
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

12 Constructive Methods

One of the major tasks in the design of a network is the selection of an architecture and its
configuration. How many layers should the network have, with how many nodes in each
layer? Should every node in a layer connect to every node in the following layer? Obviously
the best structure depends on the problem and performance may be poor if the structure is
inappropriate. If there are too few units, the final error is likely to be large; training may not
converge or may be very sensitive to initial conditions. If there are too many units, training
times may be long and generalization may suffer.

Normally we just want to find a structure that works for the given problem. Although this
is much easier than determining the theoretically optimum architecture, it may still be very
difficult to decide a priori what architecture and size are appropriate for a problem. Some
heuristics are available, but there are no dependable general rules for choosing a structure
before training. A common ad hoc approach is to experiment with different configurations
until one is found that works well. Unfortunately, this may be time consuming if many
networks have to be tested before an adequate one is found.

Constructive methods attempt to adapt the size of the network to the problem by starting
with a small network and adding layers and units as needed until a solution is found. The
major advantage is that there is no need to make an a priori estimate of the correct network
size. An unfortunate choice will not immediately condemn the network to failure and the
trial-and-error search for a good size is avoided.

Theoretical Support There are good theoretical reasons for considering constructive
algorithms. As noted in section 5.7, a common complaint about back-propagation is that it
is too slow. The training time also appears to grow quickly as the problem size increases.
Judd [204, 202] has shown that loading problem is NP-complete. That is, the training time
scales exponentially with network size in the worst case. (The loading problem is the task
of finding weight values such that the network imitates the training data, i.e., the task of
“loading” the data into the network.) Baum and Rivest [35] showed that the problem is
NP-complete even for networks containing as few as three neurons.

These results are an indication of the intrinsic difficulty of the computational problem,
independent of the training algorithm. All algorithms, no matter how efficient, that deal
with the task as it is posed face the same exponential scaling behavior and become im-
practical on very large problems. These results make it appear “unlikely that any algorithm
which simply varies weights on a net of fixed size and topology can learn in polynomial
time” [31: 201]. Baum [31], however, suggests that the difficulty is due to the constraint
of a fixed network structure that only allows the algorithm to adjust existing weights. Al-
gorithms with the freedom to add units and weights “can solve in polynomial time any
learning problem that can be solved in polynomial time by any algorithm whatever. In this

198 Chapter 12

sense, neural nets are universal learners, capable of learning any learnable class of con-
cepts” [31: 201].

A trivial example is an algorithm that simply allocates a node for every example in the
training set to create a network that functions as a lookup table. Of course, more efficient
solutions are generally preferred. Several types of non-MLP neural networks, for example,
ART and radial basis function networks, can be thought of as adding new units when
necessary to fit new data. Most learn much faster than MLPs trained by back-propagation.

Constructive Methods vs. Pruning Methods Constructive methods complement prun-
ing methods (chapter 13), which train a larger-than-necessary network and then remove
unneeded elements. Both are means of adapting the network size to the problem at hand.
Although pruning methods can be effective, they require an estimate of what size is “larger
than necessary.” Constructive methods can build a network without this estimate.

Because constructive methods sometimes add more nodes than necessary, it is often
useful to follow with a pruning phase. In some algorithms the processes compete simulta-
neously, one attempting to add nodes while the other tries to remove them. At some point,
the processes balance and the structure stabilizes.

When to Stop Adding Units An issue that must be considered with constructive meth-
ods is when to stop adding new units. In general, the training-set error can be made as small
as desired by adding more units, but the law of diminishing returns predicts that each addi-
tional unit will produce less and less benefit. The question is whether the incremental error
reduction is worth the cost of the additional units in processing time, storage requirements,
and hardware costs. For continuous problems, an infinite number of units might be needed
to achieve zero error. One generally must declare some nonzero error to be acceptably small
and stop when it is achieved.

Aside from the question of efficiency, there is the problem of overfitting and generaliza-
tion. Chapter 14 discusses a number of factors affecting generalization. Briefly, the problem
is that when training on sampled data (which may contain noise and have other imperfec-
tions), the error on the training set is only an estimate of the true error. The two error
functions tend to be similar but slightly different so a change that reduces one will not
always reduce the other. Usually, they have large-scale similarities with small-scale differ-
ences. As the network fits the large scale features of the training-set in the initial stages
of training, both errors tend to decrease together as learning progresses. At some point,
however, the network starts to fit small-scale features where the two functions differ and
additional training starts to have a detrimental effect on the true error. Improvements in the
training error no longer correspond to improvements in the generalization error and the net-
work begins to overfit the data. Thus, for good generalization, it is often desirable to stop

Constructive Methods 199

training before the training-set error reaches zero. Some implementations avoid the prob-
lem by passing it to the pruning algorithm; the constructive phase is allowed to continue
well past the point of overfitting and then followed with pruning to satisfy generalization
criteria.

Network Size versus Training Time A secondary advantage of constructive algorithms
is that overall training times may be shorter because useful learning occurs when the
network is still small. That is, even if a small network cannot satisfy the error criteria, it
may learn the dominant characteristics of the target function and thereby simplify learning
in later stages. With nonconstructive methods, an inadequate network would be abandoned
and anything it learned would have to be relearned by the next network tested. With
constructive methods, the learning is retained and finer details are picked up as more nodes
are added.

There seems to be a trade-off between training time and network size with fast algo-
rithms tending to produce larger, less efficient networks. Many algorithms train the network
until the error stops decreasing and then add more units and resume training, repeating un-
til the error is acceptably small. The problem is that plateaus in the error versus time curve
are common with back-propagation training of MLP networks. The E(t) error curve often
has long flat intervals followed by a sharp drop. In a flat region, it may be difficult to tell if
the error has reached its final minimum or if it will decrease further if we let it train longer.
A constructive algorithm that does not wait long enough may add unnecessary units; one
that waits too long just wastes time. Thus, if one is impatient, the resulting network may
be larger than necessary and may not generalize as well as possible. This is another reason
for combining constructive and pruning methods.

There are, of course, more sophisticated methods of testing for (near) convergence than
thresholding the E(t) slope. Second derivative information in the form of the Hessian
matrix (or at least its diagonal elements) may be useful, but will not entirely solve the
problem because of the nonlinearity of the problem.

12.1 Dynamic Node Creation

For networks trained by back-propagation and similar methods, the most common proce-
dure is to add new units when the error E reaches a (nonzero) plateau and stops decreasing,
presumably because it’s in a local minimum. The triggering condition used by Ash [11]
(summarized in [277]) is

|E(t) − E(t − δ)|
E(to)

< 1T (t ≥ to + δ) (12.1)

200 Chapter 12

Figure 12.1
In many constructive algorithms, new units are added when the rate of improvement of the training error becomes
small. Normalization by the magnitude of the error E(to) obtained after the previous unit was added makes the
triggering condition less dependent on the size of the error.

where to is the time at which the previous new node was added, δ is an interval over
which the slope is measured, and 1T is the trigger value (figure 12.1). The requirement
(t ≥ to + δ) allows the network some time to adapt to the addition of the previous node
before another is added.

The decision to stop is made by observing the size of the largest errors. The reasoning
is that with cost functions like MSE, the error can often be reduced by making small
improvements on many easy cases while ignoring large errors on a few difficult cases. As
a result, the worst error may increase even as the average error decreases. Both errors tend
to jump discontinuously when new units are added. The average error is normally small in
later stages of learning so discontinuities in it might not be obvious, but the worst error is
usually relatively large and often drops significantly when the critical number of units is
reached. (This assumes that the data is consistent, however. If two training patterns with
identical inputs have different targets, then no number of units will be able to reduce the
worst error to zero.)

Hirose, Yamashita, and Hijiya [170] describe a similar method for adding nodes to a
single-hidden-layer network when training stalls. The total error is evaluated periodically,
for example, after every 100 weight updates. If it has not decreased significantly, for
example, by at least 1%, then a new node is added. Note that these values probably depend
on problem size and difficulty. For networks with many weights or problems with many
training patterns, it may be necessary to wait longer before deciding that the network is
stalled. An algorithm that does not wait long enough could add nodes continuously.

New nodes are added with small random initial weights. This perturbs the solution and
usually causes the error to increase. The error normally decreases in subsequent training,

Constructive Methods 201

however, which prevents the algorithm from immediately adding another new node in the
next cycle. The perturbation could be avoided by initializing the new node with zero-valued
weights, but zero-valued weights tend to remain near zero under back-propagation so E(t)

would remain flat and a new node would be added at the next opportunity, leading to a
proliferation of redundant nodes with very small weights.

Since this procedure can only add nodes, the network may become very large. This is
generally undesirable so the training phase is followed by a pruning phase which removes
unnecessary nodes. Any reasonable pruning algorithm would probably work; the following
method is used by Hirose, Yamashita, and Hijiya [170]. One node is removed at a time and
the network is retrained; if it converges, then another hidden node is removed and so on.
At some point, the network will not converge after removal of a node; the node is restored
and the process halted. In the simulations described, the most recently added hidden nodes
were removed first.

12.2 Cascade-Correlation

Fahlman and Lebiere [120] describe the cascade-correlation algorithm. New hidden units
are added one at a time with each new unit receiving connections from the external inputs
and all existing hidden units. Figure 12.2 shows the resulting (nonlayered) structure. Input

Figure 12.2
Cascade-correlation adds hidden units one at a time. Each new unit receives connections (shown as solid dots)
from the external inputs and all existing hidden units. Its input weights are chosen to maximize the covariance of
its response with the residual output error. Weights into existing hidden units remain unchanged. Then the weights
from all the hidden units (new and old) to the output node are retrained to minimize the error. If the resulting error
is acceptable, the network is complete; otherwise a new hidden unit is added and the process repeated.

202 Chapter 12

weights to the new unit are chosen to maximize the correlation (covariance) of its response
with the remaining output error. The unit is then added to the network and the weights from
all the hidden units (new and old) to the output node are retrained to minimize the error. If
the resulting error is acceptable, the network is complete; otherwise a new hidden unit is
added and the process repeated.

The Algorithm The algorithm begins with a network with no hidden units; inputs are
connected directly to the outputs. The output nodes are usually sigmoidal, but linear nodes
might be used for continuous mapping problems. The following steps are repeated until the
error is acceptably small:

1. Train the weights of the output node(s) using any appropriate algorithm. Single-layer
training rules such as the Widrow-Hoff delta rule or the perceptron learning algorithm may
be used. There is no need to back-propagate errors through the hidden units since their
input weights are frozen.

2. When no significant error improvement has occurred after a certain number of training
cycles, evaluate the error. If it is small enough, stop.

3. Otherwise create a new unit with connections from the inputs and all pre-existing hidden
units. Select its weights to maximize S, the magnitude of the covariance of the new unit’s
response V with the residual error

S =
∑

o

∣∣∣∣∣∣
∑
p

(Vp − V)(Ep,o − Eo)

∣∣∣∣∣∣ (12.2)

where o indexes the output units and p indexes the training patterns. The quantities V and
Eo are the averages of V and Eo over all patterns.

S can be maximized iteratively by gradient ascent. The derivative of S with respect to
the ith weight is

∂S

∂wi

=
∑
p,o

σo(Ep,o − Eo)f
′
pIi,p (12.3)

where σo is the sign of the correlation between the candidate’s value and the output o, f ′
p

is the derivative of the candidate unit’s activation function with respect to the sum of its
inputs for pattern p, and Ii,p is the input the unit receives from unit i for pattern p.

When S stops improving, the new unit is added to the network and its input weights are
frozen.

4. Go to step 1.

Constructive Methods 203

Only the magnitude of the new unit’s correlation with the residual error is important, hence
the absolute value in the formula for S. If the correlation is positive, a negative output
weight can be chosen to decrease the error; if the correlation is negative, a positive output
weight will do.

A variation of the algorithm is to allocate a pool of candidate units with random initial
input weights. Let each maximize S individually and select the best for addition to the
network. This decreases the possibility of adding a useless unit that got stuck during
training and it explores more of the weight space simultaneously. Other types of units
besides sigmoidal (e.g., radial Gaussian) may also be included in the candidate pool.

When the output weights are being trained, all other weights are frozen. Because the
activations of the hidden units depend only on the input pattern and do not change when
the output weights change, there is no need to recalculate their response to each input
pattern. If sufficient memory is available, the hidden unit responses can be stored in an
array for quick retrieval rather than recalculated with each pattern presentation. This can
significantly speed up simulations of large networks.

Remarks

. There is no need to guess the best architecture before training. Cascade-correlation builds
reasonable, but not optimal, networks automatically.
. Input weights for new hidden nodes are chosen to maximize S, the covariance of the node
response with the remaining output error. This is not the same as minimizing the error and
won’t be optimal in general.
. The procedure generally doesn’t find the smallest possible network for a problem and has
a tendency to create deep networks so a final pruning phase may be desirable.
. Cascade-correlation learns quickly. Unlike back-propagation, training doesn’t slow down
dramatically as the number of hidden layers increases because only the output weights
are retrained each time. For the problems studied, the learning time in epochs grows
approximately as N log N where N is the number of hidden nodes finally needed to solve
the problem [120]. On the two-spirals problem (figure 12.3), an average of just 1700 epochs
was needed.
. Although cascade-correlation learns quickly, it can overfit the data [88]. Pruning or
early-stopping based on cross-validation may be necessary to avoid overfitting; however,
reasonably good generalization as measured by insensitivity to input noise was found in
[149]. There, nets created by cascade-correlation tended to have saturated hidden nodes
whose values change little when small amounts of noise are added to the inputs.

204 Chapter 12

Figure 12.3
The two-spirals problem [233] is sometimes used as a benchmark for constructive algorithms because it requires
careful coordination of many hidden nodes and is difficult to learn with simple back-propagation in a MLP
network. (It is not representative of most real-world problems, however.) In a single-hidden-layer architecture,
40 or more hidden nodes are generally needed and training times are long. Most successful solutions use more
than one hidden layer; some use short-cut connections.

. Hidden-unit input weights are frozen after the unit is added, so features detected by the
unit will not be unlearned if the network is retrained with new data. This helps stabilize
learning if the training data changes over time.
. “Divide and conquer,” a similar method, is described in [322]. Unlike some other algo-
rithms, it can create multiple hidden layers. Unlike cascade-correlation, it can create hidden
layers with more than one node and it doesn’t use a correlation measure. Like cascade-
correlation, nodes are trained one-at-a-time with weights in other nodes held constant. As
a result, back-propagation through hidden nodes is never necessary.
. A cascade-correlation architecture for recurrent networks is described by Fahlman [119].
A procedure similar to cascade-correlation, but using error minimization rather than co-
variance maximization is described by Littmann and Ritter [248]; benchmarks of cascade-
correlation are also included.

12.3 The Upstart Algorithm

Frean [128] describes the upstart algorithm for learning binary mappings with layered
networks of linear threshold units. It will converge to zero error for any Boolean mapping,
including problems that require hidden units. The networks that result are often smaller
than those of the tiling algorithm (see later discussion).

Constructive Methods 205

Figure 12.4
The upstart algorithm [128] starts with a single output unit Z. If errors remain after training, then daughter units X

and Y are inserted to correct it. Ideally, X corrects Z when it is wrongly ON and Y corrects Z when it is wrongly
OFF. If either X or Y cannot correct all the errors assigned to them, additional subunits are introduced to correct
their errors and so on. The result is a tree structure for which there is an equivalent single-hidden-layer network.

The idea is that a unit Z can make two types of errors: “wrongly ON” and “wrongly
OFF.” A wrongly ON error can be corrected by adding a negative connection from a unit X,
which is ON only when Z is wrongly ON. Likewise, a wrongly OFF error can be corrected
by adding a strong positive connection from a unit Y which is ON only when Z is wrongly
OFF.

The algorithm starts with a single output unit Z with weights chosen to separate as many
of the training points as possible. If errors remain, daughter units X and Y are created to
correct Z when it is wrong. Ideally, X corrects all the wrongly ON errors and Y corrects all
the wrongly OFF errors. If either cannot correct all the errors assigned to them, additional
subunits are introduced to correct their errors and so forth. Each new unit can always
correct at least one error so the number of errors decreases at each step and the process
eventually terminates when all patterns are classified correctly. The result is a tree structure
(figure 12.4) for which there is an equivalent single-hidden-layer network.

The Algorithm The weights from the inputs to the output Z are trained to minimize the
error and then frozen. Perceptron learning [325, 284] can be used, but will not converge to
a stable solution if the patterns are not linearly separable. The “pocket” algorithm [133] can
also be used. The following steps are then repeated recursively, first for Z, then for each of
the daughter units X and Y , then for their daughters, and so on.

1. If Z makes any wrongly ON mistakes, create a new unit X. The targets for X are
{oµ

z ∧ ¬t
µ
z } where o

µ
z and t

µ
z are the output and target for node Z on pattern µ. (The symbols

206 Chapter 12

∧ and ¬ indicate the logical AND and NOT operations.) That is, X is designed to turn ON
when Z is wrongly ON. When Z is ON and its target value is OFF, the target for X is ON;
otherwise the target for X is OFF. The patterns for which both Z and the target are OFF
can be eliminated from X’s training set although this is not necessary.

Similarly, if Z makes any wrongly OFF mistakes, create a new unit Y with targets
{¬o

µ
z ∧ t

µ
z }. The patterns for which Z and the target are both ON can be eliminated from

Y ’s training set.

2. Connect the outputs of X and Y to Z. The weight from X is large-negative and the
weight from Y is large-positive. The size of the X(Y) weight needs to exceed the sum of Z’s
positive (negative) input weights. These weights can be set explicitly, or by an appropriate
training procedure.

3. Go to 1 and repeat recursively. That is, correct the errors of X and Y by generating two
daughters for each.

The algorithm builds a binary tree of units from the output down to the inputs. The
daughter nodes X and Y have an easier problem to solve than does Z. Each new unit can
separate at least one of the incorrect patterns so they will always make fewer errors than
their parent and will reduce the number of errors made by the parent if connected to it
by appropriate weights. Daughter units are created only if the parent makes errors. The
number of errors decreases with every branching, so at some stage none of the daughters
will make any errors. This means their parents will not either and so on up to the top of the
tree. As noted, some of the patterns for X and Y can be eliminated. This is not necessary,
but speeds up training by a factor of about two [128].

Frean [128] shows that the resulting tree structure can be converted to an equivalent
single-hidden-layer structure if the unnecessary patterns are not eliminated. The original Z

unit and all the hidden units are placed in a single layer with the connections between them
eliminated and a new output unit is created. The weights from the hidden units to the new
output unit can be found by the perceptron algorithm, or by inspection of the tree structure.

12.4 The Tiling Algorithm

Mézard and Nadal [265] describe the tiling algorithm (figure12.5) for constructing multi-
layer networks of linear threshold units to solve binary mapping problems. It should also
be suitable for mappings from continuous inputs to binary outputs.

Units are added a layer at a time from the inputs upward. The first unit in each hidden
layer is called the master unit. It attempts to classify as many of the training patterns as
possible based on the input from the previous layer. It is always possible to create a new
master unit on the current layer that will make at least one less error than the master unit of

Constructive Methods 207

Figure 12.5
The tiling algorithm [265] adds a new hidden layer at each iteration. A master unit in each layer attempts to
classify as many patterns as possible based on input from the preceding layer. If it cannot classify all patterns
correctly, then ‘ancillary’ units are added until the layer produces a ‘faithful’ representation such that any two
input patterns with different targets produce a different pattern of activity on the layer. This then serves as input
for the next layer. It is always possible to create a master unit which makes fewer errors than the master unit in
the previous layer so convergence is guaranteed if enough layers are added.

the preceding layer. Thus, if enough layers are created, the final master unit will not make
any errors. Convergence is guaranteed because the number of layers required is limited by
the number of patterns to be learned.

If the newly created master unit still makes some errors then additional “ancillary” units
are added to the layer until it produces a “faithful representation” of the training patterns
such that any two input patterns with distinct targets produce different patterns of activity
on the layer.

The Algorithm

1. Create a master unit for the new hidden layer and train it to separate as many of the
input patterns as possible.

2. If the new unit produces the correct responses for all patterns, then it is the final output
unit. Stop.

3. Otherwise, add ancillary units to create a faithful representation on the current layer.

4. Go to 1.

These steps are explained in more detail in the following.

Generating the Master Unit Assume there are po patterns to be learned and that the
preceding layer L − 1 has been established. Layer L = 0 is taken to be the input layer.
At layer L, let τµ = (τ

µ
j), be the vector of activity patterns, or “prototypes,” generated

208 Chapter 12

in the preceding layer. µ = 1, . . . , pL−1 indexes activity patterns and j = 0, . . . , NL−1

indexes nodes in the previous layer (j = 0 is the index of a bias node and j = 1 is the index
of the master unit in the preceding layer). A number Vµ of different input patterns may
be represented by the same prototype τµ,

∑
µ Vµ = po. Let µo be the index of one of the

patterns for which the master unit of the preceding layer makes an error, that is τ
µo

1 = −sµo,
where sµo = ±1 is the desired target.

The set of weights w1 = 1 and wj 6=1 = λsµoτ
µo

j , 1/NL−1 < λ < 1/(NL−1 − 2) ensures
that this master unit will make at least one less error than the master unit in the preceding
layer. Let λ = 1/(NL−1 − 1). When pattern µo is again presented, the unit output will be

mµo = sgn

NL−1∑

j=0

wjτ
µo

j

 (12.4)

= sgn
(
τ

µo

1 + sµoλNL−1
)

= sµo if λ > 1/NL−1

so the pattern µo is stabilized. When another pattern µ is presented for which τ
µ
1 = sµ the

unit output will be

mµ = sgn

τ

µ
1 + sµoλ

NL−1∑
j 6=1,j=0

τ
µo

j τ
µ
j

 . (12.5)

If µ 6= µo then the sum is less than or equal NL−1 − 2 so if λ < 1/(NL−1 − 2) then
mµ = sgn(τ

µ
1) and the classification of pattern µ is preserved. Thus, with this set of

weights, the current layer will also stabilize prototype µo in addition to all the prototypes
µ stabilized in layer L − 1,

If the unit is initialized with this set of weights and trained by the pocket algorithm [133]
then the final set of weights will be at least as good. If training converges to zero error, then
the new unit is the desired output. This happens when the targets are linearly separable in
terms of the preceding layer activities. Otherwise ancillary units must be created.

Creating Ancillary Units If the master unit still makes errors, then ancillary units must
be created so that the layer generates a unique pattern of activity for all input patterns
with different targets. Assume the preceding layer generates p = pL−1 distinct prototypes
τµ = τ

µ
i where i = 0, . . . , N and N = NL−1. The p prototypes are a faithful representation

by construction. Each τµ is the prototype of one faithful class of the (L − 1)th layer. The
current layer must produce a mapping from these p patterns.

Constructive Methods 209

Suppose 1 + N ′ units have already been created and they produce p′ distinct represen-
tations. In general, p′ < p. If the p′ patterns are not a faithful representation, then at least
one activity pattern on this layer doesn’t have a unique target. One of the unfaithful classes
is selected and the next unit is trained to produce the mapping τµ → sµ for patterns µ be-
longing only to the unfaithful class. In the best case, the mapping will be learned perfectly
and the unfaithful class will be broken into two faithful classes. Often, however, the map-
ping will not be linearly separable. In such cases it is possible to break the unfaithful class
into two classes—one faithful and one unfaithful. In the worst case, the faithful class may
consist of just one prototype.

This is repeated until the layer generates a faithful representation. In practice, if more
than one unfaithful class exists, the smallest is selected first. If the new unit is able to
separate this class successfully, then the next largest unfaithful class is also attempted with
the same unit. As a result, each new unit breaks at least one class into two classes and at
most p units are needed to create a faithful representation.

Other Notes

. For multiple output problems, a master unit can be created in each layer for each of the
outputs.
. Results of simulations are described by Mézard and Nadal [265] for N -bit parity N ≤ 10
and random Boolean functions N ≤ 8. Random Boolean functions with N = 8 required an
average of 7 hidden layers and about 55 hidden neurons. In comparison, a single-hidden-
layer AND-OR network would require on the order of 28 hidden units to compute random
functions. A typical function would require about 128 units.
. Simulations show that, in general, the number of units per layer decreases with each
successive layer.

12.5 Marchand’s Algorithm

Marchand, Golea, and Ruján [256] describe a method for constructing a one-hidden-layer
network of linear threshold units to solve binary mapping problems (figure 12.6). It is
always possible to classify N input patterns by creating N hidden nodes, each of which
recognizes one of the patterns. The network would act like a look-up table and the number
of nodes needed would grow linearly with the size of the problem. But this fails to capture
correlations in the training data and the resulting network does not generalize well. Usually
it is better if each hidden unit recognizes as many patterns as possible.

The algorithm described by Marchand, Golea, and Ruján adds hidden units sequentially.
The weights of each new unit are chosen to split a group of patterns with like targets from

210 Chapter 12

Figure 12.6
The algorithm of Marchand, Golea, and Ruján [256] creates a single-hidden-layer network of linear threshold
units by adding hidden units sequentially. Each new unit slices off a group of training patterns that share the same
target value. Filled and empty circles represent training points with positive and negative targets. Lines show the
hidden unit decision surfaces; the numbers to the side indicate the order in which the hidden units were created.
All points are classified correctly, although some are very close to the boundary.

the rest of the data. On one side of the hyperplane defined by the unit, all patterns have the
same target value; on the other side, target values may be mixed. The separated patterns
are then removed from the working set and the procedure repeated with additional hidden
units. Each new hidden unit slices off another set of training patterns that share the same
target. The procedure stops when all remaining patterns have the same target.

It is always possible to separate at least one pattern from the rest so in the worst case,
no more than N − 1 nodes will be needed to recognize N patterns. In practice though, the
patterns are often correlated because of regularities in the target function and clustering in
the input distribution. Most slices can then remove more than one pattern so fewer than
N − 1 nodes will be required in general.

The procedure sequentially creates h hidden units, which partition the input space into
a number of regions, each containing one or more training patterns that share the same
target. The resulting internal representation is linearly separable in that the desired target
values can be generated from the hidden unit activities with no need for more hidden layers.
The weight uj from the j th hidden unit to the output unit can be found by the perceptron
algorithm or it can be set as

uj = 2h−j+1 (for j = 1, . . . , h) (12.6)

uo =
h∑

i=1

siui − sh bias weight (12.7)

Constructive Methods 211

where −sh is the target of the (h + 1)th cluster. These weights increase exponentially; the
perceptron algorithm will generally find a different set.

Selection of Hidden Unit Weights To obtain small networks, it is desirable for each
hidden unit to slice off as many patterns as possible that share the same target. The
following greedy procedure is simple, but not always optimal.

When adding hidden unit k, the working space has N+ patterns with positive target +1
and N− patterns with target −1. The procedure in [256] tries to find two weight vectors: one
that excludes the largest number M+ of positive patterns and one that excludes the largest
number M− of negative patterns. The vector with the largest ratio M+/N+ (or M−/N−)
is then chosen.

To find the weight vector that maximizes M+, a pattern ξµ with a positive target is
chosen and weights are selected so that the unit has a +1 output for this pattern and a −1
output for all other patterns, wkj = ξ

µ
j , j = 1, . . . Ni, with bias wko = 1 − Ni. At this point,

all −1 patterns and pattern ξµ are correctly classified, but some of the other +1 patterns
may be misclassified. One of the misclassified patterns is chosen and the perceptron rule is
used to change the weights to also correctly classify the additional pattern without causing
ξµ and the −1 patterns to be misclassified. If it succeeds, the change is accepted and
the algorithm goes on to try another misclassified pattern. If it fails, another pattern is
tried. After all the misclassified +1 patterns have been considered, the vector separates
a certain number v1 of the +1 patterns, but some are still misclassified (unless the patterns
are linearly separable). This current weight vector is saved and all the properly classified
+1 patterns are removed from the working set. The procedure is then repeated starting
with another misclassified pattern to generate another weight vector. All +1 patterns,
including the ones excluded by the first vector, are considered when computing the number
v2 excluded by the second vector. v2 and v1 are compared to choose the better weight vector.
This is repeated until the best weight vector is found. A similar procedure maximizes M−.

Remarks Simulation results for the parity function, random binary functions, and the
mirror symmetry problem are discussed by Marchand, Golea, and Ruján [256]. (The target
in the symmetry problem is +1 if a vector of binary bits is symmetric about its center.) The
net found for the symmetry problem was optimal; a similar solution could not be found by
the tiling algorithm.

The search for hidden unit weight vectors may take a long time because it searches to
find the one vector that excludes the largest number of patterns. The procedure starts with
one pattern, say pstart , and scans all the other (positive) patterns to see if they are also
separable with pstart . Then it increments pstart to the next pattern. This is a loop over
all patterns inside another loop over all patterns so there are O(M2) steps (where M is

212 Chapter 12

the number of patterns), each of which calls the perceptron learning algorithm. For many
problems, however, the running time seems reasonable compared to back-propagation.

12.6 Meiosis Networks

Hanson [153] describes meiosis networks, which work by splitting nodes. (In biology,
meiosis refers to a process of cell division.) The algorithm varies the sizes of layers in a
given network but does not add new layers. The description in [153] assumes a single-
hidden-layer net, but other forms might also be used. In principle, the target function
can be either continuous or discrete; the description in [153] presents results for several
classification problems.

The optimization procedure is stochastic in that the network weights have noisy values,
which change randomly from one instant to the next. The mean and variance for each
weight are adjusted during training. The specificity or certainty of a node is estimated by
the variance of its weights relative to their means. Nodes with high relative variances are
candidates for splitting.

Weight values change randomly from one instant to the next according to a probability
distribution such as

P
[
wij = w∗

ij

]
= φ

(
w∗

ij − µij

σij

)
(12.8)

where φ() is an N(0, 1) Gaussian density function. µij and σij are, respectively, the
mean and standard deviation for the fluctuations of weight wij . Because of this variability,
successive presentations of the same pattern can result in different outputs.

The initial network contains one hidden unit whose weights are initialized with random
means and variances The mean is adjusted by gradient descent

µij(n + 1) = −α
∂E

∂w∗
ij

+ µij(n) (12.9)

with a learning rate parameter α. The standard deviation changes depending on the magni-
tude of the gradient

σij(n + 1) = β

∣∣∣∣∣ ∂E

∂w∗
ij

∣∣∣∣∣+ σij(n). (12.10)

β is a learning rate parameter. Values 0.1 < β < 0.5 are suggested in [153]. This update
mechanism can only increase σij . Decreases occur by a decay process

Constructive Methods 213

σij(n + 1) = ζσij (n), (ζ < 1). (12.11)

As errors approach zero during training, the standard deviations decay to zero and the
network becomes deterministic. Low values of ζ , for example, < 0.7, produce little node
splitting; large values, for example, > 0.99, produce continual node splitting. A value of
0.98 was used in simulations.

The standard deviation of a weight is considered to be a measure of its certainty or
prediction value; large variances tend to mean low prediction value. This process above
tends to assign small variances to weights that converge quickly and high variances to
weights that converge slowly. Presumably, quick convergence indicates that the weights
are clearly necessary and adequate while slow convergence indicates a delicate balance
between opposing forces that the net is unable to resolve quickly. That is, a high variance
reflects uncertainty in the proper weight value.

Nodes with many uncertain weights are candidates for splitting. Nodes split when the
standard deviation becomes large relative to the mean for both the input and output weight
vectors∑

i σij∑
i µij

> 1 (12.12)

and∑
k σjk∑
k µjk

> 1. (12.13)

(It may be preferable to use the sum of absolute mean values here.) Child node weights are
initialized with the same mean as the parent node and half the variance.

One problem with this splitting criterion is that nodes whose weights have small mean
values are more likely to be split than other nodes. A completely unnecessary node whose
mean weights are all zero would be split many times.

12.7 Principal Components Node Splitting

A method of node splitting based on detection of oscillation in the weight update directions
is described by Wynne-Jones [410]. The idea is that when a network is too small, the weight
vectors of hidden units may oscillate between several competing solutions. Oscillation
may occur because there are two clusters of data within a class or because a decision
boundary is pulled one way by one set of patterns and the other way by another set of
patterns. Figure 8.5 illustrates clustering of the weight update directions that could lead to
oscillation.

214 Chapter 12

A large amount of weight oscillation is taken as a measure of insufficiency. Nodes
whose weights oscillate the most are identified and split in two. The “child” nodes are
initialized based on a principal components analysis of the oscillation in the parent node
or by examination of the Hessian matrix of the network error with respect to the weights.
The Hessian method has the advantage that it can also be applied to the input nodes to
determine their relative importance.

This is usually better than initializing child nodes with random weights because it uses
the information in the existing weights and usually causes less perturbation in the error.
In high dimensional spaces, random weights are unlikely to be well-placed initially and
considerable learning may be needed to move them to where they are useful.

Splitting The network is allowed to train until it stops making progress. The weights are
then frozen and the training set presented again to evaluate oscillation by computing the
principal components of the covariance matrix of weight updates,

C =
∑
p

δwT
pδwp. (12.14)

C is the outer product of the weight updates δwp = ∂Ep/∂w summed over the patterns
p. The mean of δw is assumed to be zero. The largest eigenvalue and corresponding
eigenvector of C give the magnitude of the oscillation and its direction. The node is split
into two and the child nodes are initialized with weight vectors one standard deviation
on either side of the parent vector along the direction of oscillation. This usually results
in minimal perturbation of the existing solution but gives enough separation to break
symmetry and allow the child nodes to converge to different solutions. Since computation
of eigenvectors can be computationally expensive, more practical iterative techniques are
mentioned by Wynne-Jones [410]. After splitting, the weights are unfrozen and training
resumed.

Selecting Nodes for Splitting The nodes most likely to benefit from splitting are those in
which there are very pronounced directions of weight oscillation. Nodes can be compared
on this basis by computing the ratio of the largest eigenvalue over the sum of the eigenval-
ues. This will be highest for nodes with a single dominant direction of oscillation. In high
dimensional spaces, however, a node may have several directions with significant eigenval-
ues (in which case the node could be split along each direction). The ratio will be lower in
this case so the ratio technique would not split these nodes until there are no other options.
An alternative is to calculate the second derivative of the error with respect to a normalized
parameter such as the node gating parameter α described by Mozer and Smolensky [275]
(summarized in section 13.2.1). A high curvature of the error with respect to αi indicates
the error is sensitive to the weights of node i. The node is a good candidate for splitting if

Constructive Methods 215

the curvature of the error in weight space has a dominant direction as indicated by eigen-
values of the Hessian of E(w). Nodes with a small second derivatives of the error with
respect to α, on the other hand, have little differential effect on the error and are candidates
for pruning. The same process can be used to estimate the sensitivity of the error to the
presence or absence of input variables.

Backsliding A potential problem with this method is that the child nodes often revert
back to the position of the parent node because of the global properties of the sigmoid
activations. That is, a node that makes a strong contribution to part of the global decision
boundary may be influenced by training patterns that are far from the boundary. If the
node is split, the child nodes may feel similar influences from the distant patterns and
choose the same solution, leaving the global boundary unchanged. Node splitting may be
more successful, therefore, in local networks such as radial basis functions than in MLP
networks. In this case, oscillation in the Gaussian centers is detected.

12.8 Construction from a Voronoi Diagram

A constructive method based on Voronoi tessellation of the training data is described by
Bose and others [55, 53, 54]. A similar method is described by Murphy [279].

The Voronoi tessellation is related to the familiar nearest-neighbor-classifier partition.
Figure 12.7 illustrates a two-dimensional example, but the principle applies in higher

Figure 12.7
Constructive methods can be based on a Voronoi tessellation of the training points. The Voronoi diagram of a set of
“base” points partitions the space into cells depending on which base point is closest. Each cell is a convex region
bounded by hyperplanes. A layered network can be constructed which forms the same partition and generates the
required outputs in each cell.

216 Chapter 12

dimensions as well. Given a set of base points, the surrounding space is partitioned into
regions, or cells, depending on which base point is closest. With a Euclidean metric,
the resulting cells are convex regions bounded by hyperplanes. (Other tessellations using
different metrics and different criteria are possible; this is the most common variation.)
There are efficient algorithms for obtaining the partition in high dimensions. Most are based
on its dual, the Delaunay tessellation.

Given a Voronoi diagram of the training points, a layered network can be generated
to form the same partition and produce the required outputs in each cell. As noted in
section 4.1, a network with two hidden layers would be sufficient. Nodes in the first hidden
layer would implement the partition hyperplanes, nodes in the second hidden layer would
combine these into the convex cell partitions, and the output node would combine these to
generate the required output for each cell. It isn’t necessary to implement every partition
hyperplane, however, because many don’t separate points with different labels.

The algorithm described by Bose and colleagues [55, 53, 54] automatically constructs a
network to fit a given set of training data. It chooses the number of layers, number of nodes
in each layer, and sets appropriate weights to realize the mapping. The layers are only
partially connected in general. The process is completely automatic, so repetitive trial and
error experiments with different structures and different training parameters are avoided,
as well as long training times and uncertainties about convergence to local minima. The
algorithm is rather involved, however, and will not be described here. Details can be found
in [55, 53, 54].

Remarks This method designs networks for classification problems with binary or
discrete-class targets. Generalization issues are not addressed; with consistent data, the
resulting network will classify every training point correctly.

Because the design is based on a nearest-neighbor classifier, the resulting network has
properties like a nearest-neighbor classifier. That is, accuracy can be good when training
data are abundant, but may be poor when data are sparse. Class boundaries may be rather
jagged in some cases. Advantages over a naive nearest-neighbor classifier are economy (it
does not store every training point) and evaluation speed (it does not slowly search through
every training point to classify a new input).

In general, only hyperplanes that separate differently labeled cells need to be realized
by hidden nodes. In some cases, a single hidden node can fill in for several hyperplanes of
the Voronoi diagram so the resulting network can be relatively small. The network may not
be minimal though because the algorithm is not always smart enough to see when a single
hidden node could do the job of several partition hyperplanes. In figure 12.7, for example,
there are 17 planes separating the 0s and 1s, but as few as three or four hidden nodes would
probably be enough.

Constructive Methods 217

12.9 Other Algorithms

The preceding sections list only a few of the many algorithms that have been proposed.
The list is not exhaustive by any means so we encourage the reader to explore further for a
more complete survey. Genetic algorithms, for example, have been proposed to both gener-
ate the network structure and find the appropriate weights. Some of the weight initialization
techniques mentioned in chapter 7 construct networks based on solutions provided by other
method, for example, decision trees (section 7.2.5) or rule-based knowledge (section 7.2.6).
A polynomial time algorithm using clustering and linear programming techniques to gen-
erate classifier networks is described in [276]. Projection pursuit regression [129, 185], a
well-known statistical procedure, creates a system similar to a single-hidden-layer network
with a linear output node. It is constructive in the sense that it adds projection directions
(corresponding to hidden units) sequentially until the error is sufficiently small.

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	chap12.pdf
	chap12-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	notice.pdf

