This excerpt from

Neural Smithing.
Russdll D. Reed and Robert J. Marks|1.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of thisinformation is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

1 5 Generalization Prediction and Assessment

The following sections outline some approaches to predicting and estimating generaliza-
tion ability, either a priori from static parameters such as network size, or after observing
training performance. The problem of estimating the true performance of a prediction sys-
tem trained on a limited data set is a basic statistics problem so it is not surprising that
many of these methods are direct applications of statistical techniques. Techniques men-
tioned here are covered in more depth in [44, 389, 317].

15.1 Cross-Validation

A rather direct way to estimate the generalization ability of a system is to measure the
error on a separate data set that the network has not seen during training. In simple cross-
validation, that is, the holdout method, the available data is divided into two subsets: a
training set used to train the network and a test set used to estimate the true error rate. To
avoid obvious bias, both sets should be random samples of the same population.

Ideally, both sets should be large because the larger the training set, the more accurate
the approximation learned by the trained system, and the larger the test set, the more
accurate the estimate of the true error rate. When data are limited, these goals conflict.
As a compromise, sets of roughly equal size are usually chosen.

With large sample sizes the holdout method can be accurate, but it has limitations when
sample sizes are small. The test samples are unavailable for training, so the network must
be trained on less data with more risk of overtraining or overfitting. The validation set
is used to guard against this, but, with just a small amount of validation data, the error
estimate has a large variance and may be unreliable; an uncharacteristic test set could give
a bad estimate of the error. If the training error surface is distorted because of sampling
deficiencies, the validation error surface is likely to be similarly distorted when the data
sets have similar sizes. In order for the validation set to be a better predictor of the true
generalization error than the training set, it will usually have to be several times larger but
this limits the amount of data that can be used for training.

Another problem is that, depending on the training algorithm, the solution could be
indirectly biased toward the validation set so a third, completely different, data set is
needed to form an unbiased estimate of the error. That is, it is common to train a number
of networks and choose the one that performs best on the validation set. If thousands of
networks were generated, a few might coincidentally have low errors on the validation set
but still not generalize well. Because the validation set is used, albeit indirectly, as part of
the training process, there is a danger of obtaining a biased solution.

Simple cross-validation as described here uses a single holdout set to estimate the
generalization error. Resampling techniques such as leave-one-out, k-fold cross-validation,

258 Chapter 15

and bootstrapping [389, 115, 116] address limitations of the single holdout method by
averaging over multiple holdout experiments using different partitions of the data into
training and test sets. Once impractical, these sorts of methods have become feasible
due to increasing computer processing power. Advantages are that the error estimates are
generally more accurate, the network can be trained on almost all the data, and it can be
tested on all of it. The drawback is an increased computational burden. It should be noted
that these are nonparametric methods that do not make restrictive assumptions about data
distributions and are not restricted to linear models.

Bootstrapping is one of the most accurate techniques, in general, but also one of the
slowest. As noted, the estimate obtained from a single holdout set may have a large
variance. Bootstrapping lowers the variance (at the expense of a slight increase in the
bias) by averaging estimates obtained from many different partitions of the data [389].
It is common to use hundreds or thousands of subset estimates. If the method is used to
obtain a more accurate one-time estimate of the generalization ability of a trained network,
the computational burden may not be a critical factor because network training times are
already long in most cases. This probably is not a practical way of comparing network
architectures if each subset sample requires the training of a new network.

15.2 The Bayesian Approach

Bayesian methods provide ways to describe the effects of biases, sampling distributions,
noise, and other uncertainties. The Bayesian approach incorporates external knowledge (or
biases) about the target function in the form of prior probabilities of different hypothesis
functions [251, 253]. The data set D = {(x;,#;), i = 1...m}, where x are the inputs and
t the targets, is typically modeled as the sum of a deterministic function f and additive
perturbations (noise) n representing prediction errors

ti = f(x;) +n;. (15.1)

Assuming the network output y(x) is correct, the probability of the observed data is the
probability that an error #; — y(x;) is due entirely to the noise

Pli=f&)+nilf=y] = Plni=t—yx)]. (15.2)

If the training cases are independent and the noise is independent and identically dis-
tributed, the probability of the entire training set given the assumption f =y is

m

P[D|f=y]=]]P[n=t—yx)]. (15.3)

i=1

Generalization Prediction and Assessment 259

If the noise is assumed to be Gaussian N (0, o), then

L TT (1 = y(x)?
P[DIf=y] = i|=|1 WP <—T> (15.4)
1 —-E
= oo (53) (152

where E = Z;"zl(ti — y(x,'))2 is the usual sum of squared errors. Minimization of the
mean-squared-error is thus equivalent to selection of a maximum likelihood model under
the assumption that the errors are Gaussian. Other error functions are appropriate under
different assumptions about the error distribution; a number are reviewed by Rumelhart
et al. [328].
By Bayes’ rule, the evidence for a model y(x) given the data is
P[DIf=y]P[f=)]

P[y|D]= D] : (15.6)

External constraints (such as a bias toward smooth solutions) are reflected in the choice of
model prior probabilities P [f= y]. The denominator P [D] is the same for all models
and can be ignored in comparing models.

Different model configurations can be compared by decomposing y into a choice of
weights w and a network architecture H. (H specifies the number of layers, number of
nodes, etc. and w specifies a set of weights in the given architecture.) The probability that
a given set of weights is the correct choice given the data and the model H is

P[D|w, H|P[w|H]
P[D|H] '

P[w|D,H]= (15.7)
(Note: this is different from the probability that some learning algorithm will produce a
particular set of weights.) For a given H, the prior P [w | H] can reflect a bias in favor of
small weight values, for example. The probability of different models H; is given by [251]

P[H;| D] x P [D|H;] P[H]. (15.8)

The priors P [H;] can reflect a bias in favor of models with small numbers of parameters,
for example.

If all prior probabilities P [H;] are approximately equal, then the models can be com-
pared based on the evidence [251]

P[D| H,-]:/ P[D|w, H| P[w]|H] dw. (15.9)

260 Chapter 15

If w is k-dimensional and if the posterior distribution is approximately Gaussian, then [251,
253]

P [D|H]~ P[D|Wup, Hi| P [Wp | H] Q)" ?det™/?A (15.10)

where Wy, is the maximum likelihood set of weights found by minimizing E and A =
—VVlog P [w | D, H,-] is the Hessian of E with respect to w evaluated at w,,. It has
been argued [251, 253] that this approach has a built-in bias for simple models because the
Occam factor P [wmp | H,-] (Zn)k/ 2det~'/2A is smaller for more complex models.

Remarks Perhaps in part because of its widespread success, criticisms of the Bayesian
approach have been raised. From the viewpoint of the prediction system, approximation er-
rors are random and unpredictable (otherwise it would be able to eliminate them) so errors
are treated like noise and usually assumed to be independent and identically distributed. All
network functions and most real target functions have structure, however, so errors may not
be independent. The errors are often assumed to have some tractable distribution such as
Gaussian (justified by the central limit theorem), but approximations are often made that
hold only for large sample sizes. A common criticism of Bayesian approaches in general
is that the prior probabilities may be subjective (i.e., biases rather than measured probabil-
ities). This is not a major problem in cases where all the probabilities can be measured, or
when the analysis is used for qualitative understanding, but may be a problem in quantita-
tive predictions. Many of these criticisms are objections to the way the theory is applied,
rather than defects of the theory itself.

15.3 Akaike’s Final Prediction Error
A standard estimate of the test set error for a linear system is Akaike’s final prediction error
(FPE) [6, 7]

R +N
Etest = p—Etrain (15.11)
p—N

where p is the number of training samples and N is the number of parameters in the model.
A related estimate, Akaike’s information criterion (AIC) [7], has been used to compare
linear models with different numbers of parameters

AIC () = (—2) log(maximum likelihood) + 2k (15.12)
where 6 is a model with k parameters. If equation 15.5 is valid, then

AIC0) =2E + 2k (15.13)

Generalization Prediction and Assessment 261

where E is the usual mean-squared error. With this cost function, simple models are
preferred over complex models if the increased cost of the additional parameters in the
complex models do not result in corresponding decreases in the error. There are a number
of similar criteria developed for linear systems.

The Effective Number of Parameters A problem with these estimates is that they
are asymptotic approximations valid only for linear systems with large sample sets. The
assumptions are invalid for small sample sizes [61]. An extension to linear systems with
finite sample sizes is considered by Hansen [152]. Some work has been done to extend this
to nonlinear systems by estimating the effective number of parameters from derivatives of
the error with respect to the weights [273]. One form, for a single-hidden-layer network, is
[365]

2 p+ N
test — —EffEtrain (1514)
— Ny
where
N A 2 Mw A 2
Nypr = —1> + (—f>) (15.15)
i =2 (xi,- 2ap) T2 Aij + 2aw/p

ij j

Here N, and Ny are the number of weights (including thresholds) in the hidden and
output units, respectively, and the A’s are second derivatives A;; = 92E rain /0 wl.zl., Ajj=
92E; ain /0 Wiz/" This estimate is used to determine when to stop a pruning algorithm in

[365].

15.4 PAC Learning and the VC Dimension

Valiant’s PAC (probably approximately correct) learning model and the Vapnik-
Chervonenkis (VC) dimension have been used to study the problem of learning binary
valued functions from examples, for example, [376, 49, 1]. These relate the complexity of
a learning system to the number of examples required for it to learn a particular function
from a given class of functions. Briefly, if the number of examples is small relative to the
complexity of the system, the generalization error is expected to be high.

Abu-Mostafa [1] provides a brief tutorial on which the following paragraphs are based.
More complete descriptions can be found in several texts, [282] for example. A learn-
ing algorithm samples points x € X, observes the target values f(x), and tries to find a
hypothesis function g(x) that matches f everywhere. The examples are assumed to be

262 Chapter 15

drawn independently from some fixed distribution, which can be arbitrary as long as the
same distribution is used for learning and testing. The hypothesis functions are drawn from
a restricted class G. The algorithm chooses among hypothesis functions based on their
performance on the samples. If the number of samples is too small, the estimated perfor-
mance Vv, (the frequency of error on the test set) could differ significantly from the actual
performance 7, and the algorithm could be fooled. A condition for uniform convergence
[379] is

P |:sup |vg — 7| > e] <4m@2N) e <N/ (15.16)
geG

where m is a function which depends on G. For v, to approach 7, as the number of
samples N becomes large, the righthand term must approach 0. The e~ N/8 term decays
exponentially with N so convergence is possible if the function m (2N) does not grow too
fast. This is satisfied when m (N) is polynomial in N, for example [1].

The growth function m(N) measures the number of ways that G can label N arbitrary
but independent points. The VC dimension d of class G measures the maximum number
of points N for which a function in G can always be found that will fit the points no matter
how they are labeled. For N < d, m(N) grows exponentially with N (i.e. 2V). For N > d,
G cannot realize some labelings of the points and m (N) ceases to grow exponentially. Thus
m(N) <29 + 1.

The importance of this to learning is that if the number of examples is large compared
to the VC dimension of the target function class, then equation 15.16 promises uniform
convergence. The estimated error rates will then be close to the actual rates and the learning
algorithm has a reliable method to choose the best hypothesis.

The sample complexity m (e, §) of a class G is the smallest sample size that guarantees
uniform convergence for all target concepts in G and all sampling distributions. An upper
bound is [49]

4 2 8d 13
m(e, §) =max | —log, —, — log, — ¢ . (15.17)
€ § € €
A lower bound is [117]
1.1 d
Ql-In-+—-]. (15.18)
€ § €

This is relevant to neural network training in that a network is capable of representing a
certain class of concepts and so has some particular VC dimension (e.g., the VC dimension
of a simple perceptron with k inputs is k + 1). If the network can be trained on a number

Generalization Prediction and Assessment 263

m(e, §) of examples achieving an error no greater than € on the training set, then, with
probability 1 — §, one expects that the true error is no greater than 2¢ and similar average
error can be expected on novel examples drawn from the same distribution.

By assuming a uniform sampling distribution, the VC dimension of a feedforward
network with N nodes and W weights has been estimated as [33, 32, 34]

dvc <2W log,(eN). (15.19)

This has been used to put an upper bound on the number of examples that might be needed
to achieve a given generalization error rate. If the network can be trained with

w N
m>0 (— log, —) (15.20)
€ €

randomly selected training examples achieving an error rate of less than €/2, then a gen-
eralization error rate of at most € can be expected for examples drawn from the same
distribution (for 0 < € < 1/8). This agrees with the rule of thumb that roughly O (W /¢)
examples are needed to achieve a generalization error less than €.

For a network with N inputs and one hidden layer of H units [33],

H
dve =2\ IN. (15.21)

This is approximately equal to the number of weights W for large H, also suggesting that
Q (W /e) examples are needed to achieve a generalization error less than €.

Problems Because the theory is very general, the estimated bounds are loose. Its main
value to neural network design seems to be to indicate that if there are enough examples,
then the training error should be a good predictor of the generalization error. This allows
broad statements to be made about the appropriate size of a network given a particular
amount of training data. These bounds, however, do not apply to networks with multiple
continuous outputs and they do not say how to choose a suitable network given a particular
set of examples to be learned. Other concerns are that the analysis is asymptotic, whereas
data are often finite, and the bounds are worst-case (over any data distribution) and appear
to be overly pessimistic; the number of examples required to satisfy PAC requirements is
often very high. For practical problems, the average-case behavior may be more important.
Numerical tests [85, 172] show that the average behavior can be better than the VC bounds
in many cases.

The basic theory also ignores peculiarities of specific learning algorithms. Techniques
such as pruning and regularization may add constraints that prevent full exploitation of
the intrinsic network complexity. Large networks can realize complex functions, but they

264 Chapter 15

can also mimic simple (e.g., linear) functions. A network is usually initialized with small
weights and the resulting input-output relationship is very smooth, almost linear. As the
network is trained, the weights become larger and the transfer function more complex. The
complexity of the transfer function thus depends on other factors in addition to network
size. Some work has been done to estimate the effective number of parameters based on
the network response function [378, 147]. Normally, the effective dimension cannot be
calculated analytically but it may be estimated from network performance. This approach
may be able to account for dynamic changes in network complexity as a result of training.

This is an active research area, however, and new results continue to appear. It is known,
for example, that networks with continuous activation functions are more powerful than
networks of threshold units. Recent work suggests that networks with continuous unit
activations can have VC dimension at least as large W2, where W is the number of weights
[213]. This means that it may be very hard to constrain a network with reasonable numbers
of examples.

This excerpt from

Neural Smithing.
Russdll D. Reed and Robert J. Marks|1.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of thisinformation is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	chap15.pdf
	chap15-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

	notice.pdf

