 , which is very small. 
Now, from the perspective of tuning, the gravitational constant is a more complex 
case than the critical density, since depending on assumptions it can be positive, 
negative, or even zero. Under the assumption that gravity is only an attractive force, 
it can only be positive, so its sample space is ℝ+ . In this scenario, analogous conclu-
sions to those in the previous example are attained (just being careful to substitute � 
for 10−100 , instead of 10−60).

However, under the assumption that the gravitational constant could also be 
repulsive, it could take negative values too [54, p. 535]. In this scenario, the sam-
ple space is the whole real line ℝ . According to Table 1, five scenarios are possible 
here; in three of them fine-tuning is detected, and in two of them the criterium is 
inconclusive assigning a coarse TPmax = 1 . The three cases in which there is fine-
tuning are the following: 

1.	 When the distribution of the gravitational random variable belongs to the scale 
family, since 0 ∉ IX . In this case, TPmax = 2 × 10−100C1 , with C1 = 0.5e−1 for the 
family of Laplace distributions and C1 = e−1∕2∕

√
8� for the family of symmetric 

normal distributions.
2.	 When the distribution of the gravitational random variable belongs to the loca-

tion family, in which case TPmax = 2 × 10−100C3 , for C3 ≪ 10100 . For instance, 
C3 = 1∕(

√
2��) for the family of normal distributions with fixed standard devia-

tion �.
3.	 When the distribution of the gravitational random variable belongs to the loca-

tion-and-scale family, in which case TPmax = 2 × 10−100(C3

√
S + C1) , where 

IX = xobs
[
1 − 10−100, 1 + 10−100

]
.
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C1 = e−1∕2∕
√
8� and C3 = 1∕

√
2� for the family of normal distributions. Con-

sequently, there is fine-tuning provided the signal-to-noise ratio is bounded above 
by some S, and S ≪ 10200.

For the cases in which fine-tuning is not detected the distribution of the gravitational 
random variable must belong either to the location or the location-and-scale families 
of distributions with small enough � and large enough S respectively. The scenario 
in the fifth row of Table 1 does not apply in this situation, since 0 ∉ IX.

5.3 � Amplitude of Primordial Fluctuations

The amplitude of the primordial fluctuations must be in a life-permitting interval 
IQ =

[
10−6, 10−5

]
 [55, p. 128]. However, this interval spans over more than one order 

of magnitude and for this reason the theory from Appendix 3 for small � does not 
apply (see Remark 1 on Appendix 3.6). In fact, under the assumption that the ampli-
tude of the primordial fluctuations has an exponential distribution (corresponding 
to the scale family of distributions whose sample space is ℝ+ ), TPmax ≈ 0.7 [28]. 
Therefore, surprisingly, fine-tuning is not detected in this case.

6 � Discussion

This article discusses a method that formalizes the detection of fine-tuning and 
solves many problems related to the measurement of fine-tuning for the constants 
of physics. Namely, the normalization problem, the weak anthropic principle, the 
invariance of maximum entropy, and the selection of a single maxent distribution.

One of the great advantages of the maxent approach is its great versatility. Even if 
the constants change, or even under a different model altogether, this approach will 
still work. As explained in Sects.  4.1–4.4, this flexibility of the maxent approach 
follows since the class of prior distributions of the relevant constant of nature is 
obtained once the constant’s sample space and constraints have been defined. This 
is highly relevant at a time when the standard model of cosmology is under scrutiny 
(see, e.g., [56, 57]).

Another advantage is that fine-tuning has been attached to mathematical mod-
eling, and cosmological fine-tuning has become just a particular application. Fine-
tuning can then be used in any area of science where a mathematical model is pre-
sent. For the particular case of cosmology, our framework entails that even if the 
current model that describes the universe is replaced by another, the method herein 
will still apply to the new model with its new set of constants of nature and their 
associated sample spaces and constraints. Thus, as long as mathematical modeling is 
present, particularly a mathematical model to explain how the universe works, fine-
tuning is going to be a relevant question to ask. The approach taken in this paper is 
well-suited for studying a large class of models.
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Appendix 1: Entropy and Maximum Entropy Distributions

Suppose X is a discrete random variable defined on a countable sample space 
Ω = {x1, x2,…} with distribution F. Then the entropy of F is

with �i = F({xi}).
For a continuous random variable X, defined on a subset Ω of ℝ+ , with density 

function f = F� , the entropy H(F) is not defined. However, for each 𝛿 > 0 , the 
distribution F of X can be approximated by a discrete distribution F� such that 
F�({xi}) = F(Ii) for i = 1, 2,… , where Ii = ((i − 1)�, i�] and xi is the mid point of 
Ii . If 𝛿 > 0 is small, we have approximately

Although H(F�) → ∞ as � → 0 , we may use

as a continuous analogue of the entropy. The motivation of Hc as a continuous ana-
logue of the entropy is similar for other unbounded sample spaces Ω , such as ℝ , 
ℝ

+ ×ℝ , and ℝ2.
The goal is to find a distribution F that maximizes Hc(F) subject 

to a constraint ∫
Ω
f (x)dx = 1 and the d additional moment constraints 

E[Mi(X)] = ∫
Ω
Mi(x)f (x)dx = �i for i = 1,… , d . In particular, ordinary moment 

constraints correspond to choosing Mi(x) = xi as polynomials of x of various 
orders i. The distribution F with maximal entropy Hc , subject to these n con-
straints, has a density function

where �1,… , �d are Lagrange multipliers chosen to satisfy the moment constraints, 
whereas Z is a normalizing partition function, chosen so that f integrates to 1.

Though this is the most common way to find maximum entropy distributions, a 
more general approach is possible that finds maximum entropy distributions, even 
in some cases for which Lagrange multipliers do not work [58]. The details go 
beyond the scope of this paper.

(14)H(F) = −
∑
i

ln(�i)�i,

H(F�) ≈ −∫Ω

ln[f (x)]f (x)dx + ln[�−1] = Hc(F) + ln[�−1].

(15)Hc(F) = lim
�→0

[
H(F�) − ln

(
�−1

)]
= −∫Ω

ln[f (x)]f (x)dx

(16)f (x) =
exp(�1M1(x) +… + �dMd(x))

Z(�1,… , �d)
,
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Appendix 2: Conditional Probability

This section shows how the formal construction of conditional expectation avoids 
problem with infinity.

In the context of tuning, suppose we have two constants of nature, X, Y ∈ ℝ
+ . 

We want to find the conditional distribution x → FX∣Y (x) = P(X ≤ x ∣ Y = y) of X 
given an observed value y of Y. This can be formulated as a conditional probability 
P(A ∣ G) = P(A ∩ G)∕P(G) , where A and G are the sets of outcomes for which X ≤ x 
and Y = y respectively. However, this formula does not work when Y has a continu-
ous distribution and P(G) = 0 . Given this limitation of the classical notion of con-
ditional probability, a more general definition of conditional probability is needed 
in order to find the conditional distribution of X given Y. Given this, “the whole 
point of [the measure-theoretic treatment of conditional probability] is the system-
atic development of a notion of conditional probability that covers conditioning with 
respect to events of probability 0. This is accomplished by conditioning with respect 
to collections of events—that is, with respect to �-fields G ” [59].

The formal definition of conditional probability is as follows: Given a probabil-
ity space (Σ,H,P) , a set A ∈ H , and and a �-field G ⊂ H , there exists a function f 
(whose existence is guaranteed by the Radon-Nikodym theorem), G-measurable and 
integrable with respect to P, such that P(A ∩ G) = �(G) = ∫

G
fdP for all G ∈ G . This 

function f can be conveniently noted as P(A ∣ G) . The function P(A ∣ G) thus has two 
properties that define it: 

	 (i)	 P(A ∣ G) is G-measurable and integrable.
	 (ii)	 P(A ∣ G) satisfies the functional equation 

The important point here is that writing f as P(A ∣ G) is just a notational con-
venience that can be interpreted as follows: when G is generated by a partition 
P = {G1,G2 …} of Σ , conditioning on G can thus be seen as performing an experi-
ment whose outcome

will determine which event Gi of the partition occurred.14 In general, there is a whole 
family of random variables satisfying properties (i) and (ii). Such random variables 
are equal with probability 1 (i.e., they can only be different in a set of zero prob-
ability); for this reason, each member of the family is called a version of the oth-
ers. Thus, P(A ∣ G) stands for any member of this family. Therefore, if P(Gi) = 0 for 
some nonempty Gi ∈ P , a constant value c must be selected to make P(A ∣ G) = c 

∫G

P(A ∣ G)dP = P(A ∩ G), G ∈ G.

f (x) = P(A ∣ G)(x) =

∞∑
i=1

P(A ∣ Gi)1(x ∈ Gi)

14  In our motivating example with two constants of nature X and Y, a partition P corresponds to a case 
when the sample space of Y is countable ( Y ∈ {y1, y2,…} ) and Gi is the set of outcomes for which Y = yi.
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on Gi . Regardless of the choice of c ∈ [0, 1] , P(A ∣ G) can still be considered a prob-
ability measure on (Σ,H) that assigns probabilities to all A ∈ H . That is, a version 
of the conditional probability is selected for any value of c.

However, this interpretation for the notation P(A ∣ G) does not hold when G is 
not generated by a partition of Σ , which in our motivating example corresponds to 
Y having a continuous distribution. Nonetheless, even though the intuition of the 
conditional probability as the realization of an experiment, with an outcome in 
P = {G1,G2,…} , is gone, the mathematical formalism stands, independently of the 
conditioning �-field. That is, there still exists a family of functions {f } satisfying 
properties (i) and (ii). As in any area of mathematics, problems would arise when 
dividing by zero, but the formalism permits to circumvent this situation by selecting 
a well-defined version of the conditional probability.

Appendix 3: Upper Bounds for Fine‑Tuning Probabilities

Let xobs ≠ 0 be the observed value of a constant of nature X ∈ Ω (or a ratio X of two 
constants of nature), where Ω is the sample space. The prior distribution of X has a 
density f = F� that belongs a parametric family

with Θ ⊂ ℝ
d the parameter space to which the hyperparameter � belongs. This 

framework is more general than (7), since (17) does not assume that the hyperpa-
rameters �i represent moment constraints �i = E[Mi(X)] of Appendix 1. Let

be the life-permitting interval of X, with 𝜖 > 0 a small number that quantifies half 
the relative size of I. For a fixed � the tuning probability is

Our quantity of interest is a useful approximation of the upper bound

of the tuning probability, assuming that the maximum in (20) is taken over all hyper-
parameter vectors that appear in (17).

Appendices  3.1–3.5 will give explicit approximations of the maximal tuning 
probability (20) for give different families F  of prior distributions. Then in Table 1 
of Appendix 3.6 the results are summarized.

Appendix 3.1: Scale Parameter for Ä = ℝ
+

A scale-parameter corresponds to d = 1 and 𝜃 = 𝜎 > 0 , so that Θ = ℝ
+ . The prior 

density is

(17)F = {f (x;�); � = (�1,… , �d) ∈ Θ},

(18)I = IX = xobs[1 − �, 1 − �]

(19)TP(�) = F(I;�) = ∫I

f (x;�)dx.

(20)TPmax(I) = max
�∈Θ

F(I;�)
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A typical example is the family of exponential distributions ( g(x) = e−x ). Since

it follows that

It is easily seen that C1 = e−1 for the family of exponential distributions.

Appendix 3.2: Form and Scale Parameter for Ä = ℝ
+

This scenario corresponds to d = 2 , � = (� , �) , where 𝜓 > 0 is the form parameter and 
𝜎 > 0 the scale parameter. Consequently

where g(⋅;�) is the density of the distribution with shape parameter � 
and scale parameter 1. Typical examples are the family of gamma distri-
butions ( g(x;�) = x�−1e−x∕Γ(�) ) or the family of Weibull distributions 
( g(x;�) = �x�−1e−x

� ). The expected value and variance of X are

respectively, for some functions h1 and h2 (for instance h1(�) = h2(�) = � 
for the family of gamma distributions, whereas h1(�) = Γ(1 + 1∕�) and 
h2(�) = Γ(1 + 2∕�) − Γ2(1 + 1∕�) for the family of Weibull distributions). Let 
h(�) = h2

1
(�)∕h2(�) . We consider a parameter space

of hyperparameters such that the signal-to-noise ratio

of the prior distribution is at most S. We will prove that

for some constant C2 (defined below), whenever S is large and

(21)f (x;�) =
1

�
g
(
x

�

)
.

(22)F(I;�) ≈ 2�
xobs

�
g
(xobs

�

)
,

(23)
TPmax(I) ≤ 2𝜖max

x>0
{xf (x)}

= 2𝜖C1.

(24)f (x;� , �) =
1

�
g
(
x

�
;�

)
,

E(X) = � = h1(�)�,

Var(X) = h2(�)�2,

(25)Θ =

{
(� , �) ∶

E2(X)

Var(X)
= h(�) ≤ S

}

(26)SNR =
E2(X)

Var(X)
≤ S

(27)TPmax(I) ≤ 2�C2

√
S
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It follows that essentially, (28) is the condition for the upper bound TPmax(I) of the 
tuning probability to be small.

Proof of (27). Equation (24) implies

from which

follows. Since I∕xobs = [1 − �, 1 + �] , we assume, without loss of generality, that 
xobs = 1 . With this choice of xobs,

In view of (25) and (30),

Moreover, it can be seen that

(28)𝜖
√
S ≪ 1 ⟺ S ≪

1

𝜖2
.

F(I;� , �) = F

(
I

xobs
;� ,

�

xobs

)
,

(29)TPmax(I) = TPmax

(
I

xobs

)

(30)F(I;� , �) ≈
2�

�
g
(
1

�
;�

)
.

TPmax(I) = max
� :h(�) ≤ S;

� > 0

F(I;� , �)

≈ 2�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

max
� :h(�) ≤ S;

� > 0

{ 1
�
g
( 1
�
;�

)}

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 2�

⎛

⎜

⎜

⎜

⎜

⎜

⎝

max
� :h(�) ≤ S;

x > 0

{xg(x;�)}

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≤ 2�C2

√

S.

(31)
C2 =

1
√

S

⎛

⎜

⎜

⎜

⎜

⎜

⎝

max
� :h(�) ≤ S;

x > 0

{xg(x;�)}

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≈ 1
√

S
⋅ h1

(

h−1(S)
)

g
(

h1
(

h−1(S)
)

;h−1(S)
)
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when S is large, since the maximum of xg(x;�) with respect to x approximately 
equals E(X)g(E(X);�) . For the gamma and Weibull families, we have that g(x;�) is 
approximately a Gaussian density for large signal-to-noise ratios h(�) . This implies

when h(�) is large, where �(x) = e−x
2∕2∕

√
2� is the density of a standard normal 

distribution. Inserting (32) into (31) we find (with �1 = h−1(S) ) that

where in the last step we used that h1(�1)∕
√
h2(�1) =

√
S and �(0) = 1∕

√
2�.

Appendix 3.3: Scale Parameter for Ä = ℝ

This is the same kind of density as in (21), with d = 1 and 𝜃 = 𝜎 > 0 , so that 
Θ = ℝ

+ . But g is now a symmetric density defined on the whole real line. A typical 
example is the class of double exponential or Laplace distributions ( g(x) = e−|x|∕2 ), 
the class of symmetric normal distributions ( g(x) = �(x) ) or the class of symmetric 
Cauchy distributions ( g(x) = 1∕

[
�
(
1 + x2

)]
 ). It can be seen that

whereas (23) still holds.

Appendix 3.4: Location Parameter for Ä = ℝ

A location parameter corresponds to d = 1 , � = � , Θ = ℝ , and

Typical examples are the family of normal distributions with fixed variance �2 
( g(x) = �(x∕�)∕� ), and the family of shifted Cauchy distributions with a fixed scale 
� ( g(x) = 1∕

[
��

(
1 + (x∕�)2

)]
 ). Since

it follows that

(32)g(x;�) ≈
1√
h2(�)

⋅ �

�
x − h1(�)√

h2(�)

�

C2 ≈
1√
S
⋅ h1(�1) ⋅

1√
h2(�1)

�

�
h1(�1) − h1(�1)√

h2(�1)

�
=

1√
2�

,

(33)F(I;�) ≈ 2�
|xobs|
�

g
(xobs

�

)
,

(34)f (x;�) = g(x − �).

(35)F(I;�) ≈ 2�g(xobs − �),

(36)TPmax(I) ≤ 2�max
x∈ℝ

g(x)

(37)= 2�C3.
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Appendix 3.5: Location and Scale Parameters for Ä = ℝ

The two-parameter location-scale family corresponds to d = 2 , � = (�, �),

and

If the first two moments of the prior exist and X ∼ g is standardized to have E(X) = 0 
and Var(X) = 1 , then (38) consists of all densities with a signal-to-noise ratio

that is upper bounded by a pre-chosen number S, as in (26). A typical example is the 
family of normal distributions ( g(x) = �(x) ). On the other hand, if g corresponds to 
a Cauchy distribution ( g(x) = 1∕

[
�
(
1 + x2

)]
 ) the first two moments of X ∼ g do not 

exist. Then �2∕�2 represents a generalized signal-to-noise ratio, which according to 
(39) is upper bounded by S. Below we prove that

which holds whenever (28) is satisfied, which is also a condition for the upper bound 
of the tuning probability to be small. In the transition from (40) to (41) we assumed 
that g is symmetric, so that C1 = maxx>0{xg(x)} , as in Appendix 3.1.

Proof of (40). By a change of variables, it is easily seen that

from which it follows that (29) holds, and we may, without loss of generality, assume 
xobs = 1 . This gives

f (x;�, �) =
1

�
g
(x − �

�

)
,

(38)Θ =

{
𝜃 = (𝜇, 𝜎) ∶ 𝜇 ∈ ℝ, 𝜎 > 0,

𝜇2

𝜎2
≤ S

}
.

(39)�2

�2
≤ S

(40)TPmax(I) ≤ 2�
�√

S
�
max
x∈ℝ

g(x)
�
+max

x∈ℝ
{�x�g(x)}

�

(41)= 2�
�
C3

√
S + C1

�
,

F(I;�, �) = F

(
I

xobs
;
�

xobs
,
�

xobs

)
,

(42)

F(I;�, �) =
1

� ∫
1+�

1−�

g
(x − �

�

)
dx

= ∫
(1+�)∕�

(1−�)∕�

g
(
z −

�

�

)
dz

≈
2�

�
g

(
1 − �

�

)
,
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where in the second step we substituted z = x∕� . We have that

where

whenever � ≠ 0 , and

Insertion of (45) into (44) yields

Finally, inserting (46) into (43), we find that

which proves the desired result. In the last step of (47) we used that the maximum of 
(47) is obtained when � is such that the two functions within the minimum operator 
have the same value.

Appendix 3.6: Summary of Results

The upper bounds of the tuning probability are summarized in the following table:
The constants that appear in the rightmost column of the table are

(43)TPmax(I) = max
�∈ℝ

TPmax(I;�),

(44)

TPmax(I;�) = max
�≥���∕√S

F(I;�, �)

≈ max
�≥���∕√S

�
2�

�
g

�
1 − �

�

��

= 2� ⋅ h

�
1 − �,

���√
S

�

(45)

h(x, 𝜎0) = max
𝜎≥𝜎0

{
1

𝜎
g
(
x

𝜎

)}

= max
0<y≤|x|∕𝜎0

{
y

|x|g(y sgn (x))

}

=
1

|x|
(

max
0<y≤|x|∕𝜎0

{yg(y sgn (x))}

)

≤ min

{
C3

𝜎0
,
C1

|x|
}
.

(46)TPmax(I;�) ≤ 2�min

�
C3

√
S

��� ,
C1

�1 − ��

�
.

(47)TPmax(I) ≤ 2�max
�∈ℝ

�
min

�
C3

√
S

��� ,
C1

�1 − ��

��

(48)= 2�(C3

√
S + C1),
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Remark 1  Each proof in this section is based on the supposition 𝜖 ≪ 1 . This can be 
seen in (22), (30), (33), (35), and (42), since in all these equations the assumption 
was that � was small enough to warrant that the prior density of X was constant over 
the life-permitting interval IX.

Remark 2  The cases where TPmax = 1 in Table 1 are produced because it is possible 
that the distribution is highly concentrated inside the life-permitting interval IX . For 
instance, this happens for the location-scale parameter of Appendix  3.5 when the 
scale parameter � converges to zero (or S → ∞).

Remark 3  Since fine-tuning requires a non-degenerate random variable X, its vari-
ance must be positive. Therefore, suppose there exists 𝜎0 > 0 such that Var(X) ≥ �2

0
 . 

This assumption implies that SNR= E2(X)∕Var(X) ≠ 0 when E(X) ≠ 0 in Table 1. 
For this scenario a sufficient condition for fine-tuning is 𝜖∕𝜎0 ≪ 1 , regardless of 
SNR . However, the requirement Var(X) ≥ �2

0
 is not invariant with respect to scal-

ing of X, and therefore less general than the dimensionless constraint SNR ≤ S < ∞ 
(which also excludes degenerate priors). Even when the variance does not exist (as 
in the Cauchy distribution), the fact that a non-degenerate random variable is under 
scrutiny warrants that the scale parameter � must be positive ( � ≥ �0 ), and then the 
analogous sufficient condition for fine-tuning applies.

Data Availability  Data sharing not applicable to this article as no datasets were generated or analyzed 
during the current study.

(49)

C1 = max
x>0

{xg(x)},

C2 = 1∕
√
2𝜋,

C3 = max
x∈ℝ

g(x).

Table 1   Maximal tuning probabilities for diverse parametric families F  of prior distributions, given cer-
tain constraints

Ω F f (x;�) Θ Constraint TPmax

ℝ
+ Scale g(x∕�)∕� ℝ

+ 𝜖 ≪ 1 2�C1

Form and scale g(x∕�2;�1)∕�2 ℝ
+ ×ℝ

+ None 1
Form and scale g(x∕�2;�1)∕�2 ℝ

+ ×ℝ
+

SNR ≤ S , 𝜖 ≪ 1 , 𝜖
√
S ≪ 1 , 

S ≫ 1

2�C2

√
S

ℝ Scale g(x∕�)∕� ℝ
+ 0 ∉ IX , 𝜖 ≪ 1 2�C1

Scale g(x∕�)∕� ℝ
+ 0 ∈ IX 1

Location g(x − �) ℝ C3 ≪ 1∕𝜖 , 𝜖 ≪ 1 2�C3

Location g(x − �) ℝ None 1
Location and scale g((x − �1)∕�2)∕�2 ℝ ×ℝ

+
SNR ≤ S , 𝜖 ≪ 1 , 𝜖

√
S ≪ 1 2�(C3

√
S + C1)

Location and scale g((x − �1)∕�2)∕�2 ℝ ×ℝ
+ None 1
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