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Abstract

There are a number of standard models for the evolutionary process of mutation and selection as a 
mathematical dynamical system on a fitness space. We apply basic topology and dynamical systems 
results to prove that every such evolutionary dynamical system with a finite spatial domain is asymp-
totic to a recurrent orbit; to an observer the system will appear to repeat a known state infinitely 
often. In a mathematical evolutionary dynamical system driven by increasing fitness, the system will 
reach a point after which there is not observable increase in fitness.

Key words: population dynamics, evolutionary dynamics, evolutionary network, evolutionary equi-
librium, fitness space, fitness network

1. Introduction

1.1 Goals and Perspecti ve.

The goal of this paper is to apply standard mathematical theorems from topology 
and dynamical systems to mathematical models of  evolution. Mathematical topol-
ogy is the logical study of the shape of objects without using specific measure-
ments such as angles and curvature — for example an oval, a square and a circle 
are all topological the same — and mathematical dynamical systems involves the 
application of topology to processes that change over time, often without precise 
formulation of the process.

Like most cross-disciplinary research, this paper requires the difficult task of 
attempting to speak across the language and style of two disparate technical fields. 
To those trained in one field or another, exposition in their own field will appear 
trivial and work presented from the other takes time to digest. The author is an 
applied mathematician and the tools of this paper are mathematical, and so despite 
the author’s best efforts the style will inevitably tend toward that field, especially 
when dealing with theorems and proofs.
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Historically, when the apparent chasm between fields is breeched results can be 
profound. Mathematics offers tools — rigorous ways to understand things that can 
be rigorously described — and science offers objects and processes to be under-
stood. Over the past century, applications of topology have been central to pro-
gress in several scientific fields, and to understand the work in this paper it will be 
helpful to review how topology has been applied in the past.

We should make an important distinction regarding terminology. A dynamical 
system most generally is anything that changes over time governed by a set of 
rules. A mathematical dynamical system is one that is defined in mathematical 
logic — it consists of a state space X and a function which, for a given initial state, 
will determine the state of the system at future times. (This definition will be made 
in more detail and more broadly involving the possibility of randomness later in 
this paper.) A biological dynamical system consists of organisms that reproduce 
and grow. We will use the terms mathematical dynamical systems and biological 
dynamical system to distinguish between the two when not clear from the context. 
We will also use the term model to refer to a mathematical dynamical system that 
is designed to model a biological one.

Accordingly, we can prove theorems about mathematical dynamical systems 
and these theorems would only be applicable to biological dynamical systems to 
the extent to which the mathematics accurately models the biology. In physics, 
where dynamical systems originated, the distinction is not usually made because 
the process involved are the result of physical laws such as Newtonian or 
Relativistic mechanics; conclusions proven about mathematical systems are taken 
as automatically pertinent to physical ones. Biological organisms are not subject 
to the same types of laws; individuals are assumed to have probabilities regarding 
specific behavior and the ability to model the behavior of system as a whole results 
from averaging the probabilities across a large number of organisms, for example 
as with the quasispecies equation (See [1]). This is analogous to statistical 
mechanics and  thermodynamics, where the predictability of the collective whole 
is assumed by averaging out over many individual components.

It is broadly accepted that the process of  evolution can be effectively modeled 
using mathematics. The study of mathematical dynamical systems modeling evo-
lution is called evolutionary dynamics and the interested reader is referred to 
Novak’s excellent introduction Evolutionary Dynamics, Exploring the Equations 
of Life [1]. Mathematical dynamical systems modeling evolution are the topic of 
study in this paper and using the proper tools we prove restrictive behavior about 
very broad classes of such models. Determining which models are accurate or 
appropriate for evolution is beyond the scope of this paper.

Mathematical models are developed by formulating some assumed governing 
scientific principles into mathematics and the resulting behavior of the model is 
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taken to be the logical consequence of the assumed principles. Models can be used 
in a predictive manner (ie what will happen to a certain species if the harvesting 
rate is increased) or in an explanatory manner (ie why did the codfish population 
decrease) and we are concerned with the latter in this paper.

Using mathematical models to explore underlying causes requires a proper 
understanding of what the models can and cannot tell. In models where the gov-
erning principles are derived from laws (ie physics and chemistry), the behavior 
of the model is taken as the behavior of the physical system in the ideal case. In 
models where the governing principles are not derived directly from scientific 
laws (ie economics and ecology), the behavior of the system is only understood to 
match the behavior of the physical system if the assumed governing principles 
where the most important factors in the process. Thus, it is impossible to prove 
that certain principles result (or resulted) in observed behavior, but it is possible to 
prove that certain behavior is impossible as a consequence of certain governing 
principles. In short, mathematical models cannot demonstrate what is true about a 
physical system, but they can demonstrate what is false by way of a hypothesis 
test; if the behavior in a mathematical model does not match observed phenomena, 
then original assumed principles cannot be the cause of the observation.

The main results of this paper are for a mathematical dynamical system mod-
eling evolution: 1) If the state space is compact (ie the physical system exists in a 
finite area) and the genotype has a bounded finite length then the change in phe-
notype with either stop or appear to repeat some state and the amount of increase 
in fitness is bounded, stated formally in Theorem 3; and 2) If the system is chaotic 
(and the fitness is a continuous function that is nondecreasing on orbits) then there 
is no increase in fitness, stated formally in Theorem 4. The first might not be sur-
prising, although by way of this result we suggest a focus on the bounds of evolu-
tion in mathematical models, for example using  information theory to quantify the 
bounds. The second result seems contrary to the prevailing understanding of evo-
lutionary dynamics.

1.2 History and Applicati on of Topology and Dynamical Systems

To bridge the gap between mathematical definitions and theorems of topology and 
their role of in science, we discuss the history of  applied topology over the past 
century. Topology began as a theory in the late 1800s out of attempts to answer 
two seemingly separate questions — one abstract mathematical question and one 
applied scientific.

In the late 1800s, German mathematician Gregor Cantor was attempting to 
define dimension as part of his quest to develop a rigorous theory of points and 
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sets, things that had been taken for granted since the investigations of Greek math-
ematicians (See [2]). A by-product of this re-development of the foundations of 
mathematics was the discovery that some sets have a dimension greater than a line 
but less than a plane — that is some sets have a fractional dimension — the most 
famous of these sets being the Cantor Set. These sets are what we now call  fractals 
(a term coined by Benoît Mandelbrot in 1975). The tools required to study them 
is not the lines, angles and curves of geometry and calculus, but a more general 
class of definitions and theorems that make up topology.

Also in the late 1800s, French mathematician Henri Poincaré was studying plan-
etary motion using calculus and differential equations. In his attempt to solve the 
equations of motion for multiple heavenly bodies, Poincaré wrote his Les méthods 
nouvelles de la mécanique Célest; New Methods in Celestial Mechanics (See [3]). 
The first printed version of this manuscript contained an error, and in correcting the 
error Poincaré discovered that equations for planetary motion have solutions that 
are too complex to be explicitly written in the usual formulas from calculus. 
Having shown that the solutions are too complex to be solved via calculus, Poincaré 
developed a new set of tools which we now call topology. Having discovered that 
the solution to some problems lies not in the formulas but in the general shape and 
behavior, Poincaré developed a new approach to understanding motion without 
reference to exact formula, which we now call dynamical systems. The type of 
behavior that Poincaré encountered in his solutions is what we now call chaos, a 
term coined by Jim York in 1975 [4]. The tools of topology have been applied to 
dynamical systems continually since the time of Poincaré. (See Strogatz [5] for an 
excellent applied introduction.)

The utility of  applied topology comes from the ability to prove mathematical 
properties of very general classes of objects and phenomena. Since Poincaré’s 
pioneering work, this has been exploited in a number of disparate fields.

In 1950-51, John Nash used topology (in particular the Brower Fixed Point 
Theorem) to demonstrate the existence of Nash Equilibrium in a very broad class 
of non-cooperative games. (See [6] and [7, Chapter 4.7]). This result revolution-
ized game theory with applications in economics, politics and biology. Topology 
enables the proof of existence of Nash Equilibria in mathematical games even 
when the exact formulation of the player’s strategies are not known, and has appli-
cation to human conflicts where no precisely defined game or strategy exists. 
Because of the applicability of topology to a very broad class of games, this result 
is assumed to apply even to real games where the strategies are not mathematical 
but are derived from the psychology of the players.

In condensed matter physics, states of matter other than solids liquids and gases 
can occur as the result of collective behavior of interactions between molecules. 
Symmetries of forces result in behavior more structured then that of a liquid but 
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less rigid than a crystal or solid. A familiar example is the liquid crystals in a 
computer display. Pressing on the display creates outward swirls of rotation result-
ing from the local pressure. The patterns are studied with topology; the twists and 
singularities, or defects, exist to maintain a consistent global topology even when 
the exact local positions are not known. This has proven important for understand-
ing states and collective behavior of matter such as superconductors. (See [7-10]).

One of the grand questions in cosmology has been the shape of the universe. 
Since Aristotle conjectured that the universe is a great sphere, cosmologists have 
been attempting to infer the structure from observations. Inferring this topological 
and geometric structure has been one of the main purposes of the NASA WMAP 
(Wilkenson Microwave Anisotropy Probe) — patterns in the anisotropic cosmic 
microwave background radiation could be used to determine the topology of the 
universe. The role of topology is beyond the scope of this paper, but the interested 
reader is referred to Weeks [11] for an excellent exposition or to Basener [7].

The goal of this paper is to apply some basic theory from the mathematical field 
of dynamical systems to mathematical models of  evolution. The reason we employ 
the mathematical theory from topology is twofold. First, as with the examples 
cited in this section, we are then able to prove theorems for broad classes of mod-
els; the machinery of topology and dynamical systems allows us to prove theorems 
about mathematical models of evolution without an exact formulation of the mod-
els. Second, in addressing chaotic dynamical systems we are required to use topol-
ogy (or some equivalent machinery, for example geometry if we assume a suitable 
state space) as even the definition of chaos requires some level of topology.

The mathematics is basic topology and the theorems we prove are quite simple; 
they could be basic homework exercises in an upper level undergraduate course in 
dynamical systems. However, the insights resulting from the application do not 
seem to be generally known or understood in the study of evolutionary dynamics, 
either in theory or application. The remainder of this paper consists of a series of 
expository examples of evolutionary dynamics with application of dynamical sys-
tems theory, building up to the main results in Theorems 3 and 4.

1.3 General Questi ons in Evoluti onary Models

Every living organism has a genotype, its genetic sequence, and phenotype, the 
phenomenological manifestation of the genotype. The standard model of evolution 
is that the genotype determines the phenotype, and combined with other factors 
this determines the fitness level of the organism in its environment, and this fitness 
level determines the probability of survival of the organism in competition with 
other organisms. Reproduction and random mutations create organisms with new 
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genotypes, and the fitness of the new genotypes determines their subsequent sur-
vival rates. Consequently, the genotypes of organisms dynamically migrate to 
those with generally higher fitness levels.

A sort of  evolution can be observed experimentally [12] using a series of test 
tubes each of which contains the four nucleotides ATP, GTP, UTP, and CTP as 
well as the enzyme Qβ replicase. An RNA template is added to the first test tube, 
left for 30 minutes, then a fraction of the solution from the first is added to the 
second, and the process is repeated. The Qβ replicase creates almost prefect copies 
of the RNA molecules in each test tube, and after a series of transfers the RNA 
will consist of a modified variant that is replicated more quickly than the original. 
While this biological process is not actual evolution of living organisms, the 
‘genotype’ in this experiment corresponds to the RNA sequence and the ‘pheno-
type’ is the resulting replicating performance. The resulting rate of replication by 
Qβ replicase determines the ‘fitness’ of the RNA molecules. The type of RNA 
sequence in the final equilibrium state is determined by the environment of the 
solution.

Observe that the dynamic behavior of the Qβ RNA system is very simple; the 
RNA ‘genotype’ goes to an equilibrium which is determined by the parameters of 
the system. This is the typical behavior of evolutionary dynamical systems based 
on evolutionary genetics. This raises the question of whether the genetic processes 
are sufficient to account for macroevolution; quoting John Maynard Smith 
[12, p.273]: “This book has been concerned with processes that can be studied in 
contemporary populations over short periods of time. Our picture of  evolution on 
a larger scale — macroevolution — comes from comparative anatomy and embry-
ology, from taxonomy and geographical distribution. The question naturally arises 
whether the processes of population genetics are sufficient to account for macro-
evolution. Very different views can be held on this...”

The goal of this paper is to apply basic structure theorems from topological 
dynamics to answer, at least in part, Maynard’s question. We investigate conditions 
on evolutionary models that guarantee behavior observed in the Qβ RNA  system — 
evolution progressing for period of time and then ceasing. We show in a very 
general class of evolutionary models, which includes the standard continuous (dif-
ferential equations), discrete (iterations of maps), deterministic, stochastic, and 
spatial evolutionary genetics — based models, this is the only possible behavior.

This is really not surprising. In evolutionary progression that can be studied in 
contemporary populations over short periods of time, we observe a process that 
does a finite amount of increase in fitness and then ceases; we do not directly 
observe evolutionary progress of a species through continually higher, more com-
plex, more fit, genotypes-phenotypes. It is also the behavior observed in standard 
dynamic models for evolution.
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Perhaps the only potentially surprising result is that no evolution takes place 
within chaotic dynamics, Theorem 4. Chaotic behavior is sometimes offered as an 
explanation of how complex systems might come from simple governing laws. For 
example, Novak [1, p.6] writes “Chapter 9 gives an account of evolutionary 
dynamics on spatial grids. ... We will observe evolutionary kaleidoscopes, dynamic 
fractals, and spatial chaos. There is all the complexity one could wish for — mak-
ing it unnecessary for God to play dice.” The suggestion seems to be that complex 
features of nature, implicitly complex organisms resulting from evolution, can 
result from chaotic dynamics. Theorem 4 shows that, to the contrary, no sustained 
increase in complexity or fitness is possible within a chaotic dynamical system. 
Specifically, to within any small amount of observational error, a chaotic system 
repeats each given state infinitely often. Subsequently, an  evolution trajectory that 
is asymptotic to a chaotic set receives no more increase in fitness than one that is 
asymptotic to an equilibrium.

Our conclusion stresses again the question of whether the population genetic 
process of mutation — selection is by itself sufficient to account for macroevolu-
tion. As before, this seems not so surprising, as even speciation, the divergence of 
a single species into different species, seems to require external environmental 
factors. Again, quoting Smith [12, p.275], “It is widely agreed that the differences 
between species usually originate during geographical isolation.” The isolation 
can be physical geographic isolation or any factor that inhibits reproduction 
between two groups of organisms. In terms of evolutionary genetics dynamics 
models, creating of a new species (let alone new anatomy) seems to require an 
external dialing of the fitness parameters by a changing external environment. We 
discuss additional conclusions in Section 4.

2. Evolutionary Models and Dynamical Systems

The primary laws governing the interactions between genotype, phenotype, fitness, 
and the resulting variation over time can be described by mathematical dynamical 
systems [1]. A mathematical dynamical system is any system that changes over 
time with governing rules for change that depend on previous states of the system, 
possibly including external factors that may be deterministic or stochastic.

The two primary classes of mathematical models for evolutionary dynamics are 
discrete systems (iterated maps) and continuous systems (differential equations). 
In either case we have a state space, X, which is the space of all possible states of 
the system. In evolutionary dynamics, the state space usually incorporates the 
number of organisms of each genotype. That is, if we are considering a system 
with n different possible genotypes then X is n-dimensional Euclidean space, 
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points (or states) 0 1( , , , )nx x x x=� …  are vectors of length n with xi being the num-
ber (or proportion) of organisms with genotype i and n being the number of geno-
types being considered. We use x

�
 when we want to emphasize the vector nature 

of this variable or just x otherwise.
For discrete systems we have a function (or map) f such that if x is the state of 

the system at a given time then f(x) is the state one unit of time later. Thus, in 
discrete systems time passes in discrete steps — that is in jumps. If our units of 
time are say years, then state of the system two years later will be f ( f (x)) = f 2(x), 
and n years later it will be f ( f (… f (x) …)) = f n(x).

Continuous dynamical systems typically arise as solutions to differential equa-
tions. The state space X still constitutes the space of all possible states. For a 
state x, the state that will occur t time units later will be written as either ϕ(t, x) or 
x(t). If the system is governed by a differential equation, we begin an equation x' 
= f (x) and then ϕ(t, x) is the solution with initial condition x (that is, d ( , ) ( )

d
t x f x

t

j =  
and ϕ(0, x) = x.)

There is an efficient mathematical framework for simultaneously treating con-
tinuous and discrete dynamical systems. A mathematical dynamical system is a 
state space X together with a time space T (T is either the real numbers or integers) 
and a continuous group action (or semi-group action) ϕ: T × X → X. For a dif-
ferential equation, ϕ (t, x) is the solution with initial condition x. For a discrete 
dynamical systems defined by iteration of a map f: X → X the group action is ϕ 
(n, x) = f n (x). In either case, the system inputs a state (given by x) and a time 
(given by either t or n in T) and outputs that state after the allotted time has passed. 
Treating dynamical systems in such general terms enables us to focus on the topo-
logical and geometric phenomena that are true in general instead of what is only 
true for a given formulation.

The class of dynamical systems described above includes all deterministic 
dynamical systems (ie differential equations and iterated maps), those systems 
where the future is determined by the current state and time. Non-deterministic 
systems will be treated separately, although these often ‘average out’ to determinis-
tic ones when many organisms are involved as with the quasi-species equation. (See 
Basener [7] for a treatment of topology in general; see Strogatz [5], Devaney [13] 
and Robinson [14] for dynamical systems; and see Novak [1] for dynamical sys-
tems as models of  evolution). Like all mathematical models, the system can be 
simple or complex, depending on the number of simplifying assumptions.

2.1. Simple Populati on Models

Some simple models incorporate only the competition between populations, and 
thus focus on the competition-selection portion of evolution. Such models include 

b1567_Sec1.2.1.indd   94b1567_Sec1.2.1.indd   94 5/8/2013   2:27:27 PM5/8/2013   2:27:27 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 6
9.

17
0.

92
.2

43
 o

n 
06

/1
0/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



 Limits of Chaos and Progress in Evolutionary Dynamics  95

b1567  Biological Information — New Perspectives b1567_Sec1.2.1 8 May 2013 2:36 PM

the Malthusian logistic single species y' = ay(1 – y) and competing species model 
x' = r1x(1 – bc – cy), y' = r2y(1 – fx – gy) which can lead to survival of one or both 
species. Nonlinear systems model more complex interactions, and can result in 
finite time extinction of one or more of the species.

The theory of mathematical dynamical systems can be applied to general for-
mulations of these types of equations. In 1936 A. N. Kolmogorov gave conditions 
under which equations of the form

x' = xF(x, y)
y' = yG(x, y)

has either a stable limit cycle or equilibrium. This has broad implications for bio-
logical systems — see May [15]. (A limit cycle is either a periodic orbit or a 
sequence of equilibria, p1,p2,…, pn with heteroclinic trajectories connecting pi to 
(pi+1 mod n·) More generally, the Poincare-Bendixson Theorem says that any 
bounded solution to a 2-dimensional system of differential equations is asymptotic 
to either an equilibrium or a limit cycle [16]. These examples illustrate the power 
of the dynamical systems approach; geometric or topological theorems restrict the 
potential behavior of a system even if the governing laws/equations are only par-
tially known.

Discrete systems in any dimension and continuous systems in more than 2- 
dimensions can exhibit more complex behavior. For example, an orbit in the dis-
crete 2-dimensional system for a simple ecosystem with two organisms

Pn+1 = Pn + aPn(1 – Pn/Rn)
Rn+1 = Rn + cRn(1 – Rn/M) – hPn

is shown in Figure 1 for three sets of parameters. This system was used in Basener 
et al. [17] to model the rise and fall of the civilization on Rapa Nui (Easter Island). 
The mathematics of chaotic and recurrent behavior is discussed in Section 3.

2.2. Simple Mutati on-Selecti on Models

Simple models may also focus solely on the genetic aspect of  evolution. The 
METHINKSITISAWEASEL system, created by Dawkins in 1989, is commonly 
used to illustrate evolution by mutation and  natural selection as in Smith [12]. The 
state space X is the space of all strings of 19 letters. Topologically, X is a discrete 
space with 2619 ≈ 7.66 × 1026 points. Iteration of the system involves making ten 
copies of a parent state x in which each letter of the copy has a 0.99 probability of 
being the same as the corresponding letter in the parent. The fitness of a state is 
equal to the hamming distance from the sequence METHINKSITISAWEASEL; 
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that is, the number of letters in the correct location with this goal sequence. The 
child with the highest fitness level is chosen as the new parent in the next genera-
tion. Although the system is not deterministic, for any initial condition the prob-
ability that the resulting sequence of iterations will reach the goal sequence is 
equal to 1.

This system is not an accurate model of evolution (see [12]), but it is useful to 
illustrate the simple description of evolution with mutation and  natural selection. 
It also has typical evolutionary behavior; the ‘genotype’ undergoes modification 
over generations and then stabilizes at an equilibrium. This is the same behavior 

Fig. 1.  Three chaotic attractors for discrete dynamical system modeling a simple two species 
ecosystem.
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as with the RNA molecules in the Qβ replicase. It is worth considering more gen-
eral systems of this variety. In Theorem 1 we show that if the state space is finite 
with a simple model of evolution, then evolution will run its process and then 
cease. Once maximal fitness is achieved, all subsequent mutations are irrelevant 
for fitness.

To describe a general situation of an evolutionary process, we will use X to 
denote a state space which could in general be any topological space. We assume 
that there are some laws governing the process of evolution on X, although they 
may in general be continuous differential equations, a discrete map, stochastic, or 
nondeterministic. If the system is discrete, the process of evolution will result in a 
sequence of points

x0 = x, x1 = f (x), x2 = f ( f (x)) = f 2(x), …, xn = f n(x)

according to the governing laws. If it is continuous, the process of evolution will 
result in a path x(t) in X. In the first case, we call x0, x1, … a (discrete) evolutionary 
trajectory and in the second we call x(t) a (continuous) evolutionary trajectory. By 
a fitness function on X we mean a continuous function F: X → R (the domain is 
X and the range is R, the real numbers) that is nondecreasing on evolutionary 
trajectories. (Either F (xi) ≤ F (xj) for i < j in the first case, or F(x(s)) ≤ F(x(t)) for 
s < t in the second.). Our first theorem, Theorem 1, shows that the behavior of the 
METHINKSITISAWEASEL system is the only possible behavior for a system 
with only finitely many states.

THEOREM 1. Let X be any finite state space with a fitness function F: X → R. 
Suppose x0, x1, … is a discrete evolutionary trajectory. Then there exists an N such 
that F(xn) = F(xN) for all n > N.

The proof is very simple; the set F({x0, x1, …}) is finite, being a subset of the 
finite space X, and therefore attains a maximum at some xN. Since this is the maxi-
mum on the sequence F(xn) ≤ F(xN) for all (xn) and F is nondecreasing F(xN) ≤ F(xn) 
for (N < n), we have F(xn) = F(xN) for all n > N.

It is clear from Theorem 1 that this type of a system — either a deterministic or 
nondeterministic progression of increasing fitness of a genotype in a sequence 
space — by itself does not result in an ongoing increase in fitness of organisms.

Related models can be constructed incorporating multiple organisms as well as 
spatial distributions. As long as the state space is compact (such as any a closed 
and bounded subset of Euclidean space, as is the case for any system with a finite 
area in which the organisms live), a similar theorem holds for systems with a fit-
ness function that does not decrease over time. To work with continuous and 

b1567_Sec1.2.1.indd   97b1567_Sec1.2.1.indd   97 5/8/2013   2:27:28 PM5/8/2013   2:27:28 PM

 B
io

lo
gi

ca
l I

nf
or

m
at

io
n 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 6
9.

17
0.

92
.2

43
 o

n 
06

/1
0/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



98 W. F. Basener 

b1567  Biological Information — New Perspectives b1567_Sec1.2.1 8 May 2013 2:36 PM

discrete dynamical systems, with stochastic and deterministic ones, and with 
cases where the system is chaotic, we make some general terminology. If X is a 
state space, F is a fitness function on X and x0, x1, … is a sequence of points in X 
resulting from a model of evolution on X for which F is nondecreasing, we will 
refer to x0, x1, … as a discrete evolutionary trajectory in X. Similarly, a path x(t) 
in X on which F is nondecreasing will be called an continuous evolutionary trajec-
tory in X.

THEOREM 2. Let X be any compact state space with a fitness function F: X → R. 
If x0, x1, … is a discrete evolutionary trajectory, then there exists an F* such that 
F(xn) → F∗ as n → ∞. If x(t) is a continuous evolutionary trajectory, then there 
exists an F* such that F(x(t)) → F∗ as t → ∞.

Proof. Since X is compact, F is bounded on X. In the first case, F({x0, x1, …}) is 
a bounded subset of R, and thus has a supremum F*. Since F(xn) is nondecreasing, 
it goes monotonically to F*. In the second case, F({x(t) | t ε R}) is a bounded sub-
set of R, and thus has a supremum F*. As before, F(x(t)) is nondecreasing, and so 
it goes monotonically to F*.

The sequence x0, x1, … in Theorem 2 can be the solution to either a stochastic 
or deterministic discrete system on X, and the path x(t) can be the solution to either 
a stochastic or deterministic continuous system on X. Observe that this theorem 
states that evolution will run its course until some point after which increase in 
fitness is inconsequential. (Specifically, for any small positive number ε there is a 
time after which the increase in fitness is less than ε.)

It may seem counterintuitive that Theorem 2 would apply to systems with 
chaos; for chaos has often been suggested as a mechanism for producing very 
complex structures. We address chaotic dynamics in Section 3, where it is proven 
that fitness never increases on chaotic sets.

2.3. Populati on Models with Mutati on-Selecti on

To construct a more accurate model of  evolution, we need to consider more 
aspects of genetics, mutations, populations and ecology. In this section we con-
sider quasispecies, which is are ensemble of similar genomic sequences generated 
by a mutation-selection process, a notion developed by Manfred Eigen and Paul 
Schuster [18].

As before, we take our genotype information in a sequence space, say 
X = {A,T,C,G}N which is the set of all sequences in the letters A, T, C and G of 
length N. There are 4N different organisms that can have their genotype in this 
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space. Imagine a large population of such organisms. We denote the fraction of the 
total population consisting of genotype i by xi, for i = 1, …, N. So each xi is in [0, 1] 
and Σi xi = 1. Our state space X is the set of all 0 1( , , , )Nx x x x=� …  satisfying Σixi = 
1, which is the unit simplex in RN+1. Observe that the state space X is compact.

Let fi > 0 be the fitness of species i. For now, assume that the fitness corresponds 
to the growth rate. (It is common practice to equate fitness with growth rate. This 
seems sufficient in the short-term. However, organisms with a high fitness, result-
ing in a high reproduction rate, can overpopulate their ecosystem, destroying their 
food source and subsequently themselves as a population. This behavior is the 
main topic in the study of the collapse of ancient human civilizations in Basener 
and Ross [19] and Basener et al. [20].) The state space X together with the fitness 
function 0 1( , , , )Nf f f f=

�
…  is called a fitness landscape.

Let Q be the matrix such that qij is the probability of mutation from genotype i 
to genotype j. (The rows of the square matrix sum to 1.) The quasispecies equation 
is then the differential equation

0

N

j j i ij
j

x x f q xf
=

= -¢ Â�

where φ = Σi fi xi is the average fitness. The first term provides for reproduction and 
mutation, while the second term maintains Σi xi = 1. If we let ,W fQ=

��
 then the 

equation becomes

 x Wx xf= -� � �
 

which has a (generically stable) equilibrium at the solution to the eigenvector 
equation Wx xf=� �

.
For quasispecies, the fitness function determines the fitness of each genomic 

sequence, not the fitness of the quasispecies. Because individuals with more fit 
genomic sequences continually produce mutations with lower fitness, the qua-
sispecies equation does not maximize an overall fitness. For modest mutation 
rates, quasispecies will appear as a peak centered on the genomic sequence with 
the greatest fitness. For this reason, we cannot apply Theorem 2 directly using the 
given fitness function. However, generically the conclusion still holds — evolution 
runs its course to the equilibrium.

Stochastic systems — systems in which mutations occur from each genotype to 
other genotypes at prescribed mutations rates and with some approximately deter-
ministic rules governing population change over time for various genotypes — can 
all be modeled as a dynamical system on the same state space as the quasispecies 
equation. The following theorem says that even though fitness is not strictly 
increasing in these systems, regardless of the rules governing the population 
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change the net effect of  evolution over time is not much different than in previous 
theorems. Instead of going to an equilibrium, the system has a point which it will 
get close to, then may move away and will come back to again even closer, and 
then repeat the process of closer and closer approaches, infinitely often. To an 
observer, the system will continue to repeat (or return to) some state infinitely 
often.

THEOREM 3. Let X be any compact state space. Then for any trajectory of a 
(discrete or continuous) dynamical system on X, there is a state x* such that the 
orbit comes repeatedly close to x* as time goes to ∞, as follows. If x0, x1, … is a 
discrete evolutionary trajectory, then there exists a state x* ε X and a subsequence 
xi(1), xi(2), … such that xi(k) → x* as k → ∞ . If ϕ(t, x) is a continuous evolutionary 
trajectory, then there exists an x* and a sequence of times t1, t2, … such that ϕ 
(tk, x) → x* as k → ∞.

Proof. If x0, x1, … is a sequence of points, since X is compact the collection of sets  

1 2 3{ } { } { }i i i i i ix x x• • •
= = =     … is a nested sequence of compact sets. Thus the intersec-

tion 1{ }n i i nx• •
= =∩  is nonempty. Then let x* be any point in 1{ }n i i nx• •

= =∩  and x* is the 
desired point.

If ϕ (t, x) is a path in X, since X is compact the collection of sets { ( , )}tt x aj >  is a 
nested sequence of compact sets. Thus the intersection { ( , )}R tt xa ajŒ >∩  is non-
empty. Then let x* be any point in { ( , )}R tt xa ajŒ >∩  and x* is the desired point.

3. Chaos and Recurrent Behavior

A dynamical system ϕ:T × X → X is said to be chaotic on an infinite subset 
A XÕ  if

 (i) Periodic orbits are dense in A.
 (ii) There exists one orbit in A which is dense.
 (iii)  If X is a metric space then the system has sensitive dependence of initial 

conditions: There exists an ε > 0 such that for any point xεA and any 
neighborhood N of x, there exists a yεN and a t > 0 such that d(ϕ (t, x), ϕ 
(t, x)) > ε.

(See Basener [7] for mathematical terms, Robinson [14] for details on the dynami-
cal systems in this section and Strogatz [5] for applications). Note that chaotic 
subsets are necessarily compact and in variant. It has been shown that the first two 
conditions are sufficient to imply the third (See Banks et al. [21] and Basener [7]), 
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although in practice sensitive dependence is often taken alone as a definition of 
chaos because it is easy to compute experimentally.

For real-life systems, the periodic orbits in chaotic sets are less observable that 
the tendency to wander around the set; the small perturbations that occur in any 
real system will prevent it from actually being periodic. However, the behavior 
both in theory and practice has periodic-like aspects. Specifically, for any point 
xεA, there is a sequence of times t0,t1,… with ti → ∞ such that ϕ (ti, x) → x as 
i → ∞. To an observer, the system appears to repeatedly return to its initial state 
forever. Hence, whether there is a fitness function that is nondecreasing on trajec-
tories as with mutation-selection models, or if there is a fitness function that is 
defined on species but is not optimized in general as with the quasispecies model, 
on a chaotic set the system will continue to repeat a given state, and thus a given 
level of fitness, repeatedly.

More can be said if we assume that the fitness is nondecreasing with time; in 
this case, the fitness level is constant on a chaotic set.

THEOREM 4. Let ϕ:T × X → X be any dynamical system with a fitness function 
F: X → R such that F (ϕ (s, x)) < F(ϕ(t, x)) for any s < t. If A is a subset of X upon 
which ϕ is chaotic then F is constant on A. That is, there is no increase in fitness 
for orbits in A.

Proof. Since ϕ is chaotic on A, there is a sequence of times t0, t1,… with ti → ∞ 
such that ϕ (ti, x) → x. Then, since F is continuous, F(ϕ (ti,x)) → F(x). Since F is 
nondecreasing on orbits, F is constant.

4. Conclusions

Our first conclusion is that chaos and nonlinear dynamical systems contribute 
nothing to the ongoing increase in complexity or evolutionary fitness of biological 
systems. Statements such as that quoted earlier from Novak [1, p.9], suggesting 
that complexity of life results from nonlinear chaotic systems, are contrary to 
mathematics.

Second, the evolutionary process driven by mutation-selection, in both mathe-
matical models and directly observed behavior, is that of a system going to an 
equilibrium and staying there. It seems the discussion of evolution in biology is 
that of an ongoing process but the study of mathematical models of evolution is 
that of equilibrium dynamics. There is nothing inherent in the fitness-driven math-
ematical system that leads to ongoing progress; to the contrary, mathematical 
systems, both those which are specific models such as the quasispecies equation 
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and very general classes of models, have limits on the amount of increase in fitness 
that occurs. This is really well-known, as speciation is believed to occur only when 
driven by geographical isolation [12, p.275].

We have determined certain means of evolutionary progress to be impossible, 
and some of these means, for example the idea that chaos can lead to extreme 
evolutionary progress, have in the past been used as hypothetical possibilities for 
evolutionary dynamics. This leads us to ask what is left?

The space of all possible genotypes, while a compact space (assuming we disal-
low genotypes of unbounded length), is still enormous. The potential fitness, while 
bounded, is still extremely high. We can imagine this space as an enormous 
dimensional space, and imagine every viable species as a point in this space. We 
can image a line segment connecting every pair of viable genotypes if there is a 
reasonable probability that mutation from one to the other, as suggested in 
Figure 2. The result is an enormous network amenable to analysis by mathematical 

Fig. 2.  A large network with sparsely connected groups. The question we pose is whether the geno-
type network is connected like this, or if there are many disconnected islands. This image shows a 
partial map of the internet based on the January 15, 2005 data found on opte.org. Each line is drawn 
between two nodes, representing two IP addresses. The length of each line are indicates the delay 
between its endpoint nodes. See [22].
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network theory. The quasispecies equation provides the local equilibrium dynam-
ics in this space, and there is no mathematical reason to expect generally other 
than the equilibrium state naturally from the system; stability is what we observe 
experimentally and from well-supported equations.

In the genotype network described above, each quasispecies lives within a group 
of highly interconnected points, called a community or clique in social network 
theory. If environmental conditions change, the quasispecies shifts within this 
group. In most cases, if the environment shifts to far (or at least too quickly) then 
the quasispecies is pushed to the edge of its local group, to points with low fitness, 
and then goes extinct. This decrease in fitness near the boundary of a local group 
can be observed in selective breeding; if too many desired properties in an animal 
or vegetation are attempted to be optimized through selective breeding, the simul-
taneous optimization becomes difficult and the species becomes less fit as a whole.

A question for  evolution is to determine the structure of this genotype network. 
Are there bridges between groups of interconnected genotypes? How can we tell? 
What is the density of the network? How populated must a group be in order to 
support a quasispecies? Can the dimension of a local group be inferred, for exam-
ple as the number of properties of a species that can be simultaneously optimized 
through selective breeding?
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