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Abstract 

This paper provides a general framework for understanding targeted search. It begins by defining the 
 search matrix, which makes explicit the sources of information that can affect search progress. The 
search matrix enables a search to be represented as a probability measure on the original search 
space. This representation facilitates tracking the information cost incurred by successful search (suc-
cess being defined as finding the target). To categorize such costs, various information and efficiency 
measures are defined, notably,  active information.  Conservation of information characterizes these 
costs and is precisely formulated via two theorems, one restricted (proved in previous work of ours), 
the other general (proved for the first time here). The restricted version assumes a uniform probability 
search baseline, the general, an arbitrary probability search baseline. When a search with probability 
q of success displaces a baseline search with probability p of success where q > p, conservation of 
information states that raising the probability of successful search by a factor of q/p(>1) incurs an 
information cost of at least log(q/p). Conservation of information shows that information, like money, 
obeys strict accounting principles.

Key words: Search matrix, targeted search, active information, probabilistic hierarchy, uniform 
probability, conservation of information

1. The Search Matrix

All but the most trivial searches are needle-in-the-haystack problems. Yet many 
searches successfully locate needles in haystacks. How is this possible? A success-
ful search locates a target in a manageable number of steps. According to conserva-
tion of information, nontrivial searches can be successful only by drawing on 
existing external information, outputting no more information than was inputted [1]. 
In previous work, we made assumptions that limited the generality of conservation 
of information, such as assuming that the baseline against which search perfor-
mance is evaluated must be a uniform probability distribution or that any query of 
the search space yields full knowledge of whether the candidate queried is inside 
or outside the target. In this paper, we remove such constraints and show that 
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conservation of information holds quite generally. We continue to assume that tar-
gets are fixed. Search for fuzzy and moveable targets will be the topic of future 
research by the Evolutionary Informatics Lab.

In generalizing conservation of information, we first generalize what we mean 
by targeted search. The first three sections of this paper therefore develop a general 
approach to targeted search. The upshot of this approach is that any search may be 
represented as a probability distribution on the space being searched. Readers who 
are prepared to accept that searches may be represented in this way can skip to 
section 4 and regard the first three sections as stage-setting. Nonetheless, we sug-
gest that readers study these first three sections, if only to appreciate the full gen-
erality of the approach to search we are proposing and also to understand why 
attempts to circumvent conservation of information via certain types of searches 
fail. Indeed, as we shall see, such attempts to bypass conservation of information 
look to searches that fall under the general approach outlined here; moreover, 
conservation of information, as formalized here, applies to all these cases.

In first generalizing targeted search before generalizing conservation of infor-
mation, we introduce the  search matrix. The elements that constitute the search 
matrix may be illustrated as follows. Imagine a gigantic table that is miles in both 
length and width. Covering the table are upside-down dixie cups that are tightly 
packed, such as the following hexagonal packing:

Under each dixie cup resides a single pea. The cups are opaque, so the peas are not 
visible unless the cup is lifted. The peas come in two varieties, high-yield and low-
yield (the difference being that high-yield peas, if planted, produce lots of peas 
whereas low-yield peas produce only few). The low-yield peas far outnumber the 
high-yield peas. Our task is to locate a high-yield pea. The high-yield peas there-
fore form the target. Because the table is so large and the cups are tightly packed, 
for a human to try to walk around the table and turn over cups is infeasible. 
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We therefore imagine a remote-controlled toy helicopter flying over the table, 
hovering over individual cups, and lifting a given cup to examine the pea under it. 
Each act of lifting a cup to examine the pea under it constitutes a single query.

Because the table is so large and the high-yield peas are so few, this search 
constitutes a needle-in-a-haystack problem. As with all such problems, the number 
of queries (i.e., attempts to locate the needle, or, in this case, to locate a high-yield 
pea) is strictly limited. Moreover, because the needle is so small in relation to the 
haystack, unless the queries are chosen judiciously, the needle will in all likeli-
hood elude us. Our search therefore is limited to at most m queries, which we call 
the sample size. This, in the case at hand, is the maximal number of dixie cups the 
search can turn over. We therefore imagine that the remote controlled toy helicop-
ter flies over the gigantic table of dixie cups, hovers over a given cup, turns it over 
to examine the pea under it, replaces the cup, and then moves on, repeating this 
action at most m times.

Within the constraints of this scenario, how do we find the target? The helicop-
ter has m queries in which to locate the target (i.e., to find a high-yield pea). At 
each query, the helicopter does three things:

(1) It identifies a given pea by removing and replacing the dixie cup over it.
(2) It extracts information that bears on the pea’s probability of belonging to the 

target.
(3) It receives information for deciding where to fly next to examine the next pea. 

The helicopter’s search for the target may therefore be characterized as the follow-
ing 3 × m matrix, which we call the  search matrix:

È ˘
Í ˙
Í ˙
Í ˙Î ˚

…
…
…

1 2 3

1 2 3

1 2 3

m

m

m

x x x x

α α α α
β β β β

Here the first row lists the actual peas sampled, the second row lists the information 
extracted about the peas that bears on their probability of belonging to the target, 
and the third row lists the information for deciding where the helicopter is to fly 
next. Moreover, each column represents a single query, with the columns listed in 
the order of search. A successful search is then one that on the basis of the search 
matrix explicitly identifies some xi in the first row that belongs to the target.

Note that in this general search scenario, given columns may query the same 
element more than once. Thus, for separate columns that record xi, xj, xk, etc., these 
first-row elements of the search matrix might all be identical. Such repetitions 
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could occur if each time the helicopter lifts a dixie cup and queries a pea, it can 
extract only partial information about it, and so the search may need to query the 
pea again to obtain still more information about it. We could have distinguished 
between queries that lift a dixie cup to access a pea and queries that subsequently 
extract further information about a pea once the dixie cup is lifted. But since one 
may not want to query a pea immediately after having already queried it but rather 
wait until other peas have been queried (information about other peas might help 
to elucidate information about the given pea), in the interest of generality it is best 
to allow for only one type of query, namely, a combined query that lifts a dixie cup 
and then extracts information about the underlying pea.

The search matrix is not identical with the search. Rather, the search matrix 
records key information about the progress of the search. Specifically, it records 
the elements sampled from the search space, including any repetitions (this infor-
mation appears in the first row); it records information bearing on the probability 
that an element sampled belongs to the target (this information appears in the 
second row); and it records information for deciding where to sample next (this 
information appears in the third row). All this information contained in the search 
matrix comes to light through the activity of a search algorithm. Success of the 
search therefore depends on how effectively the algorithm uses as well as fills in 
the information contained in the search matrix. Does the search algorithm, in sam-
pling xi, have complete memory of the prior information sampled? Or is it a 
Markov process with access only to the latest information sampled? Does the 
algorithm contain additional information about the target so that regardless of the 
information in rows two and three, the algorithm will, with high probability, out-
put an xi that is in the target? Or is the target-information available to the algorithm 
restricted entirely to the search matrix in the sense that its probability of success-
fully locating the target depends entirely on the information contained in those two 
rows [2]? The options here are wide and varied.

We consider next several examples of how the search matrix might work in 
practice.

Example 1.1: Uniform random sampling with perfect knowledge

In this case, each xi is selected according to a uniform distribution across the dixie 
cups, each αi records whether xi belongs to the target (1 for yes, 0 for no), and each 
βi directs the helicopter to take a uniform random sample in locating the next point 
in the search space (that being xi+1). The reference to “perfect knowledge” here 
signifies that for each query we know exactly whether the pea sampled (each xi) 
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belongs to the target (in which case αi = 1) or not (in which case αi = 0). If any αi 
equals 1, we can stop the search right there and produce xi as an instance of a suc-
cessful search. Alternatively, we can fill out the  search matrix rather than leave it 
incomplete, and then produce the first xi for which αi equals 1 (producing simply 
x1 if none of the αis equals 1). Given that the proportion of high-yield peas (i.e., the 
target) has probability p, the probability that this search is successful is 1 – (1 – p)m.

Example 1.2: Uniform random sampling with zero knowledge

In this case, as before, each xi is selected according to a uniform distribution 
across the dixie cups; moreover, each βi directs the helicopter to take a uniform 
random sample in locating the next point in the search space (that being xi + 1). 
This time, however, examining the peas reveals nothing about whether they 
belong to the target. This might happen, for instance, if high-yield and low-yield 
peas are visually indistinguishable and we have no way of otherwise discriminat-
ing them (as we might through genetic analysis or actually planting them). The 
reference to “zero knowledge” therefore signifies that for each query we know 
nothing about whether the pea sampled (xi) belongs to the target. In this case, each 
of the αis may be treated as equal to 0. Given that the proportion of high-yield peas 
(i.e., the target) has probability p, the probability that this search successfully 
identifies a particular xi in the target is simply p. Accordingly, a sample size of m 
greater than 1 does nothing here to improve on the probability of locating the 
target if we have no means of obtaining knowledge about the peas we are 
sampling.

Note that the probability that some element in the first row of the search 
matrix belongs to the target is 1 – (1 – p)m. This is the probability of successful 
search as calculated in the previous example, which presupposed perfect 
knowledge. Nevertheless, for a search to be successful in the present example, 
it is not enough for the search matrix merely to have a target element appear in 
the first row. In addition, it must be possible to explicitly identify one element 
in the first row taken to be the best candidate for belonging to the target. 
Moreover, because this is a needle-in-the-haystack problem, successful search 
requires that the candidate selected must belong to the target with probability 
considerably larger than p. With zero knowledge about whether elements in the 
first row of the search matrix belong to the target, however, no candidate 
selected from that row stands a better chance of belonging to the target than any 
other. In that case, each such candidate has the very small probability p of 
belonging to the target.
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Example 1.3: Uniform random sampling with parti al knowledge

In this example, as in the previous two, each xi, when first selected, follows a uni-
form distribution across the dixie cups. Yet, to determine whether a given xi actually 
does belong to the target, two agricultural tests may need to be performed on it. The 
tests work as follows: if both yield a positive result (denoted by a 1), then the can-
didate xi belongs to the target; if one or both yield a negative result (denoted by 0), 
then it does not belong to the target. Moreover, the performance of each of these 
tests requires a single query. Thus, to determine whether an xi that is in the target 
actually does belong to it, the dixie cup over it will have to be removed and replaced 
twice, meaning that xi itself will appear twice in the top row of the  search matrix, 
implying that under those appearances the corresponding αis will both be 1.

On the other hand, if on either of the tests, the first query performed yields a 0, 
then there’s no point in performing the other test, and xi need appear only once in 
the top row. Given a query that for the first appearance of xi yields an αi equal to 
1, xi will need to be queried again to determine whether it indeed belongs to the 
target. Once a given xi’s inclusion in or exclusion from the target is determined, 
the next query is uniformly random across the dixie cups. In this case, the proba-
bility p′ of hitting the target over m queries will be strictly between the probabili-
ties determined in the last two examples, i.e., p < p′ < 1 – (1 – p)m, where p is the 
zero-knowledge lower bound and 1 – (1 – p)m is the perfect-knowledge upper 
bound. The exact value of p′ will depend on Bayesian considerations relating to 
how negative results on the two agricultural tests are distributed (in terms of prior 
probabilities) among the non-target elements.

Example 1.4: Smooth gradient fi tness with single peak

In this case, we begin by turning over a randomly chosen dixie cup, examining the 
pea under it (x1), and recording its fitness (α1). We assume that the fitness function 
over the peas has a smooth gradient (in other words, fitness does not zigzag up and 
down as we move in a given direction over the large table, which is our search 
space) and that it has a single peak (in other words, any local maximum is also the 
[unique] global maximum). In this case, a hill-climbing strategy is appropriate, so 
each βi directs the helicopter to search in the neighborhood of the xi that, so far in 
the search, has attained the highest value of fitness αi, looking to increase the fit-
ness still further. There’s no reason in this case to repeatedly query a given pea 
since we assume that fitness can be precisely determined in a given query and that 
fitness does not vary from one query to another (in other words, the fitness func-
tion here is “time independent”). Once m queries in this search have been carried 
out, we consult the search matrix and choose, as our best candidate for landing in 
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the target, the xi that attains the highest value of fitness αi. The probability that 
such a search is successful will depend on the sample size m, the initialization (i.e., 
the procedure for deciding where the search begins), the precise characteristics of 
the fitness function, and how efficiently the search samples points in the neighbor-
hood of an already sampled point to improve fitness (i.e., to “climb the hill”).

2. General Targeted Search

A precise mathematical characterization of the general search scenario described in 
the last section now looks as follows. Let Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN} be the 
search space, which we assume to be finite (this assumption can be relaxed and we 
have done so in other work, but doing so entails no substantive gain in generality). 
Let T = {ω1, ω2, ..., ωK} be the target and define the probability p = K/N. A search of 
Ω for T then consists of the following 6-tuple: (ι, τ, Oα, Oβ, A, ∆). The items in this 
6-tuple denote respectively the initiator, the terminator, the inspector, the naviga-
tor, the nominator, and the discriminator. Here is what these six items mean:

Initiator. The initiator ι, denoted by the Greek iota, starts the ball rolling. It is 
the procedure by which the search determines where to begin. The initiator ι is 
responsible for x1, and possibly additional members of the search space x2 through 
xk, that appear as the first entries in the first row of the  search matrix. In many 
searches the initiator does nothing more than choose a single search space element 
(i.e., x1) at random according to some probability distribution.

Terminator. The terminator τ, denoted by the Greek tau, provides a stop cri-
terion for ending the search. Because all searches are limited to a maximum num-
ber of queries m (i.e., the sample size), the terminator can always simply be 
identified with the policy to cut off the search after m queries. In practice, how-
ever, terminators often end a search before the maximal number of queries have 
been made because the search is deemed to have achieved success before this 
maximal number. In that case, the search matrix may be incomplete, with missing 
entries in the columns to the right of the last column for which a point in the 
search space was queried. Without loss of generality, we can then fill up the col-
umns that are missing entries by repeating the last complete column. Alternatively, 
we can just leave the columns empty.

Inspector. The inspector Oα is an oracle that, in querying a search-space entry, 
extracts information bearing on its probability of belonging to the target T. We 
assume that Oα is a function mapping into some range of values capable of providing 
information about the degree to which members of the search space Ω give evidence 
of belonging to the target T. Quite often, the domain of Oα is merely Ω, and Oα maps 
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into {0,1}, returning a 1 if an element of Ω is in the target, 0 otherwise. Alternatively, 
Oα may map into the singleton {0}, returning the same element regardless of the 
element of Ω in question, thus providing zero information about target elements. 
Oα may even assume misleading values, suggesting that search-space entries are in 
the target when they are not and vice versa. Besides taking on discrete values, 
Oα may also take on more continuous values, signaling the degree to which a search-
space entry is likely to be included in a target, as with a fitness function. The pos-
sible forms that Oα can take are wide and varied. Without loss of generality, however, 
we assume that the range of values that the inspector can take is finite.

As the inspector, Oα’s task is to fill the second row of the  search matrix and thus 
provide evidence about the degree to which corresponding elements in the first row 
may belong to the target. Accordingly, all the αis in the second row take values in 
Oα’s range. Nevertheless, given that a single query may not provide all the informa-
tion that the inspector is capable of providing about a given element from the search 
space, the inspector may perform multiple queries on a given search-space element 
and may even use information gained from different previously queried elements in 
answering the present query. Thus, given an element xi in the search space that’s just 
been selected, its value as assigned by Oα can depend on the entire partial matrix

1 1

1 1

1 1

.
i i

i

i

x x x…
…
…

-

-

-

**È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

α α
β β

Here ellipses denote elements of the search matrix that have been filled in, single 
asterisks denote individual missing entries, and double asterisks denote possibly 
multiple missing entries. In the case at hand, Oα uses the partial search matrix 
given here to determine αi. If it ignores all entries of the partial search matrix prior 
to column i – 1, then we say that Oα is Markov. If it determines αi solely on the 
basis of xi, we say that Oα operates without memory (otherwise, with memory).

Navigator. Like the inspector Oα, the navigator Oβ is an oracle. Given that we 
are at 

-

-

-

**È ˘
Í ˙**Í ˙
Í ˙* **Î ˚

…
…
…

1 1

1 1

1 1

i i

i i

i

x x x

α α α
β β

in the search process, the navigator takes this partial search matrix and returns the 
value βi, which directs (navigates) the search as it attempts to locate the next entry 
in the search space (i.e., xi+1). Oβ maps into a fixed range of values, which in the 
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search matrix we denote by βs. As with the inspector, if Oβ ignores all entries of 
the partial search matrix prior to column i – 1, then we say that Oβ is Markov. If it 
determines βi solely on the basis of xi and αi, we say that Oβ operates without 
memory (otherwise, with memory).

The type of information that Oβ delivers can be quite varied. It can provide dis-
tance of search-space elements from the target. It can provide information about the 
smoothness of fitness. It can provide information about how likely neighbors of a 
given search-space element are to be in the target. Moreover, it can combine these 
types of information. Whereas the inspector Oα confines itself to extracting informa-
tion that bears on the probability of search-space elements residing in the target, the 
navigator Oβ focuses on information that helps guide the search to the target. As with 
the inspector, we assume that the range of values the navigator may take is finite. 
For (mathematically) smooth fitness functions, this will entail discretizing the values 
that the fitness function may assume. Yet, because the degree to which searches can 
discriminate such information is always strictly limited (in practice, distinct meas-
urements when sufficiently close become empirically indistinguishable), assuming 
a finite range of values for the navigator entails no loss of generality.

Nominator. The nominator A is the update rule that, given a search matrix 
filled through to the ith column and thus incorporating the most current information 
from the inspector and navigator, explicitly identifies (and thereby “nominates”) 
the next element to be queried, namely xi+1. Thus A takes us from the  search matrix 

* **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

…
…
…

1

1

1

i

i

i

x x

α α
β β

to the updated search matrix

1 1

1

1

i i

i

i

x x x…
…
…

+ **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

α α
β β

We denote the nominator by A (for “algorithm”) because, in consulting the 
inspector and navigator to determine the next search-space element to be queried, 
it acts as the basic underlying algorithm of the search, running through all the 
target candidates that the search will consider. We say that the nominator is 
Markov if its selection of xi+1 depends solely on the ith column of the search matrix. 
We say that it operates without memory if its selection of xi+1 is independent of 
prior columns of the search matrix.
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To say that the nominator nominates an element xi+1 based on the partial search 
matrix

* **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

…
…
…

1

1

1

i

i

i

x x

α α
β β

may seem to entail a loss of generality since in many searches (e.g., genetic algo-
rithms and particle swarms), multiple candidates from the search space tend to be 
generated in batches. Thus with genetic algorithms, for instance, all candidates of 
a given reproduction cycle appear at the same time. Accordingly, if, say, 100 off-
spring are generated at each reproduction cycle, the new partial  search matrix is not

+ **È ˘
Í ˙* **Í ˙
Í ˙* **Î ˚

…
…
…

1 1

1

1

i i

i

i

x x x

α α
β β

but rather

1 1 100

1

1

.
i i i

i

i

x x x x… …
…
…

+ + **È ˘
Í ˙* ** * **Í ˙
Í ˙* ** * **Î ˚

α α
β β

Given this last matrix, we can then let the inspector and navigator fill in the 
columns below xi+1 to xi+100 one column at a time proceeding left to right. 
Alternatively, we can simply require the nominator to proceed one column at a time 
(thus taking a given batch of candidates one by one in sequence), letting the inspec-
tor and navigator fill in that column before proceeding to the next. Both cases are 
mathematically equivalent. For some searches, it makes better intuitive sense for 
the nominator to nominate a whole batch of search-space elements at a time. But 
this can always be made equivalent to nominating one element of the batch at a 
time until the entire batch is exhausted. For simplicity, we tend to adopt this latter 
approach. Another possibility is to change the search space so that each element 
consists of multiple elements from the original search space (see example 3.5).

Discriminator. Once a search matrix

È ˘
Í ˙
Í ˙
Í ˙Î ˚

…
…
…

1 2 3

1 2 3

1 2 3

m

m

m

x x x x

α α α α
β β β β
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that’s compatible with A has been formed, it’s time to decide which xi that 
appears in the first row is most likely to belong to the target T. With a complete 
 search matrix in hand, it’s not enough to suspect that some entry somewhere in 
the first row belongs to T. For the search to be successful, we need to know 
which of these entries in fact belongs to T or, if definite knowledge of inclusion 
in T is not possible, then which of these entries is more likely than the rest to 
belong to T. Choosing from the first row of the search matrix the most likely 
candidate that belongs to T is the job of the discriminator ∆. As such, the dis-
criminator is a function into the search space Ω from possible search matrices 
(i.e., from 3 × m matrices whose first row consists of elements from Ω, whose 
second row consists of elements from the range of the inspector, and whose third 
row consists of elements from the range of the navigator). For each such search 
matrix, the discriminator outputs the element xi in the first row that it regards as 
most likely to belong to T.

Discriminators can vary in quality. Self-defeating discriminators that, when-
ever possible, select first-row entries belonging outside the target are an option. 
For a given search matrix, such discriminators minimize the probability of suc-
cessfully locating the target. Also an option are independent-knowledge discrimi-
nators that can identify whether a first-row entry belongs to the target with greater 
certainty than is possible simply on the basis of the information delivered by the 
inspector and navigator (information found in the second and third rows of the 
search matrix). Thus, the discriminator might have access to a source of informa-
tion about target inclusion that is less ambiguous than what is available to the 
inspector and navigator. Such discriminators would thereby introduce information 
external to the search matrix to locate those elements in the first row most likely 
to belong to the target. By contrast, no-independent-knowledge discriminators 
would select xi from the first row based solely on information contained in the 
second and third rows of the search matrix. Such variations among discriminators 
are easily multiplied and formalized. We leave doing so as an exercise to 
the reader.

Although the discriminator ∆ as here described is a function from complete 
search matrices to the search space Ω, in fact we allow ∆ also to be a function from 
partial search matrices to Ω, in keeping with the terminator’s ability to stop a 
search when success in fewer than m queries has likely been achieved. Recall that 
partial search matrices can always be filled up with redundant columns and thus 
turned into complete search matrices. Hence, allowing partial search matrices 
entails no gain in generality, nor does restricting ourselves to complete search 
matrices entail a loss of generality.

Each of the six components of a search S = (ι, τ, Oα, Oβ, A, ∆) can be stochastic. 
Thus, the initiator might choose x1 according to some probability distribution. 
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Likewise, the terminator may end the search depending on chance factors relevant 
to success being achieved. The inspector and navigator, at any given stage in form-
ing the search matrix, may draw on a stochastic source to randomize its outputs. 
So too, the nominator and discriminator may choose their candidates in part ran-
domly. It follows that a search S can be represented as a random  search matrix 
consisting of three discrete stochastic processes X, Y, and Z:

Ê ˆ
Á ˜= Á ˜Á ˜Ë ¯

…
…
…

1 2

1 2

1 2

.
m

m

m

X X X

S Y Y Y

Z Z Z

Here X represents the search-space elements delivered by the nominator (or the 
initiator for X1), Y the corresponding outputs of the inspector, and Z the corre-
sponding outputs of the navigator. X therefore takes values in Ω, Y in the range of 
Oα, and Z in the range of Oβ.

Alternatively, S can be conceived as a vector-valued stochastic process W
�

 
where each

Ê ˆ
Á ˜= Á ˜Á ˜Ë ¯

�
,

i

i i

i

X

W Y

Z

in which case 

( )=
� � �

�1 2 .mS W W W

Applying the discriminator ∆ to this random search matrix thus yields an 
Ω-valued random variable ∆(S), which we denote by XS. As an Ω-valued random 
variable, XS therefore induces a probability distribution µs on Ω that entirely char-
acterizes the probability of S successfully locating the target T. In this way, an 
arbitrary search S can be represented as a single probability distribution or meas-
ure µs on the original search space Ω. This representation will be essential through-
out the sequel.

As noted at the start of this paper, this representation of searches as probability 
measures is central to our formalization of  conservation of information. If it were 
obvious that searches could in general be represented this way, we might just as 
well have omitted these first three sections. But given that a general characteriza-
tion of targeted search is itself a point at issue in determining the scope and 
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validity of conservation of information, these preliminary sections were in fact 
necessary. Logically speaking, however, these sections come up only tangen-
tially in the sequel by guaranteeing that searches can indeed be represented as 
probability measures.

3. Search Examples

In this section, we consider several further examples of targeted search, expanding 
on the examples given at the end of section 1.

Example 3.1: Uniform random sampling with perfect knowledge 
and without replacement

In the last section, we considered a search of m queries in which, at each query, 
the entire search space was sampled uniformly. This led to independent and 
identically distributed uniform random variates in the first row of the  search 
matrix, 0s and 1s in the second row depending on whether the corresponding 
entry in the first row was respectively outside or inside the target, and in the third 
row a directive simply to continue uniform random sampling. The discriminator 
in this case simply looked for a first-row entry with a 1 directly below it in the 
second row. Accordingly, with uniform probability p = K  /N of the target T in the 
search space Ω, we calculated the probability of successful search at 1 – (1 – p)m. 
This probability, however, assumes that the first row of the search matrix was 
sampled with replacement and thus may repeat elements of the search space.

We can, on the other hand, have the navigator direct the search to avoid ele-
ments in the search space previously queried (this implies a memory of previously 
queried elements). If all other aspects of the search are kept the same, the search 
space is then sampled without replacement so that each query is uniform with 
respect to elements of the search space yet to be queried. This sampling procedure 
yields a hypergeometric distribution. Thus for Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN}, 
T = {ω1, ω2, ..., ωK}, p = K /N, and m not exceeding N – K, the probability that this 
search locates the target is then

-Ê ˆ
Á ˜Ë ¯

-
Ê ˆ
Á ˜Ë ¯

1 .

N K

m

N

m
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Moreover, if N is much larger than m, this probability approximately equals the 
“with replacement probability” 1 – (1 – p)m, underscoring the well-known fact that 
sampling without replacement only negligibly improves the efficiency of search 
compared to sampling with replacement unless the sample size m is large [3].

Example 3.2: Easter egg hunt

Imagine a very large two-dimensional grid with Easter eggs hidden under various 
squares of the grid. You are able to move around the grid by going from one square 
to an adjacent square. Thus you can move one square vertically, horizontally, or 
diagonally, like a king in chess:

You start out on a randomly chosen square, which is determined by the initiator. 
The terminator gives you at most m squares to examine. When you are on a given 
square, the inspector tells you whether you are over an Easter egg (by saying 
“yes”) or not (by saying “no”). If “yes,” uncover the square on which you are 
standing, locate the egg underneath, and end the search.

Given that you have moved from one square to another with neither being 
over an Easter egg, the navigator tells you whether the square you are 
 currently  on is closer to, the same distance from, or further from the nearest 
Easter egg (by saying “warmer,” “same,” or “colder”; distance between 
squares A and B is calculated as minimum number of steps needed to reach B 
from A). Notice that the navigator cannot provide such information until the 
initiator has designated the first square and the nominator has designated the 
second. Thus, for the very first square chosen by the initiator, the navigator 
simply puts down “same.”
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If for your current square the navigator says “warmer,” the nominator says to 
choose that square from your immediate neighborhood that takes you in the same 
direction as your last move. If for your current square the navigator says “same,” 
the nominator says to choose at random a square that you have not yet visited in 
the immediate neighborhood of the current square. If for your current square the 
navigator says “colder,” the nominator says to return to the previous square and 
randomly choose a square in its immediate neighborhood that you have not yet 
visited. Proviso: the nominator ignores any column with “colder,” in subsequent 
search treating it as though it were not part of the  search matrix except for not 
revisiting its square when sampling nearest neighbors. This proviso prevents the 
search from getting stuck. Finally, the discriminator returns the first square under 
which an Easter egg was found if an egg is indeed found; otherwise, it returns the 
square chosen by the initiator.

The Easter egg hunt so described falls within our general framework for targeted 
search.

Example 3.3: Competi ti ve search

In competitive search, elements of the search space Ω are conceived as 
 “players” whose skill can be evaluated and ranked according to certain “per-
formance criteria.” Evolutionary computing typically employs a single perfor-
mance criterion given by a fitness function. Fitness thus provides a 
single-objective measure of optimality — one and only one thing needs to be 
optimized, and when it is optimized we have the undisputed best player. In 
many circumstances, however, optimality is multi-objective, that is, there are 
several competing things we are trying to optimize simultaneously, where a 
rise in one leads to a drop in another. Optimization with multiple performance 
criteria thus requires a balancing or compromise among rival objectives. How 
these criteria are balanced determines what we regard as the “best players,” 
that is to say, the target.

Just what constitutes the right balance of performance criteria is not written in 
stone but constitutes a judgment call [4]. Consider a search space consisting of all 
college men’s basketball players in a given year. Professional NBA teams are 
seeking the best basketball players in this search space  —  the very best presum-
ably being the player picked first in the first round of the NBA draft. But what 
determines the best players? Many performance criteria come to mind: speed, 
height, field-goal percentage, three-point percentage, average number of rebounds 
per game, average number of blocked shots per game, average number of assists 
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per game, etc. etc. All these performance criteria need to be suitably combined to 
determine who are the best players and thus what constitutes the target of the 
search. Some years, this balancing of performance criteria is straightforward, so 
that one player stands out head and shoulders above the rest. At other times, dif-
ferent teams may have different needs, leading them to emphasize certain perfor-
mance criteria over others, so that no player is completely dominant and no target 
is universally agreed upon.

How we combine and balance performance criteria depends on our needs 
and interests. Suppose, to change examples, you are a college admissions 
officer. Your search space is all graduating high school students and you are 
trying to find those who will thrive at your institution. This is your search, that 
is, to find the “right” students. Prospective students need to take the Scholastic 
Aptitude Test (SAT). The test provides two main scores, a verbal and a math 
score (each varying between 200, which is worst, and 800, which is best) [5]. 
Each of these scores corresponds to a performance criterion and requires a 
search query. With these two queries performed on each high school student, 
how do you now select the best students for your school (leaving aside other 
performance criteria such as GPA and recommendations)? Do you add the 
scores together, as is commonly done? Or do you weight one more than the 
other and, if so, how?

If your school focuses mainly on liberal arts, you will want to weight the 
verbal portion more strongly than the math portion. Thus, even though you may 
want to see a combined score of 1200 or better, you will favor students who get 
a 750 verbal/450 math over students who get a 450 verbal/750 math. If, on the 
other hand, yours is an engineering school, then you will prefer the latter over 
the former. Some schools don’t discriminate the two scores but simply add them 
to give a combined performance measure for the test. Besides adding scores or 
weighting them, one can introduce arbitrary cut-offs. Thus, one might require 
that no student be admitted who performs less than 500 on either test, thereby 
ensuring that both verbal and math scores exceed a certain threshold. This sug-
gests a maxi-min approach to combining performance measures: take the mini-
mum of the two SAT scores and try to recruit those students whose minima are 
maximal. The precise formulation of such combined performance measures is 
straightforward. The trick is to find the right combination that suits one’s 
purposes.

In such examples of competitive search, evaluating how a search space element 
fares with respect to the various performance criteria is the job of the inspector. 
To evaluate a search space element’s competitiveness, the inspector may need to 
query it several times. Sometimes, however, a single query is enough. 
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In basketball, for instance, a player whose free throw percentage is less than 
10 percent can be eliminated from consideration for the NBA draft without need-
ing to consult any other performance criteria. Alternatively, a player who scores 
over 100 points a game on average (a performance achieved just once in the entire 
history of the NBA, as it is, by Wilt Chamberlain) will rise to the very top of the 
player pool even if we don’t know any of his other stats. Knowing which queries 
to make conditional on which queries have already been made is essential to con-
structing an effective competitive search.

Example 3.4: Tournament play

Tournament play is a special case of competitive search in which the players dis-
play their competitive abilities by playing against each other. In tournament play, 
there are as many performance criteria as there are players, each player’s competi-
tiveness being gauged by how well one performs in relation to the others. 
Basketball is an example of tournament play, though in this case the unit of search 
is not the individual player (as it was in the last example) but the team. In chess, 
on the other hand, the unit of search tends to be the individual player (though team 
play is also known, as when local chess clubs play each other).

Tournament play is typically represented by a square anti-symmetric matrix 
with blanks down the diagonal (players don’t play themselves) and opposite out-
comes mirrored on either side of the diagonal. For instance, in the St. Petersburg 
Chess Congress of 1909, the tournament matrix was as follows [6]:

St. Petersburg 1909

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
1   Rubinstein       * 1 1 1 ½ ½ ½ 1 1 1 ½ 1 0 1 ½ 1 1 1 1  14½  875 Rubles 
2   Lasker           0 * ½ 1 ½ 1 1 1 ½ 1 1 1 0 1 1 1 1 1 1  14½  875 Rubles 
3   Spielmann        0 ½ * 1 0 1 1 ½ 1 ½ ½ ½ 1 0 ½ 1 ½ ½ 1  11   475 Rubles 
4   Duras            0 0 0 * 0 1 ½ 0 ½ 1 0 1 1 1 1 1 1 1 1  11   475 Rubles 
5   Bernstein        ½ ½ 1 1 * 0 1 0 1 1 1 1 ½ 0 0 0 ½ ½ 1  10½  190 Rubles 
6   Teichmann        ½ 0 0 0 1 * 0 ½ ½ ½ ½ 1 1 ½ 1 ½ 1 1 ½  10   120 Rubles 
7   Perlis           ½ 0 0 ½ 0 1 * ½ ½ 1 ½ 1 1 ½ 1 ½ 0 0 1   9½   80 Rubles 
8   Cohn             0 0 ½ 1 1 ½ ½ * 0 0 1 ½ ½ 0 ½ ½ ½ 1 1   9    40 Rubles 
9   Schlechter       0 ½ 0 ½ 0 ½ ½ 1 * 1 0 0 1 1 ½ 0 1 ½ 1   9    40 Rubles 
10  Salwe            0 0 ½ 0 0 ½ 0 1 0 * ½ 1 1 1 ½ 0 1 1 1   9    40 Rubles
11  Tartakower       ½ 0 ½ 1 0 ½ ½ 0 1 ½ * 0 0 0 ½ 1 1 1 ½   8½ 
12  Mieses           0 0 ½ 0 0 0 0 ½ 1 0 1 * ½ 1 1 1 0 1 1   8½ 
13  Dus Chotimirsky  1 1 0 0 ½ 0 0 ½ 0 0 1 ½ * ½ ½ ½ 1 0 1   8 
14  Forgács          0 0 1 0 1 ½ ½ 1 0 0 1 0 ½ * ½ ½ ½ 0 ½   7½ 
15  Burn             ½ 0 ½ 0 1 0 0 ½ ½ ½ ½ 0 ½ ½ * 1 ½ ½ 0   7 
16  Vidmar           0 0 0 0 1 ½ ½ ½ 1 1 0 0 ½ ½ 0 * ½ 1 0   7 
17  Speyer           0 0 ½ 0 ½ 0 1 ½ 0 0 0 1 0 ½ ½ ½ * ½ ½   6 
18  Von Freyman      0 0 ½ 0 ½ 0 1 0 ½ 0 0 0 1 1 ½ 0 ½ * 0   5½ 
19  Znosko Borovsky  0 0 0 0 0 ½ 0 0 0 0 ½ 0 0 ½ 1 1 ½ 1 *   5 
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Emanuel Lasker, who tied with Akiba Rubinstein for first place, was at the time 
the world champion. Even so, Rubinstein, though he never played Lasker in a title 
match (back then challengers had to raise sufficient funds before they could 
arrange such a match with the world champion), was in the five years preceding 
World War I regarded as the strongest player in the world (in 1912 he won five 
international tournaments in a row, a feat unparalleled). Yet both Rubinstein and 
Lasker were defeated by Dus Chotmirsky, a chess player who would be lost to 
history except for this feat.

In chess tournaments, winners are decided by summing performance across all 
games (assigning 1 to a win, ½ to a draw, and 0 to a loss) and then selecting the 
player(s) with the highest total. This is standard practice, but one can imagine vari-
ations of it. We might want simply to focus on victories and count them. In that 
case, Lasker would have won the tournament outright (with 13 victories), Rubinstein 
would have come in second (with 12 victories), and Duras would have come in third 
(with 10 victories). On the other hand, we might want to choose the victor based on 
fewest losses. In that case Rubinstein would have been the outright victor (with a 
single loss), Lasker would have taken second (with 2 losses), and Spielmann would 
have taken third (with 3 losses). Other options for balancing performance criteria in 
tournament play are possible as well. For instance, Chotmirsky, for having defeated 
the two top performing players as determined by conventional tournament stand-
ards, might have been rewarded extra points for doing so.

In tournament play, exhaustive search means each player playing all the other 
players and recording the outcomes. Most chess tournaments, however, have so 
many players that an exhaustive search is not possible. The St. Petersburg tourna-
ment was a select invitational meet. Most tournaments are open to the chess com-
munity. In such tournaments, players are initially matched in line with their 
official chess ratings (1600 for amateur, 2000 for expert, 2200 for master, 2500 for 
grandmaster), with weaker players initially playing stronger players so that the 
best players don’t cancel each other out early. Then, as the rounds proceed (typi-
cally between six to eight rounds total), players with the same tournament record, 
or as close a record as available, are matched. Note that weaker players, as gauged 
by their rating coming into the tournament, tend at each round to be matched with 
stronger players. At the end of the tournament, one’s wins and draws are summed 
(1 for a win, ½ for a draw). The tournament winner(s) are then decided in terms 
of this raw total as well as an algorithm that, in the case of ties, takes into account 
the strength, as determined by chess rating, of one’s opponents.

In terms of the  search matrix, especially when the pool of tournament players 
is quite large, each player can play only a few other players (each game played 
constituting a single query, the outcomes of these games being noted by the 
inspector). Given that one wants to discover the strongest players (for some 
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specified method of balancing performance criteria, these players, taken jointly, 
constitute the target), the search needs to be judicious in the choice of players it 
uses to query individual players. Is it more effective, given at most m queries, to 
query as many players as possible by playing them against only one or a few 
other players? Or is it better to hone in on a few players and put them through 
their paces by having them play a wide cross-section of other players? It all 
depends. It depends on whether player strength tends to function transitively (if 
A is able to defeat B and B is able to defeat C, is A able to defeat C?). It depends 
on whether, in the case of a single player testing other players, this player is 
strong or weak.

The discriminating power of strong players is important in tournament play. 
A strong player, by definition, loses only to a few players (i.e., to other strong 
players), and thus will clearly discriminate strong from weak players. In contrast, 
a weak player, by losing to most players, will fail to discriminate all but the weak-
est players. To change the game from chess to baseball, if the test of a team is 
whether it performs well against the New York Yankees, any team that does rea-
sonably well against them could rightly be considered excellent. But if the “test 
team” is drawn from the local little league, then it would not provide a useful way 
of determining teams of national excellence. But notice, using the New York 
Yankees as a test team may not be very useful either — a team that beats or keeps 
it close with the Yankees is surely top notch, but if all the teams tested fail miser-
ably against the Yankees, we may learn nothing about their relative strength. 
Players that are overly strong or overly weak are poor discriminators of play 
excellence.

In sum, tournament play is a special case of competitive search that fits within 
our general search framework but in which performance is assessed by the players 
(i.e., the search space elements) playing each other directly and then by noting the 
winner and, if applicable, the margin of victory [7].

Example 3.5: Populati on search

For some searches, the concern is not simply with individuals exhibiting certain 
characteristics but with whole populations exhibiting those characteristics. 
Thus, in population genetics, the emergence of a trait in a lone individual is not 
enough. Traits can come and go within a population. The point of interest is 
when a trait gets fixed among enough members of a population to take hold and 
perpetuate.

To represent such a scenario, we might imagine all the members of a population 
as drawn from a set of individuals Ω ′. Moreover, Ω ′ may contain a target T ′ 
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consisting of all members exhibiting the trait(s) in question. Yet the actual search 
is not for T ′ in Ω ′ but for sets, whether ordered or unordered, of members from 
Ω ′; what’s more, the target will consist of such sets that have a sufficient propor-
tion of members from T ′. Thus, in a standard evolutionary computing scenario, the 
actual search space Ω might consist of all 100-tuples of elements drawn from Ω ′ 
(each element of the first row of the search matrix would belong to this Ω). 
Moreover, the actual target T might, in this case, consist of 100-tuples drawn from 
Ω ′ for which 75 or more of their elements belong to T ′. In this case, successful 
search would require 75 percent of the population to have acquired the given 
trait(s).

Many ways of transitioning from Ω ′ to Ω and T ′ to T are possible here depend-
ing on the population size (is it fixed or variable?), on whether the order of ele-
ments in the population is important, and on the threshold that determines whether 
individually determined characteristics are widespread enough for the population 
to have properly acquired them. Even though the natural search space may seem 
to be one we have called Ω ′, representing the search within the general framework 
outlined in this paper may require identifying another space, which we called Ω. 
The actual target we are trying to locate would thus belong not to Ω ′ but to Ω. 
Note that such an Ω will invariably have more structure than Ω ′, even supplying 
a metric of comparison in terms of how many members of Ω ′ the members of Ω 
share.

4. Information and Efficiency Measures

In a general theory of search that avoids arbitrary assumptions about underlying 
probability distributions, uniform probabilities nonetheless play a salient role. 
Consider our general set-up, a search space Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN} with tar-
get T = {ω1, ω2, ..., ωK}, where the target has uniform probability U(T) = p = K / N = 
|T | / | Ω |, where |*| is the cardinality of *. In any such scenario, we can always do at 
least as good as take a single uniform random sample and thereby attain a target 
element with probability p. We might conduct our search to improve this probabil-
ity or we might conduct it to diminish this probability. The natural probability 
distribution attaching to Ω, given the idiosyncrasies of this search space, may be 
very different from uniform. But it is always, in principle, possible to enumerate the 
elements of a finite space Ω and choose one of them randomly so that no element 
is privileged over any other. Uniformity, even if destined to miss the target in any 
nontrivial search, is always an option.

To take a single uniform random variate from the search space Ω will be 
called the null search. This search becomes the baseline against which we 
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compare all other searches. Any search different from the null search will be 
called an alternative search [8]. The null search induces the uniform probability 
distribution U on Ω (see section 2). This is the probability measure we get by 
setting our sample size at m = 1 and letting the discriminator act on the corre-
sponding 3 × 1  search matrix whose first row element is simply a uniformly 
chosen element of the search space. In practice, p is so small that a null search 
over Ω for T is extremely unlikely to succeed. Success therefore demands that in 
place of the null search, an alternative search S be implemented that succeeds 
with a probability q that is considerably larger than p. The search S thus induces, 
in the notation of section 2, a probability distribution µs on Ω that entirely char-
acterizes the probability of S successfully locating the target T. For simplicity, 
we denote µs simply by µ. In this way, an alternative search S reduces to a single 
probability distribution µ on the original search space Ω where the probability of 
the target is µ (T ) = q.

In comparing null and alternative searches, it is convenient to convert proba-
bilities to information measures (note that all logarithms in the sequel are to the 
base 2). We therefore define the endogenous information IΩ as –log(p), which 
measures the inherent difficulty of a blind or null search in exploring the underly-
ing search space Ω to locate the target T. We then define the exogenous informa-
tion IS as –log(q), which measures the difficulty of the alternative search S in 
locating the target T. And finally, we define the  active information I+ as the dif-
ference between the endogenous and exogenous information: I+ = IΩ – IS = 
log(q/p). Active information therefore measures the information that must be 
added (hence the plus sign in I+) on top of a null search to raise an alternative 
search’s probability of success by a factor of q/p.

In the null search, the sample size is fixed at 1 (a single uniform random variate 
is taken) whereas in the alternative search the sample size is m (m queries are 
made). If we make m explicit, then we can define qm as the probability that the 
alternative search locates the target in m queries, and write m

sI  = –log(qm) and 

+
mI  = IΩ – m

sI . The behavior of +
mI  as a function of m now provides a measure of 

the efficiency of search. Suppose, for instance, that S conducts its search by taking 
independent and identically distributed random variates. In that case, assuming 
m to be much less than 1/p, qm = 1 – (1 – p)m is approximately equal to mp, and 

+
mI  is approximately log(m). If, instead, S conducts its search by, at each query, 

cutting in half the search space (“interval halving”), then the probability of finding 
the target increases by a factor of 2 for every query, and +

mI  is approximately 
m (i.e., the active information is linear rather than logarithmic in m). Interval halv-
ing is therefore a much more efficient search strategy (if it can be implemented) 
than uniform random sampling. +

mI , as a function of m, therefore measures the 
efficiency of the search.
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By comparing the performance of a search S against the endogenous informa-
tion baseline IΩ, +

mI  provides an absolute measure of efficiency of the search. 
Indeed, in specifying S, we define + +=( ) ,m mI S I  conceived as a function of m, as 
the absolute efficiency of S. Given two searches, S and S ′, we define 

+ + += -( ( ( ) ( ),m m mI S' S I S I S'  again conceived as a function of m, as the relative 
efficiency of S ′ given S. Thus, if S represents uniform random sampling and 
S ′ represents interval halving, the relative efficiency of S ′ given S, + ( )mI S' S  is 
m − log(m). In general, for a given m, if S ′ induces a probability of rm on T and if 
S induces a probability of qm on T, then + ( )mI S' S  = log(rm/qm). Absolute and rela-
tive efficiency can also be negative: for a given m, S does worse in locating the 
target than a single uniform random sample if and only if + <( ) 0;mI S  likewise, for 
a given m, S ′ does worse in locating the target than S if and only if + ( 0mI S' | S) < .  
Note that if S represents a single uniform random sample, so that the  search matrix 
has only a single column and is incomplete for all remaining m – 1 columns (the 
first entry in the first row is therefore a uniform random variate), then 

+ +=( ) ( ).m mI S' S I S'

5. Liftings and Lowerings

 Conservation of information tracks the information that goes into constructing a 
search, showing that the amount of information exhibited by the search in locating 
a target can never exceed the amount of information inputted in its construction. 
Accordingly, conservation of information addresses not just the search for a given 
target in the original search space, but also a search for the information that goes 
into rendering such a search successful. Conservation of information therefore is 
not about search per se but about the search for a search. In other words, it is about 
a higher-level search for the information required to render a lower-level search 
successful. We abbreviate “the search for a search” by S4S.

In section 2 we represented an arbitrary search (i.e., S  ) as a probability measure 
on a search space (i.e., µs). Given that the search for a search (S4S) is itself a 
search, it must likewise be representable as a probability measure. Such an S4S 
probability measure assigns probabilities to a higher order search space consisting 
of probability measures on the original search space. Formulating conservation of 
information requires the ability to project probability measures up and down a 
probabilistic hierarchy of search spaces. We show how this is done in this section. 
This section thus provides the formal background for the conservation of informa-
tion theorems proved in the next section.

We consider again our general set-up, a search space Ω = {ω1, ω2, ..., ωK, ωK+1, ..., 
ωN} with target T = {ω1, ω2, ..., ωK}, where the target has uniform probability U(T ) = 
p = K/N = |T | / | Ω |. We assume that 1 ≤ K < N. Define M(*) as the set of all Borel 
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probability measures on * where * is any compact metric space. Ω, as a finite set, 
is compact in the discrete topology, which is given by any metric on it. Any prob-
ability measure m on Ω therefore has the form

=
Â

1

,
i

N

i x
i

a δ

where each ai is a nonnegative real number, the ais together sum to 1, and each δ is 
a point mass (assigning probability 1 to the corresponding xi). It follows that M(Ω) 
is the set of all these convex linear combinations of point masses. Note that when 
each ai equals 1/N, this sum of point masses is the uniform probability U in M(Ω).

We can think of the point masses δxi
 (for 1 ≤ i ≤ N) as N independent vectors in 

an N-dimensional vector space. Because these vectors are all added as convex 
linear combinations to form M(Ω), M(Ω) in fact sits in an (N – 1)-dimensional 
subspace, forming an N-simplex with Euclidean metric. Moreover, as a closed, 
bounded subset of Euclidean space, M(Ω) is compact. It follows that the uniform 
probability on M(Ω) is ordinary Lebesgue measure (suitably normalized). We 
denote this uniform probability over M(Ω) as U. U resides in M(M(Ω)). For 
convenience, we therefore define M0(Ω) = def Ω, M1(Ω) = def M(Ω), M2(Ω) = def 
M(M(Ω)), and in general M j+1(Ω) = def M(Mj(Ω)). 

Thus, to recap, the uniform probability U over Ω resides in M(Ω) and is 
defined as

1

1
;

i

N

x
iN =

= ÂU δ

moreover, the uniform probability U over M(Ω) resides in M2(Ω) and is 
isomorphic to normalized Lebesgue measure on the N-simplex 

£ £≥ S =…1 1{( , , ) 0, 1}.N
N i i N ia a a a∈R  We call the various Mj(Ω), taken together, 

the probabilistic hierarchy over the search space Ω. Note that we give each of 
these spaces in the probabilistic hierarchy the weak topology. It then follows by 
Prohorov’s theorem that each of these spaces is compact (indeed, they form com-
pact metric spaces in the Kantorovich-Wasserstein metric, which induces the weak 
topology on these spaces) [9]i.

The probabilistic hierarchy allows for considerable interaction among its meas-
ure spaces, so that structures associated with Mj(Ω) have corresponding structures 
both up and down the hierarchy at Mj+1(Ω) and Mj–1(Ω). We speak of a structure 
at Mj(Ω) projected up to Mj+1(Ω) as a lifting and a structure at Mj+1(Ω) projected 
down to Mj(Ω) as a lowering. To see how this works, we take the higher-order 
space M(Ω) and the lower-order space Ω and examine how structures associated 
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with these spaces can be projected to the other. Our discussion here will focus on 
the base of the probabilistic hierarchy (i.e., Ω and M(Ω)), but our observations 
readily generalize up the probabilistic hierarchy. Accordingly, structures associ-
ated with Ω may be lifted to structures associated with M(Ω) and structures associ-
ated with M(Ω) may correspondingly be lowered to structures associated with Ω.

To start, consider a real-valued function f on Ω (note that because Ω is finite 
and has a discrete topology, f is bounded, measurable, and even topologically 
continuous). The function f now lifts to a real-valued (continuous) function f  on 
M(Ω) that takes any probability measure θ in M(Ω) and assigns its integral with f, 
i.e., f   is the mapping from M(Ω) to R such that

W
Ú� ( ) ( ).f x d xθ θ

Note that for θ = δx (i.e., the point mass at x), = =( ) ( ) ( ).xf f f xθ δ  Call f   the 
lifting of f from Ω to M(Ω). Likewise, for F a real-valued function on M(Ω), 
define F�  on Ω as � ( ).xx F δ  Call F�  the lowering of F from M(Ω) to Ω. It then 
follows that ,f f=�  but it need not be the case that F F=�  (lowerings can lose 
information whereas liftings do not). In general, under the weak topology, liftings 
and lowerings of functions preserve measurability and continuity. 

Next, consider a probability measure µ on Ω (µ is therefore in M(Ω)). Because 
Ω is finite, all probability measures in M(Ω) are absolutely continuous with 
respect to the uniform probability U. Absolute continuity of µ with respect to U 
means that every set of nonzero probability under µ also has nonzero probability 
under U. By the Radon-Nikodym theorem, it follows that µ can be rewritten as the 
product of a density, denoted by d

d
µ
U

, times the measure U. This means that for 
f = d

d
µ
U

, µ can be written as f · d  U. In other words, for a set A contained in Ω,

= Ú( ) ( ) ( )
A

A f x d xµ U

In particular, if 
=

= = = ◊Â
1

, ( ) ( ) .
i

N

i x i i i
i

d
a f x x a N

d

µµ δ
U

 

It follows that by lifting f from a function on Ω to a function f  on M(Ω), we 
can now lift µ from a probability measure in M(Ω) to a probability measure µ  in 
M2(Ω). Specifically, for B a measurable subset of M(Ω), we define

= Ú( ) ( ) ( )
B

B f dµ θ θU
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where 

W

= Ú( ) ( ) ( ).f f x d xθ θ

To see that µ  is indeed a probability measure over M(Ω), we need the following 
result.

Propositi on 5.1 (Consistency of Uniformity)

W

= Ú
( )

( ).d
M

U Uθ θ

REMARKS. The integral on the right side of this equation is vector-valued [10]. 
Such integrals exist provided that in applying continuous linear functionals to 
them (which, in this case, amounts to integrating with respect to all bounded con-
tinuous real-valued functions on Ω), one gets the same result as integrating over 
the continuous linear functions applied inside the integral. Linear functionals 
thereby reduce vector-valued integration to ordinary integration. Thus, the equality 
in the statement of this theorem means that for all continuous real-valued h on Ω,

W W W

È ˘
= Í ˙

Î ˚
Ú Ú Ú

M( )

( ) ( ) ( ) ( ) ( ).h x d x h x d x dU Uθ θ

Because Ω is finite, all real-valued functions on Ω are continuous, so this equal-
ity needs to hold for all real-valued h. As we move up the probabilistic hierarchy, 
subsequent M  j(Ω) are compact metric spaces, so continuity actually does place a 
restriction on the continuous linear functionals used in calculating vector-valued 
integrals. Because these are all compact metric spaces, existence and uniqueness 
of such vector-valued integrals is not a problem [11]. For equality to hold in 

W= Ú ( ) ( )dMU Uθ θ  means that averaging all probability measures on M(Ω) with 
respect to the uniform probability U  is just the uniform probability U on Ω. This 
establishes measure-theoretic consistency in lifting the uniform probability U on 
Ω to the uniform probability U  on M(Ω).

PROOF. This result follows from exchangeability — U is the only probability 
measure invariant under permutation of the elements of Ω. The vector-valued 
integral in question can immediately be seen to have this same property — its 
value does not depend on any point in Ω to which it is applied. A detailed proof is 
available elsewhere [12].
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Suppose now that µ is a probability measure on Ω that is absolutely continuous 
with respect to U (in fact, because Ω is finite, this assumption holds for all prob-
ability measures on Ω). Let d

d
µ
U

 denote the Radon-Nikodym derivative of µ with 
respect to U and let d

d
µ
U

 denote its lifting. If we now define the lifting of µ as 
,d

d
dµµ =

U
U  then µ  is a probability measure on M(Ω). Moreover, since U is abso-

lutely continuous with itself such that d
d
U
U

 is identically equal to 1 on Ω, it follows 
that the lifting of d

d
U
U

, i.e., d
d
U
U

, is identically equal to 1 on M(Ω), and thus the 
lifting of U, as so defined, is in fact the uniform probability on M(Ω). Thus, 
whether we interpret U  as the uniform probability on M(Ω) as ordinary Lebesgue 
measure (suitably normalized) on an N-simplex (which is isomorphic to M(Ω)), 
or as the lifting of the uniform probability U on Ω, both signify the same probabil-
ity measure on M(Ω).

To see that all the claims in the previous paragraph hold, it is enough to see that 
µ  is indeed a probability measure on M(Ω), and for this it is enough to see that

W W W

WW

W

W

È ˘= Í ˙Î ˚

È ˘= Î ˚

=

=

=

Ú Ú Ú

Ú Ú

Ú
Ú

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) [by Cons. o f Unif.]

1.

d d
d x d x d

d d

d
x d d x

d
d

x d x
d

d

M M

M

U U
U U

U
U

U
U

µ µθ θ θ θ

µ θ θ

µ

µ

Lastly, we need to be able to lift targets from Ω to M(Ω). Thus, given the target 
T in Ω, we define a corresponding higher-order target 

qT  in M(Ω), indexed by q 
in the unit interval (0 ≤ q ≤ 1), namely,

{ }= W ≥( ) ( ) .qT T qθ ∈ θM |

qT  equals M(Ω) when q is 0 and grows smaller as q increases. Elsewhere [13] we 
have shown that for the search space Ω = {ω1, ω2, ..., ωK, ωK+1, ..., ωN} with target 
T = {ω1, ω2, ..., ωK}, where the target has uniform probability U(T) = p = K / N = 
|T |/ |Ω|, the (higher-order) uniform probability of 

qT  is given by

-
- - -G= -

G - G Ú
1

(1 ) 1 1

0

( )
( ) (1 ) .

( (1 )) ( )

q

N p Np
q

N
T t t dt

N p Np
U
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Note that this last expression describes a cumulative beta distribution with first 
parameter r = N(1 – p) and second parameter s = Np [14].

6. Conservation of Information — The Uniform Case

We are now in a position to prove two  conservation of information theorems: the 
special case for uniform probabilities, which we have proved elsewhere and recap 
here in this section; and the general case for arbitrary probabilities, which we 
prove for the first time in the next section [15]. We begin with the special case.

Theorem 6.1 (Conservati on of Informati on — Uniform Case)

Let T be a target in Ω. Assume Ω is finite and T is nonempty. Let U denote the 
uniform probability distribution on Ω and let p = |T|/|Ω| = U(T) (which we take to 
be extremely small). Next, let µ be a probability distribution on Ω such that q = 
µ(T) (which we take to be considerably larger than p). Suppose that µ characterizes 
the probabilistic behavior of an alternative search S, so that the endogenous infor-
mation is IΩ = –log(p) and the exogenous information is IS = –log(q). Then the 
(higher-order) uniform probability of qT  in M(Ω), denoted by ( ),qTU is less than 
or equal to p/q. Equivalently, the (higher-order) endogenous information associ-
ated with finding the (higher-order) target qT  in M(Ω), i.e., –log ( ( )),qTU is 
bounded below by the (lower-order)  active information I+ = –log(U(T )) + log(µ(T)) = 
log(q/p).

PROOF. Let Ω = {x1, x2, ..., xK, xK+1, ..., xN} and T = {x1, x2, ..., xK} so that p = K/N. As 
we saw in the last section, it then follows that 

-
- - -G= -

G - G Ú
1

(1 ) 1 1

0

( )
( ) (1 ) ,

( (1 )) ( )

q

N p Np
q

N
T t t dt

N p Np
U

which is a cumulative beta distribution with first parameter r = N(1 – p) and second 
parameter s = Np. 

Integration by substitution shows that this expression can be rewritten as

- - -G -
G G - Ú

1
1 (1 ) 1( )
(1 ) ,

( ) ( (1 ))
Np N p

q

N
t t dt

Np N p
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which describes a cumulative beta distribution with first parameter r = Np and 
second parameter s = N(1 – p). It is well known that the mean for this distribution 
is r/(r + s) [16]. In consequence,

- - - - - -

- - -

- - -

=

= ◊

£ ◊

= ◊

=

G G- ◊ -
G G - G G -

G ◊ -
G G -

G ◊ -
G G -

+ -

Ú Ú

Ú

Ú

1 1
1 (1 ) 1 1 (1 ) 1

1
1 (1 ) 1

1
1 (1 ) 1

0

1

1

1

( ) ( )
(1 ) (1 )

( ) ( (1 )) ( ) ( (1 ))

( ) (1 )
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It follows that –log ( ( )),qTU  is bounded below by the  active information I+ = 
log(q/p). This proves the theorem. 

This theorem characterizes the probability costs incurred by a search for a 
search. Given a vast search space Ω and a tiny target T, the probability of finding 
the target via the null search is effectively nil (p = |T |/|Ω|). To find the target, we 
thus need an alternative search S that is able to find it with a probability q that is 
much larger than p. But where did S come from? Because the complexities and 
idiosyncrasies associated with the construction of searches in general, the first 
three sections of this paper focused on simplifying our representation of searches, 
first by representing them as search matrices and then by representing them as 
probability measures µ on the original search space Ω such that µ (T ) = q. 

So the question now is, Where did µ come from? In statistics, whenever con-
fronted with a given outcome, the statistician attempts to situate it among a collec-
tion of possible outcomes that are at least as extreme as the one in question and 
then inquires into the improbability of that collection. For instance, given a thou-
sand coin tosses and six-hundred heads, the statistician’s first impulse will be to 
ask how likely it is that a fair coin (the null hypothesis) could have led to six-
hundred or more heads. In this case, the statistician wants the probability of the 
tail of a binomial distribution. Leaving aside Bayesian considerations, which can 
always be incorporated later, if the probability of this tail is extremely small, the 
statistician will be inclined to question whether the coin responsible for six-
hundred heads was fair, thereby implicating an alternative hypothesis. As it is, six-
hundred or more heads in a thousand coin tosses represents a departure from 
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expectation by more than six standard deviations. Such a result with a fair coin 
would be very improbable indeed.

Returning now to our search space Ω and target T, the outcome that confronts 
us is not a sequence of coin tosses but a search S represented by the probability 
measure µ. If we set aside that the search is the product of intelligent design, then 
µ presumably results from some statistical process. Moreover, the collection of 
outcomes as extreme as µ is then

{ }= W ≥( ) ( ) .qT T qθ ∈ θM |

In our analogy with statistical practice, qT  may then be conceived as the “tail” 
associated with the “outcome” µ. It would follow that the improbability of this 
tail is crucial to deciding whether µ is the outcome of a (higher-level) null 
search.

The parallel here between coin tossing and the search for a search, though far 
from exact, is suggestive and illuminating. Each coin toss, under the null hypoth-
esis, is a Bernoulli trial, with probability of ½ for heads and ½ for tails. These 
trials are probabilistically independent, and thus in one-thousand trials should 
conform to a null hypothesis characterized by a binomial distribution with param-
eters N = 1,000 and p = ½. The lower-order Bernoulli trials, as it were, “lift” to a 
higher-order binomial distribution. Similarly, the null search of Ω for T, character-
ized by the uniform probability U on Ω, lifts to a null search of M(Ω) for ,qT
characterized by the (higher-order) uniform probability U.  Conservation of infor-
mation then shows that the uniform probability of this higher-order target is 
bounded above by p/q. 

Conservation of information is essentially an accounting rule for probabilities 
associated with search. Here is how it works: finding the original target T within 
Ω had the very low probability of p under the null search. Fortunately, an alterna-
tive search S was available to raise this probability to q. But the probability cost 
of locating this alternative search, represented by µ, was less than or equal to p/q. 
Thus, when the cost of locating the alternative search is factored in, nothing is 
gained over the original null search. The original search, as it were, purchased 
the target at the “high” probability cost p. The alternative search, correspond-
ingly, purchased the target at the “cheaper” probability cost q, but then itself 
incurred a probability cost of at least p/q in a higher-order search space since the 
alternative search itself had to be accounted for. Thus, when the full probability 
costs incurred by the alternative search are factored in, the total cost is the same 
as or even worse than the probability cost associated with the original null 
search. 
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In fact, the cost tends to be much worse. Conservation of information in the 
uniform case states that ( )qTU  ≤ p/q. Nevertheless, we have shown elsewhere [17] 
that for Ω = {x1, x2, ..., xK, xK+1, ..., xN} and T = {x1, x2, ..., xK}, provided that p = K/N 
and N ≥ (2q – 1)/(q – p),

È ˘< ◊ ◊ - -Î ˚
2( ) 1 ( ) .

N

q

p
T N q pqU

This (strict) inequality shows that the (higher-order) uniform probability of the 
lifted target qT  decreases exponentially with the absolute size N of the search 
space Ω. As an upper bound on ( ),qTU  p/q is therefore very conservative.

To see how the probability costs associated with null and alternative searches 
relate, it is instructive to consider the following two quasi-Bayesian ways of reck-
oning these costs: 

P(locating T via null search) =  P(null search locates T & null search is available)
 =  P(null search locates T | null search is avail.) 

× P(null search is avail.)
 =  U(T) × 1 [because the availability of null search is 

taken for granted]
 = p.

P(locating T via alt. search)  = P(alt. search locates T & alt. search is available)
 =  P(alt. search locates T | alt. search is avail.) 

× P(alt. search is avail.)
 = ¥( ) ( )qT Tµ U

 ≤ q × p/q
 = p.

It follows that U(T) ≥ µ (T) × T )qU( and therefore, by taking negative loga-
rithms, that W £ - log( ( )),S qI I TU  or equivalently that –log ( ( ))qTU ≥ I+ = log(q/p), 
inasmuch as I+ = IΩ – IS, IΩ = –log (U(T)) = –log (p), and IS = –log(µ (T )) = –log(q). 
According to  conservation of information, the higher-order endogenous informa-
tion –log ( ( ))qTU , required to find a search qua probability measure that has prob-
ability q or better of locating T, is always at least that of the lower-order  active 
information I+. To say that information is conserved is thus really to say that in the 
search for a search, information leading to success of the original search is at best 
conserved when moving to a higher-order search space and may in fact grow con-
siderably higher (in some circumstances, exponentially higher). This rise in the 
information/probability cost associated with higher-level search should not be 
surprising given that spaces comprising searches tend to be bigger and structurally 
richer than the spaces they are searching [18].
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7. Conservation of Information — The General Case

We turn now to a generalization of the previous conservation of information 
 theorem. The previous theorem was formulated in terms of a uniform probability 
baseline. We now lift this restriction. Processes that exhibit stochastic behavior 
arise from what may be called a natural probability. The natural probability char-
acterizes the ordinary stochastic behavior of the process in question. Often the 
natural probability is the uniform probability. Thus, for a perfect cube with distin-
guishable sides composed of a rigid homogenous material (i.e., an ordinary die), 
the probability of any one of its six sides landing on a given toss is 1/6. Yet, for a 
loaded die, those probabilities will be skewed, with one side consuming the lion’s 
share of probability. For the loaded die, the natural probability is not uniform. 
Now, if the natural probability for all search spaces Ω were the uniform probabil-
ity U, we’d be done — the conservation of information theorem proved in the last 
section would suffice. Yet despite Bernoulli’s principle of insufficient reason, 
which we have argued elsewhere rightly makes the uniform probability the default 
in many searches [19], the natural probability associated with some searches need 
not be uniform. 

Given structural and external factors influencing search, the natural probability 
need not be U but some probability measure µ that assigns probability q to the 
target T. It’s thus convenient to extend the notion of a null search to include not 
just uniform or blind searches but any searches that accord with such a natural 
probability. Accordingly, we may then say that µ characterizes the null search of 
Ω for T. Moreover, the alternative search will then be characterized by a probabil-
ity measure ν that assigns probability r to T. As the natural probability on Ω, µ is 
not confined simply to Ω but lifts to M(Ω), so that its lifting, namely µ , becomes 
the natural probability on M(Ω) (this parallels how the uniform probability U, 
when it is the natural probability on Ω, lifts to the uniform probability U  on 
M(Ω), which then becomes the natural probability for this higher-order search 
space). When µ is the natural probability associated with a search space, treating 
it as the null search and ν as the alternative search now leads to a general conserva-
tion of information theorem, one that point for point parallels the previous formu-
lation for uniform probabilities. 

Theorem 7.1 (Conservati on of Informati on — General Case)

Let T be a target in Ω. Assume Ω is finite and T is nonempty. Let U denote the 
uniform probability distribution on Ω and let p = |T |/|Ω| = U(T ) (which we take to 
be extremely small). Next, let µ and ν be probability measures on Ω such that q = 
µ (T ) and r = ν (T ). We assume that p ≤ q < r (the rationale for assuming that q is 
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no less than p is discussed at the end of this section). Suppose that µ characterizes 
the probabilistic behavior of a search S and that ν characterizes the probabilistic 
behavior of a search S ′. We treat µ as the null search and ν as the alternative search, 
thus making µ the natural probability associated with Ω. Accordingly, IS = –log(q) 
becomes the endogenous information and IS′ = –log(r) the exogenous information. 
It then follows that the (higher-order) natural probability of rT  in M(Ω), i.e., 

( ),rTµ  is less than or equal to q/r. Equivalently, the (higher-order) endogenous 
information associated with finding the (higher-order) target rT  in M(Ω), 
i.e., - log( ( )),rTµ  is bounded below by the (lower-order)  active information 
I+ = –log( µ (T )) + log(ν (T )) = log(r/q). 

REMARK 1. The probabilities r and q in this theorem correspond respectively to q 
and p in Theorem 6.1. We changed notation because it seemed best to let p con-
tinue to denote the uniform probability of the target. Outside the notation of this 
theorem, however, we shall typically refer to a null search as setting a baseline 
probability p and an alternative search as giving an improved probability of suc-
cess q. Thus, outside the notation of this theorem, we shall generally refer to the 
 active information cost of search in terms of log(q/p) rather than log(r/q). 

REMARK 2. Regressing up the probabilistic hierarchy (i.e., Ω, M(Ω), M2(Ω), 
M3(Ω), etc.) does nothing to mitigate the information cost of successful search. In 
fact, it intensifies the cost. Searching for a target T in the original search space Ω 
against a baseline natural probability µ in M(Ω), we find that the difficulty of the 
search is only exacerbated by searching for the higher-order target rT  with respect 
to the higher-order natural probability µ  in M2(Ω). The proof below can now be 
applied again up the probabilistic hierarchy, showing that the search for a still 
higher-order target aimed at resolving the original search requires the still higher-
order natural probability µ  in M3(Ω), and that this move again only intensifies the 
difficulty of the search. And so on, up the probabilistic hierarchy. 

From the vantage of  conservation of information, searches are no less real than 
the objects being searched. Just as the existence and structure of objects require 
explanation, so too the existence and structure of the searches that locate those 
objects require explanation. It follows that searches, by residing in a space of 
searches, are themselves objects to be searched. This implies a hierarchy of 
searches: the original search, the search for that search, the search for the search 
for that search, etc. Conservation of information entails that as we regress up this 
search hierarchy, the search problem never becomes easier and may in fact become 
more difficult. 

PROOF. Let Ω = {x1,   x2,   ...,   xK,   xK+1,   ...,   xN} and T = {x1,   x2,   ...,   xK} so that p = K/N. 
Since Ω is finite, the probability measures µ and ν are absolutely continuous with 
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respect to U, and so there exist non-negative real-valued functions f and g such that 
µ = f · d U and ν = g · dU. As we saw in section 5, the lifting of µ is now defined as 

,f dµ = ◊ U  where U  is the uniform probability on M(Ω). Thus, for B a measurable 
subset of M(Ω), 

= Ú( ) ( ) ( ),
B

B f dµ θ θU

where for θ in M(Ω),

W

= Ú( ) ( ) ( ).f f x d xθ θ

In section 5 we showed that µ  is indeed a probability measure over M(Ω). 
Because µ is the natural probability on Ω, µ  is the natural probability on M(Ω). 

Next, for the lifted target = Œ W ≥{ ( ) | ( ) }rT T rθ θM  define the following meas-
ure on Ω resulting from vector-valued integration:

= Ú ( )
r

r

T

def dV Uθ θ

This definition holds for any r in the unit interval. Note that when r = 0 (an 
equality that does not in fact holds since we assume that r is no smaller 
than p), then rT  is all of M(Ω); on the other hand, when r > 0, then rT  is a 
proper subset of M(Ω). It follows that rV  is a probability measure on Ω only 
if r = 0 and is a sub-probability measure otherwise (i.e., it assigns measure less 
than 1 to Ω if r > 0). 

What value less than 1 does rV  assign to all of Ω? The answer can be seen from 
the following equation:

È ˘
W = W = W = ◊ =Í ˙

Í ˙Î ˚
Ú Ú Ú( ) ( ) ( ) ( ) ( ) 1 ( ) ( ),

r r r

r r

T T T

d d d TV U U U Uθ θ θ θ θ

which, by  conservation of information in the uniform case (Theorem 6.1), we 
know to be bounded above by p/r. 

By consistency of uniformity (Proposition 5.1), we know that 0V  is just the 
uniform probability U. For r > 0, it is easily seen that rV  is exchangeable on T and 
on its complement T c. In other words, rV  is invariant under permutations of T and 
of T c. Since the only such exchangeable measures are those proportional to uni-
form probabilities, this means that there exist positive constants ar and br such that

= ◊ + ◊( ) ( )c
r r ra T b TV U U
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Here U(. | T) is the uniform probability on T and U(. | T c ) is the uniform proba-
bility on T c . Note that because 0V  is the uniform probability on Ω, a0 = p and 
b0 = 1 – p.

Now, because µ = f · dU with µ(T) = q and µ(T c) = 1 – q, integrating f with 
respect to rV

 , which is proportional to a uniform probability measure on T and on 
T c, is the same as integrating the function 

-
-+ 1

11 1 C

q q
Tp p T  with respect to rV , where 

1T and 1
T c  are the indicator functions for T and T c respectively. This is because 

integrating a real-valued function with respect to a uniform probability measure is 
the same as integrating its average value with respect to a uniform probability 
measure (the average of f on T being q

p
 and the average of f on T c  being 1

1
q
p

-
-

).
It follows that

W

W

W

W

=

È ˘
= Í ˙

Î ˚
È ˘

= Í ˙
Í ˙Î ˚

=

È ˘-= +Í ˙-Î ˚

Ú

Ú Ú

Ú Ú

Ú

Ú

( ) ( ) ( ) [unpacking definitions]

( ) ( ) ( ) [unpacking definitions]

( ) ( ) ( ) [by vector-valued integration]

( ) ( ) [by definition]

1
1 1 ( )

1

r

r

r

r

T

T

T

r

T T r

T f d

f x d x d

f x d d x

f x d x

q q
c d x

p p

µ θ θ

θ θ

θ θ

U

U

U

V

V

W

£ ◊ ≥

= ◊ W =

£ ◊

=

Ú

[asnotedabove]

( ) [because ]

( ) [because ( ) ( )]

[by cons. of info.,unif. case]

.

r

r r r

q
d x q p

p

q
T T

p

q p
p r

q
r

V

U V U

This proves the theorem. 
The theorem just proved assumes that the null search assigns a probability q to 

T that is at least as large as the uniform probability p. But what if the “natural” 
probability on the search space entails a null search that is worse at locating the 
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target than uniform random sampling, so that q is strictly less than p? We put 
“natural” in scare quotes here because, we submit, natural probabilities need never 
do worse than uniformity. To see this, consider a deck of cards and imagine we are 
searching for the ace of hearts. Presented with a deck, face down, we are told to 
draw the first card on top. What is the probability that it will be the ace of hearts? 
If we knew that the deck had just been thoroughly shuffled, then we would be 
justified in assigning the uniform probability of 1/52 to the top card being the ace 
of hearts. But if we knew absolutely nothing about how the deck came to assume 
its order, the uniformity assumption becomes questionable, requiring for its justi-
fication Bernoulli’s disputed principle of indifference [20]. 

Now imagine we learn that that the deck gets thoroughly shuffled, but that 
whenever the ace of hearts appears on top, a coin is flipped so that heads leaves it 
there but tails moves it to the bottom of the deck. Given this way of randomly 
arranging the deck, the probability of the top card being the ace of hearts is not 
1/52 but 1/52 × 1/2 = 1/104. In this case, the probability of drawing the ace of 
hearts is strictly less than its uniform probability. Considerations such as this sug-
gest that the uniformity assumption, though appropriate in many circumstances, 
doesn’t hold universally for search. But this example additionally suggests that we 
don’t need to stay with a sub-uniform probability when conducting a search. 
Precisely because we are searching for the ace of hearts, we don’t have to sample 
the first card at the top of the deck. Search implies we have freedom to move about 
the search space and thus, in the present example, to sample any card in the deck. 
Hence, by suitably randomizing the selection, we can ensure that the card picked 
had the uniform probability 1/52 of being the ace of hearts. In general, then, when 
conducting a search, we are in our rights to assume that we can always do at least 
as well as uniformity. Doing worse, at least for search, is unnatural. Thus, in the 
context of search, any natural probability that replaces the uniform probability 
may be taken to assign a higher probability of success in locating the target than 
the uniform probability.

8. Regulating the Information Industry

 Conservation of information supplies the information industry with a balance 
sheet, ensuring that the information output on one side of the ledger does not 
exceed the information input on the other. Specifically, conservation of informa-
tion guarantees that any search that proportionately raises the probability of find-
ing a target by q/p requires, in its construction, an amount of information not less 
than the  active information I+ = log(q/p). Simply put, raise the probability of suc-
cessful search by a factor of q/p, incur an information cost of log(q/p).
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At the time of this writing, the United States government is much exercised 
about regulating the financial industry. Essential to any such regulation is accurate 
accounting of money — where it originates, how it flows, and where it ends up. 
Conservation of information shows that  active information, like money, obeys 
strict accounting principles. Just as banks need money to power their financial 
instruments, so searches need active information to power their success in locating 
targets. Moreover, just as banks must balance their books, so searches, in success-
fully locating targets, must balance their books — they cannot output more infor-
mation than was inputted.

Regulation of the financial industry is necessary because it is too easy to mask 
liabilities as assets and thereby attempt to escape one’s obligations. Likewise, 
regulation of the information industry is necessary because it is too easy to focus 
on the success of a search and forget the information that paid for that success. The 
temptation is to inflate the creative power of search programs by conveniently 
forgetting the creative power of the programmers who impart the information that 
makes those programs successful. In short, the temptation is to ignore conserva-
tion of information in the hopes of a free lunch. 

Conservation of information keeps the search practitioner honest.
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