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[143] Goldmann, M., J. Håstad, and A. Razborov. Majority gates vs. general weighted threshold gates. In
Proceedings of the 7th Annual Structure in Complexity Theory Conference, pp. 2–13. IEEE Computer Society
Press, Los Alamitos, CA, 1991.

[144] Gori, M., and M. Maggini. Optimal convergence of on-line backpropagation. IEEE Transactions on Neural
Networks 7(1):251–254, 1996.

[145] Gori, M., and A. Tesi. On the problem of local minima in backpropagation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 14(1):76–86, 1992.

[146] Green, R.W., and C.M. DeAngelis. An empirical comparison of backpropagation training algorithms. In
World Congress on Neural Networks (Portland), vol. 4, pp. 401–406. Erlbaum, Hillsdale, NJ, 1993.



326 References

[147] Guyon, I., V. Vapnik, B. Boser, L. Bottou, and S.A. Solla. Structural risk minimization for character
recognition. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances in Neural Information Processing
Systems (4), pp. 471–478. Morgan Kaufmann, San Mateo, 1992.

[148] Hagan, M., and M. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Transac-
tions on Neural Networks 5(6):989–993, 1994.

[149] Hamamoto, M., J. Kamruzzaman, and Y. Kumagai. Generalization ability of artificial neural network
using Fahlman and Lebiere’s learning algorithm. In Proceedings of the International Joint Conference on Neural
Networks (Baltimore), vol. 1, pp. 613–618. IEEE Press, New York, 1992.

[150] Hamey, L.G.C. Comments on “Can backpropagation error surface not have local minima.” IEEE Transac-
tions on Neural Networks 5(5):844–845, 1994.

[151] Hampson, S.E., and D.J. Volper. Linear function neurons: Structure and training. Biological Cybernetics
53:203–217, 1986.

[152] Hansen, L.K. Stochastic linear learning: Exact test and training set averages. Neural Networks 6(3):393–
396, 1993.

[153] Hanson, S.J. Meiosis networks. In D.S. Touretzky, editor, Advances in Neural Information Processing
Systems (Denver, 1989) (2), pp. 533–541. Morgan Kaufmann, San Mateo, 1990

[154] Hanson, S.J., and L.Y. Pratt. Comparing biases for minimal network construction with back-propagation.
In D.S. Touretzky, editor, Advances in Neural Information Processing Systems (Denver, 1988) (1), pp. 177–185.
Morgan Kaufmann, San Mateo, 1989.

[155] Harp, S. A., and T. Samad. Genetic optimization of self-organizing feature maps. In Proceedings of the
International Joint Conference on Neural Networks (Seattle), vol. 1, pp. 341–346, 1991.

[156] Harp, S. A., T. Samad, and A. Guha. Designing application-specific neural networks using the genetic
algorithm. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems (2), pp. 447–454.
Morgan Kaufmann, San Mateo, 1989.

[157] Hassibi, B., and D.G. Stork. Optimal brain surgeon. In S.J. Hanson, J.D. Cowan, and C.L. Giles, editors,
Advances in Neural Information Processing Systems (Denver, 1992) (5), pp. 164–171. Morgan Kaufmann, San
Mateo, 1993.

[158] Hassibi, B., D.G. Stork, and G. Wolff. Optimal brain surgeon: Extensions and performance comparisons.
In J.D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems (6), pp.
263–270. Morgan Kaufmann, San Mateo, 1994.

[159] Hassibi, B., D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In IEEE
International Conference on Neural Networks (San Francisco), pp. 293–299. IEEE, New York, 1993.

[160] Haykin, S. Neural Networks, A Comprehensive Foundation. Macmillan, New York, 1993.

[161] Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the IEEE
First International Conference on Neural Networks (San Diego), vol. 3, pp. 11–13. IEEE, New York, 1987.

[162] Hecht-Nielsen, R. Theory of the backpropagation neural network. In Proceedings of the International Joint
Conference on Neural Networks (Washington D.C.), vol. 1, pp. 593–605. IEEE, New York, 1989.

[163] Hecht-Nielsen, R. On the algebraic structure of feedforward network weight spaces. In R. Eckmiller, editor,
Advanced Neural Computers, pp. 129–135. Elsevier, New York, 1990.

[164] Hecht-Nielsen, R. The munificence of high dimensionality. In I. Aleksander and J. Taylor, editors, Pro-
ceedings of the 1992 International Conference on Artificial Neural Networks (ICANN-92), vol. 2, pp. 1017–1030.
Elsevier, 1992.

[165] Hergert, F., W. Finnoff, and H.G. Zimmermann. A comparison of weight elimination methods for reduc-
ing complexity in neural networks. In Proceedings of the International Joint Conference on Neural Networks
(Baltimore), vol. 3, pp. 980–987. IEEE, New York, 1992.

[166] Hertz, J., A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley,
Reading, MA, 1991.



References 327

[167] Hertz, J.A., and A. Krogh. Statistical dynamics of learning. In T. Kohonen, K. Mäkisara, O. Simula, and
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