
This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

B Principal Components Analysis

Suppose we have a set of zero-mean n-dimensional data vectors whose elements are
correlated (figure B.1). If the data is not zero-mean, we can make it so by subtracting
the average value beforehand. Because of the correlation, the data is partially redundant;
knowledge of one variable gives us approximate information about the values of other
variables.

It might be more natural to describe the data in terms of its variation along directions v1

and v2 (figure B.1). Most of the positional information is conveyed by the distance along
v1 with the distance along v2 adding only a small correction. For highly correlated data, the
contribution from v2 will be small compared to that of v1, so we might choose to ignore v2

completely. This introduces some error but gives us a more compact description. Perfectly
correlated data would lie along a line (or on a hyperplane, in general), so v2 would be zero
and we would lose nothing by describing the data entirely in terms of the distance along v1.

Correlation can arise because a system has internal variables v1, v2, . . . vn the effects of
which are indirectly observed through intermediate variables x1, x2, . . . xn. Each observ-
able variable is potentially affected by each internal variable. The observed variables may
depend linearly on the internal variables, for example

x1 = a11v1 + a12v2 + . . .

x2 = a21v1 + a22v2 + . . .

...

By observing correlations in the observed data, we may be able to identify the internal
variables that control the system behavior. Knowing the correlations, we can then measure
several observable variables and get good estimates of the internal state.

The purpose of principal components analysis (PCA) is to identify the important di-
rections of variation of a data set. Singular value decomposition and the Karhunen-Loève
transform have similar goals and are closely related techniques. The result may be a more
natural coordinate system better aligned with the major axes of variation of the data. Some-
times these axes will correspond to natural features of the data.

Consider an arbitrary unit-length vector v. The projection xv of a point x onto v is the
point on v that is closest to x

xv = (xT v)v. (B.1)

This is a vector with magnitude (xT v) extended along the unit vector v. Note that the
residual component, ε = x − (xT v)v, is orthogonal to v, that is, εT v = xT v − (xT v)vT v
= xT v − (xT v) = 0.

Obviously, the projected magnitude depends on the orientation of v. Given a set of
vectors {xi}, we can search for a unit vector v that maximizes the mean squared value of

300 Appendix B

Figure B.1
Correlated data are partially redundant because knowledge of one variable gives approximate knowledge of the
other variables. In two dimensions, perfectly correlated data lie on a straight line; in n dimensions, they lie on a
lower dimensional subspace.

this projected distance. By definition, this yields the first principal component of the data
set. That is, the first principal component of a set of zero-mean vectors {xi}, i = 1 . . . m,
E [x] = 0, is the vector v1, which maximizes the variance of the projected magnitudes

E
[
(vT

1 x)2
]

. (B.2)

After finding the first principal component, subtract the projection along that direction to
get an (n − 1)-dimensional data set lying in a subspace orthogonal to v1. Then search
for a variance maximizing vector in this reduced space to obtain the second principal
component, v2. Further repetition yields the remaining components, v3, v4, Because
the vectors vi are unit-length and orthogonal, they form an orthonormal set

vT
i vj =

{
1 i = j

0 i 6=j
(B.3)

The vectors vi can be calculated as follows. Let y = xT v be the projected distance of x
along v. Since E [x] = 0, E

[
y
]= 0. The variance of y is then

σ 2
y = E

[
y2
]

= E
[
yT y

]
= E

[
vT xxT v

]
= vT E

[
xxT

]
v

= vT Rv (B.4)

Principal Components Analysis 301

where R = E
[
xxT

]
is the covariance matrix of the vectors x. R is an n × n symmetric

matrix so its eigenvalues are real. Because it is a covariance matrix, its eigenvalues are
nonnegative. To maximize the variance subject to the condition that ‖v‖ = 1 we can use
the cost function

vT Rv − µ(vT v − 1) (B.5)

where µ is a Lagrange multiplier. Taking the derivative with respect to v and setting equal
to zero gives

2Rv − 2µv = 0 (B.6)

Rv = µv. (B.7)

This is an eigenvalue problem. For a nonnull solution to exist, µ must be chosen to satisfy
the characteristic equation

det (R − µI) = 0. (B.8)

That is, µ must be an eigenvalue of R and v must be the corresponding eigenvector. Taking
λ as the eigenvalue and substituting into (B.4), we have

σ 2
y = vT Rv = vT (λv) = λ‖v‖2

= λ. (B.9)

In summary, the direction vector that maximizes the variance of the projection is given
by the principal eigenvector v1 of R, and the corresponding eigenvalue λ1 measures the
variance of the projection along that direction. Similarly, eigenvector v2 maximizes the
variance of the projection in the residual space orthogonal to v1 and so on. Assuming the
eigenvalues are distinct, we can number them in order of decreasing magnitude

λ1 > λ2 > . . . > λn ≥ 0. (B.10)

Assuming R has full rank, its eigenvectors form an alternate coordinate system with
coordinate vectors numbered in order of their importance in explaining the variation of the
data set. A vector x can be expressed as the sum of its projections along the orthogonal
components vi

x =
n∑

i=1

αivi (B.11)

where αi = xT vi is the projection of x onto the ith coordinate vector. The vector α =
(α1, α2, . . . αn) is the representation of x in the new coordinate system. If V denotes the

302 Appendix B

n × n matrix containing eigenvector vi in column i then in matrix notation

x = Vα. (B.12)

The eigenvectors are orthonormal so V is unitary

VT V = I. (B.13)

Note that ‖x‖2 = xT x = αT VT Vα = αT α = ‖α‖2.
As noted, the principal component vectors of a data set form an orthogonal coordinate

system with coordinate vectors numbered in order of their importance in explaining the
variation of the data set. If R has rank r < n, it is singular and n − r of its eigenvalues are
zero. Some elements of x are exactly predicted by linear combinations of other elements
so the data lies on an r-dimensional linear subspace embedded in the n-dimensional space.
This provides an opportunity for data compression because the data can be described by
fewer numbers in the new coordinate system. There is no variation along n − r dimensions
so we could omit those elements in the representation and obtain a more compact descrip-
tion without loss of information. Even if R has full rank, some of its eigenvalues may be
small in which case the data has little variation along the corresponding dimensions. El-
ement i contributes αivi to the position information. The mean squared error introduced
by omitting element i is 〈α2

i 〉 = λi. Obviously, if we omit any component, it should be the
one with the smallest eigenvalue since this incurs the smallest error. Likewise, if we omit
m components, they should be the elements with the m smallest eigenvalues. In general,
the rank r linear projection of a data set, r < n, with the lowest mean squared error is the
projection onto the first r principal components of the data.

In practice, measurement noise and numerical errors complicate the process of calcu-
lating the eigenvectors. Some of the estimated eigenvalues may be very small but not
identically zero so some judgment is required to decide if they should be set to zero or
not. Numerical analysis texts suggest singular value decomposition as a preferable method
for obtaining the projection directions since formation of the covariance matrix tends to
square the numerical errors.

As a side note, figure B.2 illustrates the effect of not removing the mean vector. For the
zero-mean data plotted in (a), the eigenvectors of the data correlation matrix accurately
reflect the axes of data variation and the eigenvalues (0.9595 and 0.0417) estimate the
variance along those directions. In (b), the same data is offset by m = (1, 2); the resulting
eigenvectors are rotated and the eigenvalues (5.7016 and 0.2968) are larger. In this case,
the first eigenvalue is dominated by the length of the offset vector, ‖m‖ = 5. As noted in
appendix A the maximum stable learning rate for gradient descent is inversely proportional
to the maximum eigenvalue of the data correlation matrix so smaller learning rates must

Principal Components Analysis 303

Figure B.2
Effect of nonzero-mean on the eigenvectors of the correlation matrix. (a) For zero-mean data, the eigenvectors
of the correlation matrix indicate the main axes of data variation and the eigenvalues reflect the variance along
each dimension. (b) For nonzero-mean data, the eigenvectors are rotated and the eigenvalues are influenced by
the length of the offset vector.

be used to avoid stability problems and learning may take longer if the mean is not
removed.

B.1 Autoencoder Networks and Principal Components

Consider a network with n inputs, h < n linear hidden units, and n linear output units
(figure B.3). What happens if we train the network to reproduce the input vector at its
output? Given an input, the goal is to reproduce it at the output so the network acts as
autoencoder, mapping an input pattern to itself.

This may seem pointless but note that h < n so the hidden layer acts as a bottleneck
that forces the network to form a compressed representation of the data. The hidden layer
activities are a linear function of the inputs but the hidden layer is smaller than the input
dimension so some information must necessarily be lost, in general. The best hidden layer
representation will be one that preserves as much information about the input as possible.
Ideally, it will ignore nonessential noise and reproduce only the most significant features
of the input pattern.

Bourlard and Kamp [57] showed that the optimal (in a minimum mean squared error
sense) hidden unit weights are determined by a set of vectors spanning the singular value
decomposition of the input data. That is, the ideal representation formed at the hidden layer
spans the same space as the h eigenvectors corresponding to the h largest eigenvalues of
the covariance matrix of the training data. The network is linear so it can be collapsed

304 Appendix B

Figure B.3
An autoencoder network maps an input vector to itself. Given an input, the goal is to reproduce it at the output.
A small hidden layer acts as a bottleneck and forces the network to find a compressed representation of the input
pattern. With a linear network and a least squares error function, the ideal internal representation is related to the
principal components of the training data.

into a single linear transformation y = Fx. The rank of F is limited in the preceding by
h, the dimension of the hidden layer. From the principal components discussion, we know
that the best rank h transformation is the projection onto the first h principal component
directions. It turns out that linear hidden nodes are optimal in this case; nonlinear nodes
cannot improve the approximation and only cause problems by introducing local minima
that may confuse gradient descent optimizers. (If A is the hidden-to-output weight matrix
and h(x) is the vector of hidden unit activities, the function to be minimized is 〈‖x − Ah‖2〉.
The output is a linear function of h so the optimal h(x) is a linear transform of the
inputs x.)

Baldi and Hornik [18] showed that the error function has a unique minimum at this solu-
tion. That is, for a linear network and a quadratic error function, the overall transformation
F determined by the orthogonal projection onto the space spanned by the first h eigenvec-
tors of R is a unique local and global minimum. Saddle points occur for solutions spanning
other combinations of h or fewer eigenvectors of R. In principle, this means the solution
can be found by gradient descent methods such as back-propagation although conventional
linear algebraic methods are generally more efficient.

In general, the solution obtained by training from random initial weights will not be
identical to the principal components decomposition because it is only necessary that the
hidden unit activities span the same space as the first h principal components. Let B and
A be the optimal weight matrices determined by singular value decomposition. B is an
h × n matrix of input-to-hidden weights and A is an n × h matrix of hidden-to-output

Principal Components Analysis 305

weights. The hidden layer computes h = Bx and the output computes y = Ah = ABx.
Equivalent results can be obtained by the weights B ′ = CB and A′ = AC−1 where C

is any invertible h × h matrix. In general, C will depend on the random initial weights.
The minimum identified by Baldi and Hornik [18] is unique in terms of the overall func-
tion F , which can be achieved by many different combinations of weight matrices A′
and B ′.

Because C can be a rotation matrix, there will not be a neat correspondence between
the hidden units and the principal components projections. Principal components analysis
separates the data into orthogonal components ranked in order of importance. Deletion of
the first component will cause a larger error than deletion of the second and so forth. In
a linear network trained by gradient descent from random initial weights, the contribution
from each hidden unit tends to be more nearly equal. The autoencoder extracts the first
h principal components but the matrix C typically spreads their functions approximately
equally across the h hidden units [18]. The activities of the hidden units will not necessarily
be uncorrelated. This may favor fault tolerance, but it is not necessarily helpful in data
compression applications where it is useful to be able to pick components serially in terms
of their importance. With PCA, we can do one decomposition and inspect the eigenvalues
to see how many components are needed to achieve a desired approximation error. In
a trained autoencoder, the functions are mixed among the h hidden units, so this is not
possible. To find an approximation spanning the first h − 1 components, a completely new
network with h − 1 hidden units must be trained from scratch.

Many papers have been written on the links between neural networks and principal
components analysis. An entire book on subject is [106]. Oja and others [289, 290, 288,
71] have investigated Hebbian learning rules that extract principal components. Biologi-
cal feasibility and local computation are interesting features of these algorithms. Many are
on-line methods requiring no data storage. (However, on-line versions of conventional al-
gorithms also exist.) Others have investigated data compression applications, for example,
[334, 333]. More general results for linear networks, including but not limited to PCA, are
surveyed in [17].

It is worth noting that, although neural networks are often very nonlinear, analysis of
linear networks is informative because networks initialized with small weights tend to
compute approximately linear functions in the early stages of training and only become
significantly nonlinear after the weights grow to larger values. The initial training dynamics
are often dominated by approximately linear interactions.

It should also be noted that a bottleneck structure does not automatically imply that the
network must implement a principal components solution. The PCA solution is optimal
only for linear networks or single-hidden-layer networks with linear outputs. With several
nonlinear layers before and after the bottleneck, the bottleneck units are not linear functions

306 Appendix B

of the input and cannot be interpreted in terms of principal components. In theory, anything
could be transmitted through a bottleneck preceded by a sufficiently complex encoder and
followed by a corresponding decoder. There are practical limits to this, of course.

B.2 Discriminant Analysis Projections

Although principal components is useful for data reduction, it does not always produce
good directions for discriminating between output classes. As an unsupervised method, it
sees only the input vectors and is blind to classification information. The problem is that
large variations in the data do not always correspond to useful information; the variation
could be due to noise or irrelevant signals from other processes. Ideally we would like
to remove these sorts of irrelevant variations during preprocessing, but this is not always
possible. Figure B.4 illustrates the problem. In figure B.4a, the main contribution to the
variance of the input data comes from the separation between the class means so the di-
rections found by PCA will be useful for discriminating between classes. In figure B.4b,
however, the major axis of variation is along direction v1 but the classes are separated along
a minor direction v2. If v2 were removed for data compression, a system presented with the
reduced data would not be able to separate the classes based only on the information in v1.

Linear discriminant analysis (LDA), [130], for example, provides a way to reduce
dimensionality in a supervised learning context. It has dimensionality reduction properties
like principal components analysis, but also accounts for class information in forming the

Figure B.4
Although principal components analysis sometimes produces directions useful for discriminating between
classes, this is not always true. In (a) the main contribution to the variance of the input data comes from the
separation between class means so the principal component directions are useful for discriminating between the
classes. In (b) however, the major axis of variation is along direction v1 but the classes are separated along the
minor direction v2.

Principal Components Analysis 307

projection. Given a set of Gaussian clusters corresponding to different target classes, the
goal is to find a lower dimensional linear projection that maximizes the separation between
class means and minimizes the spread of each cluster. Ideally, this minimizes overlap of
the clusters in the projection and allows for unambiguous classification.

Following [130: chapter 10], suppose the data consists of m points xi, i = 1 . . . m,
grouped into K clusters which correspond to classes. Let mk, k = 1 . . . K be the mean
vector of cluster k and mo be the overall mean vector. The within-class scatter matrix W
measures the covariance of the data points around the mean of their respective classes

W =
K∑

k=1

PkE
[
(x − mk)(x − mk)

T | x ∈ class k
]

=
K∑

k=1

Pk6k (B.14)

where Pk is the probability that a randomly selected point belongs class k. The between-
class scatter matrix B measures the covariance of the class means around the overall mean

B =
K∑

k=1

Pk(mk − mo)(mk − mo)
T (B.15)

where mo = E [x] =∑K
k=1 Pkmk. The mixture scatter matrix is the overall covariance

matrix of all points, regardless of their class

M = E
[
(x − mo)(x − mo)

T
]

= W + B. (B.16)

These matrices are chosen to be invariant to coordinate shifts.
We would like to find a projection that maximizes the separation between class means

and minimizes the sizes of the projected clusters. The ideal projection would yield small,
widely separated clusters with no overlap. A number of criteria can be used to measure
cluster separability for optimization purposes. These include [130]

. J1 = Tr(S−1
2 S1)

. J2 = ln|S−1
2 S1| = ln|S1| − ln|S2|

. J3 = Tr(S1) − µ(Tr(S2) − c)

. J4 = Tr(S1)/Tr(S2)

where S1 and S2 are one of B, W, or M. Possible combinations for {S1, S2} include {B, W},
{B, M}, and {W, M}. Remarks on these choices can be found in [130].

308 Appendix B

Consider the matrix W−1B using S1 = B and S2 = W. B and W are covariance matrices
describing the variation between cluster means and within clusters, respectively. The prin-
cipal eigenvectors of B maximize the spread of the projected class means. Similarly, the
principal eigenvectors of W−1 minimize the average size of the projected clusters (because
1/λ is an eigenvalue of W−1 if λ is an eigenvalue of matrix W). Intuitively at least, the
matrix W−1B seems like a reasonable compromise to accomplish both purposes.

It turns out [130] that the linear projection maximizing J1 consists of projection onto
the principal eigenvectors of S−1

2 S1. Although S−1
2 S1 is not necessarily symmetric, it

is the product of matrices with real nonnegative eigenvalues so its eigenvalues will be

Figure B.5
The projection vectors found by discriminant analysis (MDA) and principal components analysis (PCA) for a
simple data set.

Figure B.6
Projection histograms for the MDA and PCA directions shown in figure B.5: (a) the principal components
projection shows cluster overlap, and (b) the discriminant analysis projection separates the clusters well.

Principal Components Analysis 309

Figure B.7
A single-hidden-layer linear network trained to perform classification with a 1-of-N target representation imple-
ments a form of discriminant analysis [385, 134].

nonnegative real and its eigenvectors orthogonal. A p-dimensional projection is obtained
by extracting the p principal eigenvectors of the matrix. B has rank K − 1, where K is the
number of clusters, because it is the covariance matrix of K class means so the dimension
of the projection is limited by the number of clusters.

Figure B.5 illustrates the difference between the directions found by discriminant analy-
sis and principal components analysis on a simple problem. Figure B.6 shows histograms
of the resulting projections. In this example, the discriminant analysis projection separates
the clusters well and the principal components projection shows cluster overlap.

Remarks A basic assumption in this analysis is that the clusters are roundish blobs
described entirely by their mean and covariance structure, that is, Gaussian clouds. Optimal
projections will not necessarily be found for more complex shapes. Sometimes a class
consists of several distinct clusters; the compound cluster does not have the required
structure so nonoptimal projections will probably result. One remedy is to present the
algorithm with cluster labels instead of class labels, but this, of course, requires knowledge
of the cluster structure.

Like PCA, discriminant analysis can be used to reduce the dimensionality of the data
presented to a network. This reduces network size and may speed up training significantly
if necessary information is not lost. Discriminant analysis is used for this purpose in [309].

Like PCA, discriminant analysis is a linear projection method so it can fail where non-
linear transformations are necessary. Neither will be able to separate classes that are not

310 Appendix B

linearly separable, for example, but both techniques remain useful for neural network de-
sign in cases where the linear projection makes sense. Although discriminant analysis is a
little more complex, it makes use of the class information and therefore gives better sepa-
ration than principal components in certain cases. When the data have linear dependencies,
both techniques can be useful for preprocessing.

Just as the linear autoencoder implements a form of PCA, it has been shown [385, 134]
that a single-hidden-layer linear network trained to perform classification with a 1-of-N
target representation implements a form of discriminant analysis (figure B.7).

This excerpt from

Neural Smithing.
Russell D. Reed and Robert J. Marks II.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	appb.pdf
	appb-tmp.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

	notice.pdf

