
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.



11 Genetic Algorithms and Neural Networks

One of the basic tasks in network design is to choose an architecture and weights appropri-
ate for the given problem. The genetic algorithm (GA) [173, 141] is a general optimization
method that has been applied to many problems including neural network training. It is
appropriate for neural networks because it scales well to large nonlinear problems with
multiple local minima.

As the name implies, the genetic algorithm is based on an analogy to natural evolutionary
mechanisms. Many variations have been investigated, but the basic idea is competition
between alternative solutions and “survival of the fittest.” In this case, fitness is measured
by a predefined objective function. Individuals in a large population have varying traits
that affect their reproductive success in the given environment. Successful individuals
live long enough to mate and pass their traits to their offspring. Offspring inherit traits
from successful parents so they also have a good chance of being successful. Over many
generations, the population adapts to its environment; disadvantageous traits become rare
and the average fitness tends to increase over time.

One of the main advantages of the algorithm is that it requires very little problem-
specific information. To apply the method to a specific problem, all that is needed is a
fitness function that evaluates individual solutions and returns a rating of their quality, or
“fitness.” The algorithm itself operates on bit strings containing the “genetic code,” that is,
the parameters specifying a particular solution. Aside from the problem-specific evaluation
function, all problems look the same to the algorithm, differing only in the length of the bit
string and the number of units.

Because the algorithm needs so little problem-specific information, it is useful for com-
plex problems that are difficult to analyze correctly. In particular, it does not need gradient
information and so can be used on discontinuous functions and functions that are described
empirically rather than analytically. It can also be used for temporal learning problems in
which evaluation comes at the end of a long sequence of actions with no intermediate tar-
get values. It is not a simple hill-climbing method so it is not particularly bothered by local
maxima. It will also tolerate a certain amount of noise in the evaluation function.

The algorithm has some of the flavor of simulated annealing in that many alternative so-
lutions are examined and the search contains an element of randomness that helps prevent
convergence to local maxima. It differs in that many candidate solutions are maintained
rather than just one and elements of the better solutions are combined to generate new can-
didates. Like simulated annealing, it is a general optimization method that has applications
beyond neural networks.

The main disadvantage of the method is the amount of computation needed to evaluate
and store a large population of candidate solutions and converge to an optimum. Other
techniques often converge faster when they can be used.



186 Chapter 11

11.1 The Basic Algorithm

The basic operations are (1) selection based on fitness, (2) recombination of genetic mate-
rial by crossover, and (3) mutation. The algorithm operates on a population of many units.
Each unit has a bit string, its “genetic code,” which encodes its solution to the given prob-
lem. The user supplies a problem-specific function that decodes the bit string, evaluates the
solution, and returns a value which is translated to a fitness score. The fitness score deter-
mines which units are selected for mating. High scoring solutions tend to be selected more
often than low scoring solutions and thus pass their characteristics to the next generation at
a higher rate.

The basic algorithm starts with an initial population of N units with random parameters
encoded in a binary bit string. Larger population sizes generally increase the chance of
finding a good solution but, of course, require more processing time. The following steps
are repeated until a solution is found or patience is exhausted.

Evaluation. Evaluate each unit and assign it a non-negative score (higher=better). Nor-
malize by dividing by the sum of all scores to obtain fitness scores fi in the range 0–1. If
any unit satisfies the goal criteria, discard the other units and stop.

Selection. On N trials, select an individual i with probability fi and copy it to the mating
population. Units can be selected with probability fi by assigning each unit a segment of
the 0–1 interval proportional to its fitness and choosing a uniform random number; if the
number falls in the interval assigned to the kth unit then select unit k. In the case of three
units with fitness scores 0.1, 0.6, and 0.3, for example, the intervals would be 0–0.1, 0.1–
0.7, and 0.7–1.0. Figure 11.1 illustrates this by analogy to a roulette wheel where each unit
has a number of slots proportional to its fitness.

Figure 11.1
Selection. The genetic algorithm selects units for reproduction with probability proportional to their fitness. Units
with higher fitness (corresponding to more slots on the wheel) are more likely to be chosen than units with lower
fitness, but all units have some chance of being chosen.



Genetic Algorithms and Neural Networks 187

Before crossover

A 1 1 0 1 0 0 1 1 1 0 0 1
B 0 1 1 0 1 1 1 0 0 1 0 1

After crossover

C 1 1 0 1 1 1 1 0 0 1 0 1
D 0 1 1 0 0 0 1 1 1 0 0 1

Figure 11.2
Crossover. Crossover mixes genetic codes inherited from two parents by crossing the bit strings at one or two
random points. The bit strings encode characteristics of the parents so the offspring receives traits of both parents,
but is not identical to either. The crossing point is random, so the mix of characteristics transferred varies with
each mating.

Because of the element of chance, the number of times a unit reproduces will not be
exactly proportional to its fitness, but, on average, if unit i has twice the fitness of unit j ,
then it will usually have about twice the offspring. Units with very low fitness ratings will
rarely reproduce and face extinction.

Crossover. Divide the mating population into pairs and mix their genetic information by
crossing the bit strings at one or two random points. Figure 11.2 illustrates the operation.
If units A and B have parameter strings 110100111001 and 011011100101, for example ,
then they would produce offspring 011000111001 and 110111100101 if the crossing point
is after position 4. The probability that crossover will occur is set by a parameter pc. For
pc < 1, there is some chance that the parents simply survive in the next generation unaltered
by crossover. This helps to preserve good solutions since some copies are likely to survive
unchanged. Typical values are pc = 0.6 to 0.9.

Mutation. For each unit in the new set, flip each bit with some small probability; for
example, pm ≤ 0.001. The number of mutations should be small to prevent deterioration
of the algorithm into random search. The main purpose of mutation is to maintain popu-
lation diversity. In general, pm should be chosen so that mutations occur in only a small
percentage of the population—in only one or two units for moderately sized populations.

Replacement. Copy the newly created units to the working population. In some varia-
tions, new units replace their parents. In others, they replace the least fit units.

Many variations of the algorithm have been proposed. In the basic algorithm, all units
have a chance to reproduce and large portions of parameter strings are exchanged during
reproduction so it is possible for good solutions to be lost. One remedy is to allow only the
most successful fraction of the population to mate, with their offspring replacing the less



188 Chapter 11

successful part of the population. Since the offspring do not replace their parents, this helps
to preserve good solutions.

Other variations extend the biological analogy further by incorporating features such as
paired chromosomes, dominance, inversion, and niche specialization. Some versions are
Lamarckian, allowing adaptations made in the lifetime of a parent to be passed on to the
offspring. Some vary the number of units that reproduce at each cycle. Some allow the
population size to fluctuate and some maintain several subpopulations with only limited
mixing. Goldberg [141] reviews many of these cases.

11.1.1 Effects of Crossover

By some accounts, crossover is responsible for most of the adaptive power of the algorithm.
Crossover selects parameters from two good solutions and mixes them to create new
combinations. The parent solutions were successful enough to be selected for reproduction
so they presumably contain good parameter sets. Ideally, the offspring will inherit the best
parameters from both parents and produce a new combination which is better than either.

Crossover is different from random search in that with crossover the offspring are in
some sense intermediate between the two parents; they inherit some attributes from parent
A and some from parent B but are identical to neither. This tends to confine the search
to new combinations of parameters that have already proven useful. Random search, in
contrast, is unguided and might create new units anywhere in the parameter space.

A schemata theory [141] has been developed to study how parameter strings evolve. A
particular template of 1s, 0s and ∗s (don’t cares) in a bit string, for example, 011 ∗ ∗ ∗
∗01 ∗ ∗∗, is called a schema (plural: schemata). Each bit in the string is simultaneously
a component of many different schemata and each string simultaneously contains many
overlapping schemata. Likewise, a single schema may be present in many strings in the
population. The core idea is that a string containing a bit combination that is strongly
correlated with good solutions is likely to be reproduced in the next generation. The
defining length of a schema is the distance between its most separated defining bits. The
distance between the leading 0 and the final 1 of 011 ∗ ∗ ∗ ∗01 ∗ ∗∗, for example, is 8
bits. Schemata with long defining lengths contain widely separated significant bits and
are more likely to be broken during crossover and thus less likely to survive than shorter
schemata. Depending on how parameters are encoded in the bit string, this tends to make
the algorithm favor low order, less complex, solutions over high order ones—usually a
desirable feature for a learning algorithm.

11.1.2 Effects of Mutation

Mutation plays a rather small part in the standard algorithm. If the mutation rate is too
large, the algorithm tends to degenerate into an inefficient random search. When all the



Genetic Algorithms and Neural Networks 189

units are very similar however, as in the final stages of convergence, crossover creates
few new solutions and mutation becomes more important. Because all defining bits of a
schema must survive mutation for the schema to survive, schemata with fewer defining
bits are more likely to survive mutation than those with many defining bits. If simple
solutions have representations in terms of small numbers of parameters (few bits), then
this favors simpler and presumably more robust solutions. Overall, the combination of
fitness selection, crossover, and mutation favors schemata with above average fitness, short
defining length, and low order.

11.1.3 Fitness Scaling

Because the user-supplied evaluation function can be chosen arbitrarily, it is useful to scale
the raw scores to obtain normalized fitness scores. If all units receive raw scores in the
range from 1000 to 1005, for example, the best solutions would have very little advantage
over the worst and the search would be essentially random. This might occur in late stages
of the algorithm when most units are clustered around a good solution. Similarly, in early
generations most units may have low raw scores and a unit that makes a significant (but
not decisive) improvement may get a much higher score, allowing it to dominate the next
generation and cause premature loss of population diversity. This effect is more important
when populations are small.

Scaling of the raw scores helps prevent these problems. A linear transformation is often
used to map the raw scores f to fitness values f ′

f ′ = af + b.

In choosing a and b, it is desirable that favg → f ′
avg so that one expects each average

unit to produce one offspring. The number of offspring for the best unit is controlled by
ensuring f ′

max = Cmultfavg, where Cmult is the desired number of offspring for the best
unit. For small populations (n = 50 to 100), values of Cmult = 1.2 to 2 are suggested [141].
If this scaling results in negative scores, set them to 0. Other methods of fitness scaling are
discussed by Goldberg [141].

11.2 Example

A very simple example illustrates the mechanics of the algorithm. Figure 11.3 shows the
function

J (x) = 64 − (x − 7)2.



190 Chapter 11

Figure 11.3
The function considered in the example.

for 0 ≤ x < 16. Let the population consist of four units A, B, C, and D with solutions x

encoded in 4-bit strings. (A simple function and small population were chosen to provide
a clear example. Normal functions are not so simple and populations are larger.)

Units are initialized with random values for the first generation.

Generation 1

unit x bits J fi

A 1 0 0 0 1 28 0.1854

B 9 1 0 0 1 60 0.3973

C 15 1 1 1 1 0 0

D 6 0 1 1 0 63 0.4742

After random selection weighted by fitness, the population is A, B, D, D. Unit C with
fitness 0 has died and unit D, with the highest fitness, is selected twice.

New Population

unit

A 0 0 0 1

B 1 0 0 1

D 0 1 1 0

D 0 1 1 0



Genetic Algorithms and Neural Networks 191

A mates to D and B mates to D, both with crossover after the 3rd bit.

Mating results

unit

a 0 0 0 0
b 1 0 0 0
c 0 1 1 1
d 0 1 1 1

Mutation flips the 3rd bit in a.

Mutation results

unit

a 0 0 1 0

b 1 0 0 0

c 0 1 1 1

d 0 1 1 1

The resulting population after one generation is

Generation 2

unit x bits J fi

a 2 0 0 1 0 39 0.1696

b 8 1 0 0 0 63 0.2739

c 7 0 1 1 1 64 0.2782

d 7 0 1 1 1 64 0.2782

Units c and d have already reached the maximum of the function at x = 7 and the average
score has increased from 37.75 to 57.75.

11.3 Application to Neural Network Design

The genetic algorithm is a general purpose optimization algorithm with applications be-
yond neural network design. It can be applied to network design in a number of ways—
from simply determining a few weights in a predetermined network to choosing the en-
tire architecture: the number of layers and nodes, connections, weight values and node



192 Chapter 11

functions. Because it does not need gradient information, it can be used on networks with
binary units and/or quantized weights.

Several things should be considered in applying the algorithm to neural networks. One
of the more important factors is the representation—how problem parameters are encoded
in the bit string. Neural networks often have many weights so the parameter string may be
long. Because crossover breaks the string, it is desirable to put related parameters near each
other in the bit string as much possible. Network weights tend to be strongly interrelated,
however, with values of weights in one layer depending on the values of many weights
in other layers. This means that the useful schemata often have high order and are easily
broken by mutation and crossover. This interdependence leads some [102] to eliminate the
crossover operation; this is not typical however.

The following paragraphs describe some applications of the algorithm to neural network
design.

Training and Evaluation Some implementations [209] include a small amount of train-
ing in the fitness evaluation function. The idea is that one set of weights, A, might be worse
that another set B, but set A might be much better than B after a small amount of training
because of differences in the local terrain of the error space. In this case, unit A is closer
to the solution than B even though it is initial performance is worse. Without training, the
algorithm learns only the fitness of the initial point in the space. With training, each unit
attempts to find the best spot reachable from its initial position; its fitness reflects the qual-
ity of a small area around the initial point so the algorithm searches more of the parameter
space.

As in nature, the fitness of each unit is evaluated based on its performance after adapta-
tion, but reproduction transmits the original parameters rather than the adapted parameters.
The performance of a unit (in a sense) reflects the nearness of good solutions, and repro-
duction will tend to produce more offspring near good units, so the algorithm will tend to
converge to good solutions.

Only a small amount of training is allowed, typically 5 to 10% of what would be required
to train a random net to completion. If all units were trained to convergence, they could
converge to the same or equivalent solutions and all units would have the same reproductive
fitness regardless of the quality of their genes. In [209], it was found useful to allow each
unit a different number of training cycles. Over a number of generations, this effectively
measures the sensitivity of the gene to learning and rewards units which improve quickly
with a small amounts of additional learning.

Subpopulations In nature, isolation of subpopulations is one factor that contributes to
the development of new species. The use of several subpopulations with limited mixing



Genetic Algorithms and Neural Networks 193

Figure 11.4
Representation of a neural network as a LISP expression. W represents a multiplication operation by an input
weight and P represents a summation and the node nonlinearity.

allows aggressive optimization within each subpopulation while preserving diversity in the
total population [398]. This is said to be more effective in preserving diversity than simply
increasing the population size. One-at-a-time reproduction is used with fitness based on
rank. The offspring do not replace their parents; they replace the worst units so good
solutions are certain to survive.

GA Pruning of Neural Networks The genetic algorithm can also be used to prune neural
networks [397]. Typically, the parameter string contains a bit for each weight in the original
network; the bit is 1 if the connection is retained and 0 if it is pruned. The result of pruning
is networks that are smaller, learn faster, and may generalize better.

Genetic Programming A related algorithm is genetic programming [221, 222, 223].
Koza and Rice [224] describe an algorithm to determine both the weights and connection
architecture of a neural net. The network response function is encoded in a tree-structured
LISP expression (figure 11.4) and the crossover operation exchanges subtrees between two
parents. The major use of this representation has been outside of neural networks. It has
been used for evolutionary adaptation of functions or programs whose statements have
syntactic structure; it is useful because the subtree crossover operation preserves syntactic
correctness.

11.3.1 Incompatible Genomes

A difficulty with application of the standard genetic algorithm to neural network optimiza-
tion is the problem of incompatible genomes. In general, two successful individuals do
not always yield a successful offspring when they mate; their bit-strings might represent
points on two different local maxima and the combination might fall in a valley between



194 Chapter 11

them, for example. In a neural network with H hidden units, there are H ! equivalent so-
lutions obtainable by shuffling the order of the units in the hidden layer. There are another
2H equivalent solutions obtainable by changing the signs of all weights into and out of any
combination of hidden units (which leaves their function unchanged). Thus, two networks
might compute identical input-output functions using different internal representations in
which case the network obtained by mixing their weights would be very different from ei-
ther and probably a poor solution. Neural networks also tend to be underconstrained; there
are often many different input-output functions that satisfy the objective function equally
well so equally successful networks may not even compute a similar input-output function.

The effect is that little progress is made until a significant fraction of the population com-
pute similar functions with similar internal representations. Once a cluster of compatible
networks develops, they have a higher probability of mating successfully and may grow
to dominate the population at the expense of possibly better isolated solutions. The sys-
tem then does local hill-climbing and is unlikely to explore very different solutions. This
produces a strong tendency to converge to local maxima since the particular solution that
comes to dominate initially is a nearly random selection. In theory, this doesn’t have to
happen, but it’s likely if parameters are chosen for fast convergence (e.g., small popula-
tions and aggressive culling). Variations have been proposed to avoid these problems but
they complicate the algorithm.

11.4 Remarks

The genetic algorithm is a general stochastic search method that has been used successfully
in a number of ways for neural network design [3, 4, 50, 52, 66, 68, 108, 109, 155, 156, 304,
319]. Its main advantages are that it requires very little problem-specific information and
is relatively insensitive to local maxima (minima). The algorithm itself is relatively easy
to implement. Unlike some other search techniques, it does not require detailed problem-
specific knowledge in order to generate new search candidates. Gradients are not required
so the algorithm can be applied to discontinuous functions or functions that are defined
empirically rather than analytically. It is applicable to mixed problems containing both
continuous and discrete variables.

Its main disadvantage is the amount of processing required to evaluate and store a large
number of different network configurations. Although the actual bit manipulations take
very little time, the user-supplied objective function must be evaluated many times and this
can be very slow with large networks and large training sets. It is worth noting, however,
that the candidate solutions can be evaluated independently so N parallel processors should
give close to a factor of N reduction in computation time.



Genetic Algorithms and Neural Networks 195

Another caveat is that although the algorithm itself needs little problem-specific infor-
mation, the efficiency of the search and the quality of the results depend heavily on how
parameters are represented in the bit string. This is quite problem dependent and use of the
algorithm may involve experimenting with several different representations to find one that
works well.

Although there are claims of convergence to global maxima of the fitness function,
convergence to local maxima is possible with small populations and aggressive culling of
less successful solutions. Also, there are many parameters to be selected (population size,
mutation rate, crossover method, fitness scaling, etc.) and it is not obvious how these affect
the convergence properties.

Because the main theoretical advantage of the algorithm is its global optimization prop-
erty and its main disadvantage is its inefficiency, it may be useful to use the algorithm in
conjunction with more efficient local search methods. For example, the genetic algorithm
might be used to do a coarsely quantized search to find the region containing the global
minimum and then more efficient methods used to fine tune the solution in this region.



This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.


	chap11.pdf
	chap11-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

	notice.pdf

