
Evolutionary Inversion of Swarm Emergence Using
Disjunctive Combs Control

Winston Ewert, Daniel Jepson
& Robert J. Marks II

Dept. of Electrical & Computer Engineering
Baylor University

Waco, Texas

Benjamin B. Thompson
Pennsylvania State University
Applied Research Laboratory

The Pennsylvania State University
State College, PA

Albert Yu
University of Washington

Dept. of Electrical Engineering
Seattle, Washington

Abstract—Given simple agent rules, a swarm’s emergent be-
havior can be difficult to predict. The inverse problem is even
more difficult: given a desired emergent behavior, what are
the rules by which swarm agents should operate? Disjunctive
fuzzy control is proposed as a method to model swarm agents.
Compared to more commonly used conjunctive fuzzy control
such as that proposed by Mamdani, disjunctive fuzzy control
is robustly fault tolerant and disjointly connected. Swarms are
inherently disjunctive. Instead of agents working in coordination
with one another, each swarm agent contributes individually
to the result. The disjunctive attribute can also be applied at
the sensor level for each individual agent. Disjunctive control
allows adaptation of the describing membership function, as is
commonly done in conjunctive control. The inversion process
is illustrated with numerous simulation examples, including a
predator-prey game, gang warfare and escaping agents. The
swarm is instructed what to do, but not how to do it. Imposition
of fitness constraints and repeated generations of evolutionary
molding of agent performance can then result in unexpected
emergent behaviors of the swarm, e.g. use of decoys, self sacrifice,
flanking maneuvers, and shielding of the weak.

Index Terms—Keywords: swarm intelligence, fuzzy control,
disjunctive control, inverse problem, emergent behavior

I. INTRODUCTION

Swarm intelligence is based on the emergent behavior of
groups of individual social agents performing simple tasks.
Certain insects [11] and bacteria [60] are examples. Swarm
intelligence has found application is telecommunications [19],
[26], business [12], robotics [9], [29], and optimization [20],
[21], and makes use of a plurality of highly disjoint agents
interacting using simple rules. Simple swarm algorithms have
been employed to assist with load balancing of peer-to-peer
networks [48], routing within mobile ad hoc radio networks
[28], and self-organizing construction and assembly [42].

Simulations of swarm algorithms have parameters that can
be tuned [69]. Pioneering work has focused on enhancement
of the emergent behavior for which the swarm is designed
[1], [2], [8], [10], [25], [30], [31], [49], [52]. We focus on
a more general problem of evolving unspecified emergent
behavior based on goal without regard to the manner success
is achieved. Results are often unexpected. In one case, for
example, sacrificial agents were evolved that act as decoys to
distract predators with the goal of maximizing the lifetime of
the swarm collective. In another, an evolved swarm developed

deceptive flanking tactics to avoid capture. Some swarms
maximize their life span by being aggressive towards the
enemy. Others swarms extend their lifetime by prolonged
strategic retreat.

Often, determination of emergent behavior from simple
rules of interaction in swarm intelligence escapes both analytic
and intuitive inspection [27]. Here are some examples from the
literature.

1) Each agent randomly roams on a floor covered with
wood particles, picking up particles if it bumps into one.
When an agent bumps into a second particle it unloads
its load. Now empty handed, it continues roaming look-
ing for another particle and the process is repeated.[11]

2) Each agent randomly identifies two other agents and
moves to place itself between two agents [12].

3) Each agent randomly identifies two other agents, and
tries to move such that one agent, a protector, is between
it and the other agents, an aggressor.

The rules in these are expressed clearly and without ambiguity.
The identification of the emergent behavior of the swarm,
however, is not readily evident.1

These three simple examples of the forward swarm problem
illustrate the difficulty of the analysis of emergent behavior in
even simple swarms.2 The inversion of the swarm, or swarm
design, is even more daunting. Given a desired emergent be-
havior, what are the set of simple rules needed? We investigate
such a design applied to a plurality of cases.

This paper has two distinct parts. The first provides a
short review of disjunctive Combs control in comparison to
the more widely used conjunctive Mamdani control. Combs
control is shown to be more effective in the swarm inversion
process largely because the corresponding search dimension is
reduced. We demonstrate that Combs control is equivalent to
use of actuator functions. The manipulation of these actuator
function effects agent actions and consequently the emergent
behavior of the swarm. The second part of the paper presents
a number of swarms evolved using Combs control. The emer-

1Once an emergent behavior is identified, however, the relationship between
the rules and the emergent behavior can become more clear.

2The emergent behavior for these three cases is in the Appendix (Sec-
tion VI.



Fig. 1. The pth agent in a swarm team of P agents. As shown here, each
agent has K sensors {Sk|1 ≤ k ≤ K}. The kth sensor makes a reading of
sk which is subjected to the actuator function in (4) to generate the sensor
consequent ck . The ck’s from all sensors are aggregated to generate the scalar
consequent, c, for the agent. When there more than a single consequent, we
denote them as c[1], c[2], etc. In the examples in this paper, each agent has two
consequents: one for each of two dimensions of movement. Each consequent
can have a separate set of actuator functions.

gent behaviors resulting from the swarm inversion are often
unexpected yet are effective and, upon reflection, reasonable.

II. SWARM FORMULATION AND CONTROL

We now make the case that evolutionary determination of
disjunctive fuzzy logic parameters [16], [17], [65], [66], [67],
[68] is ideally suited for evolving the emergent behavior of
swarms.

There are two levels of control in the swarm.
1) Agent Control. There are P swarm agents on a team.

One is shown in Figure 1. Each agent has K sensors
{Sk|1 ≤ k ≤ K}. For our simulations, a homogeneous
swarm is used so that each agent has the same resident
control rules. Fuzzy logic is used to control each agent.
Each sensor provides antecedents to the fuzzy control of
each individual agent. A swarm of P agents is illustrated
in Figure 2.

2) Global Swarm Control. For the second level of the
swarm control, the consequents of each agent action
provide the emergent behavior, C, of the swarm. The
individual agent actions are aggregated into the overall
swarm performance which is measured by a fitness
function. For a swarm of prey, for example, C might
denote the median survival time of all agents, i.e. the
time it takes for half of the swarm to be destroyed. In
the common scenario of randomness within the swarm,
including initialization and agent jitter, C will be a
random variable whose character can be assessed only
through repeated trials [69].

III. CONJUNCTIVE VERSUS DISJUNCTIVE FUZZY
CONTROL

For each swarm agent consequent, traditional Mamdani
conjunctive implication can be expressed as

K∩
k=1

Ak → C. (1)

where Ak is the kth fuzzy descriptor of the fuzzification of
the nth sensor and C the fuzzy consequence.

Fig. 2. A collection of P agents of the type shown in Figure 1 form a swarm.
We consider only the case where the control for all agents is identical. Each
agent has a consequent in accordance to its sensor readings. Acting together,
the swarm has a goal to achieve as measured by a fitness measurable only after
the swarm operates. Through evolutionary inversion of actuator functions, the
swarm can be made to perform better and better. The manner in which the
swarm achieves its global objective consequent (C) through emergent behavior
can be unexpected.

For example, consider automobile control and let C =
“turn slightly right.” Mamdani control rules then take on the
following form.

If (A1 = turn front tires slightly right AND
A2 = turn rear tires slightly left AND
A3 = lightly brake right tires AND
A4 = slightly accelerate left tires)

THEN C

Disjunctive implication used in Combs [15] control3 is∪
k,n

(Ak → C) (2)

Here, the contribution of each sensor to the agent’s perfor-
mance is aggregated to assess the resultant consequent. The
corresponding Combs control rules in the car turning example
are:

(If A1 = turn front tires slightly right THEN C) OR
(If A2 = turn rear tires slightly left THEN C) OR
(If A3 = lightly brake right tires THEN C) OR
(If A4 = slightly accelerate left tires THEN C)

In propositional Boolean logic,4 there is an identity between
the disjunctive and conjunctive implications dubbed the law of
importation [36]:(

K∩
k=1

Ak → C

)
≡

K∪
k=1

(Ak → C) . (3)

The fuzzy logic generalization of the law of importation
is not an identity. There is, however, often commensurate

3Application of disjunctive implication to fuzzy inference is commonly
called the Combs method [24], [34], [36], [61].

4For implication, 0 → 0 is 1, 0 → 1 is 1, 1 → 0 is 0 and 1 → 1 is 1.



performance in comparison to the use of fuzzy conjunctive
Mamdani rule matrices [36], [67].

Details contrasting the characteristics of conjunctive and
disjunctive implications can be found elsewhere [16], [17],
[65], [66], [67], [68]. Combs control has many advantages. If
sensors are lost, for example, an agent can straightforwardly
adapt by seamlessly applying redundant resources. Likewise,
new sensors can be easily added. The conjunctive form is
brittle in comparison. Loss of a sensors requires reassessment
of the implication (Mamdami rule matrix) structure.

If there are K sensors and a single consequent each requir-
ing {Nk|1 ≤ k ≤ K} fuzzy sets, the Mamdami fuzzy rule
matrix for implementation requires

N∩ =
K∏

k=1

Nk

fuzzy rules. If all of the Nk = N for all k, then N∩ = NK .
Disjunctive control, on the other hand, requires

N∪ =
K∑

k=1

Nk

rules [16], [17], [65], [66], [67], [68]. If the number of fuzzy
sets is the same, then N∪ = NK. The number of fuzzy
rules therefore increases linearly with respect to the number
of antecedents rather than exponentially.5

In the inversion of the swarm, we will be searching through
a space whose dimension is determined by the number of fuzzy
rules. Therefore, besides its operational advantages, disjunctive
control reduces the search space size thereby avoiding the
curse of dimensionality [56] for the swarm inversion process.

A. Functional representation.

We now show that fuzzy Combs control can be reduced
to use of actuator functions for each sensor followed by
aggregation.

An example of kth sensor contributes to the agent con-
sequent Ak → C. If the kth sensor is tesselated into Nk

fuzzy membership functions, any scalar measurement, say sk,
will be fuzzified into a vector of Nk membership values.
For disjunctive control, all of the elements in this vector
are used to weight the fuzzy membership functions of the
single consequent which is then defuzzified into a single
crisp consequent scalar for the kth sensor, ck. From this
process, we conclude that each sensor reading is assigned
a single consequent value which, in turn, is aggregated with
the consequents of the other sensors to specify the composite
consequent for the pth agent. Thus, the value of the consequent
is a simple one dimensional function of the sensor antecedent
which we can write as

ck = ζk(sk) (4)

5A common observation is that conjunctive control with more rules and
therefore more degrees of freedom has greater fine grained flexibility than
disjunctive control.

Fig. 3. Illustration of the actuator from fuzzy rules is a one dimensional
equivalent of a fuzzy control surface. The antecedent and consequent fuzzy
membership shown respectively in (a) and (b) follow the rules “N → L AND
Z → M AND P → S.” For a sensor reading of sk = −2, the antecedent fuzzy
membership functions for (N, Z, P) read ( 2

3
, 1
3
, 0). This is illustrated in (c).

To defuzzify, the consequent membership functions are weighted as shown in
(d) and added. The center of mass balance point of the sum of the weighted
consequent functions, as shown in (d), is ck = 5

3
. Thus ζk(−2) = 5

3
.

Repeating this process for all sk ∈ [−4, 4] generates the piecewise linear
actuator function ζk shown in (e). To our knowledge, this is the first time
Combs control has been shown to equate to use of an actuator function.

The actuator functions, ζk(·), is the one dimensional equiv-
alent to the control surfaces in fuzzy inference systems [14],
[35]. A detailed example is shown in Figure 3.

Fuzzification and defuzzification of membership functions
for disjunctive fuzzy control has been performed in previous
treatments [16], [17], [65], [66], [67], [68]. As illustrated
in Figure 3, however, formation and adaptation of actuator
functions can be performed directly without consideration of
the intermediate fuzzy components.

In summary, sensor Sk on an agent measures sk from which
we find the consequents, ck, using the actuator function in (4).
The ck’s are then combined using, for example, an aggregate
function [13], into each agent’s consequent, c.

Each agent may have more than one consequent in which
case ck[1], ck[2], etc. are generated using possibly different
actuator functions acting on the same sensor inputs. Each is
aggregated into consequents c[1], c[2], etc. for each agent. The
interaction of all agent actions then contributes to the emergent
behavior of the swarm.

The inverse problem [7], which has found use in many
areas of computational intelligence [32], [33], [37], [38],
[57], therefore reduces to adapting the actuator functions to



maximize the fitness of the emergent behavior, C. This is a
variation of fuzzy membership function adaptation applied in
Mamdani type inference systems [3], [4], [5], [45] and similar
to inversion of trained neural networks . Use of Combs control,
however, can reduce the search space dimension significantly.

IV. INVERSION EXAMPLES

Using Combs control of agents, here are some examples
of emergent behaviors observed from inversion of competitive
swarms. Results will be illustrated with figures, but videos
of the swarm performance are more instructive. They are
available on line [50]. Each example has some variations as
to engagement rules; however, the nature of the disjunctive
control is the same in all of the cases. Elucidation of fine
grained details in each program is beyond the scope and length
constraints of this paper. Details, though, can be found in
documented code also available online [50].

For the examples to follow, all swarm agents on a team
contain the same sensors, actuator functions and control rules.
A performance fitness function for the swarm is chosen and the
swarm is run. Since there are stochastic components in every
simulation (e.g. initialization and jitter), the fitness is a random
variable and each run of the simulation generates a single
sample of the underlying random variable. Running a swarm
from start to finish6 results in a single stochastic fitness value.
Using the measured fitness of a number of simulations of
swarms with different actuator functions, personal and global
best results were noted and, after updating the actuator func-
tions consistent with particle swarm search [22], [39], [40],
[41], [58], [59], another generation of swarm performance
is assessed in another generation of swarms. Application
of repeated generations resulted in emerged behavior that
displays a high fitness. We refer to numerous evolutionary
steps in the optimization of a swarm team an era.

To address the stochastic contribution of swarm interaction,
each swarm was run for 20 iterations and the measured
fitness of these swarms are averaged to estimate the mean
of the underlying random variable. The particle swarm uses
a population of 80 agents and was run for 10 iterations at a
time. The parameters of particular swarm optimization, CG
and CP, were both set to 2.0.

All swarm agents exist on a two-dimensional square planar
playground using floating-point coordinates between 1 and -1
for both axes. All agents must remain within the playground
at all times. Directions are kept on a trajectory by bounding
increments in velocity change. At each time step, a velocity
is added to the current position. Additionally, a small amount
of random jitter [51], [53], [54], [55] is added to the current
position. A number of consequents are assigned to each agent
in a manner specific to each game.

For each sensor, an adaptive actuator function ck = ζ(ak)
is formed for each of the consequents. The shape of ζ(ak)
is defined by three values of s, at the points 0, 1, and 2.

6In many instances, a stop criteria is imposed before the swarm runs its
total course.

Fig. 4. The bullies are distracted by the decoy dweebs, eventually a single
sacrificial dweeb emerges and is chased by the bullies until it is caught. The
remaining dweebs seek refuge as far as away from the bullies as possible.
Simulation software and a more illustrative and insightful video of the evolved
swarm is on Neowarm.com [50] #1.

The values are then connected in a piecewise linear fashion to
form the actuator function. The actuator function has a range
for c of [−1, 1]. The point locations are evolved to maximize
the desired emergent behavior property. For the simulations to
follow, the control properties of all of the agents on a team
are the same.

A. Bullies and Dweebs

The first game is based on a predator (bullies) and prey
(dweebs) model. The dweebs are killed when they come
into contact with the bullies. The bullies and dweebs begin
uniformly randomly distributed across the playground. Only
the dweeb strategy is evolved.

Both the bullies and dweebs make use of the same sensors

• S1 = distance to nearest team agent
• S2 =distance to the nearest agent on the other team
• S3 =distance to the center of the playground.

They both have the consequents

• Movement towards nearest enemy agent
• Movement towards nearest friendy agent
• Movement towards center of play area

The swarm’s fitness is defined as:

C =
T∑

i=1

di (5)

where di is the number of living dweebs at time step i and
T = 2000. The dweebs are evolved around the fixed operation
of the bullies. Variations were observed to emerge dependent
on the fixed point behavior of the bullies. Two cases are
considered.



Fig. 5. The swarm of dweebs spread out as the bullies attack. Simulation
software and a more illustrative and insightful video of the evolved swarm is
on Neowarm.com [50] #2.

1) Slow Chases.: In this scenario, the speed of a bully
towards the nearest dweeb is set proportional to the separating
distance, i.e. a bully will run quickly towards a dweeb that is
far away, and slowly towards a dweeb nearby. The dweebs
are able to find a “sweet spot” where they can run slowly
immediately in front the bully and avoid getting caught. One
of the dweebs would typically “dance” with the bully while
the others would hide out of range.

The interesting emergent dweeb behavior is one of self
sacrifice. One dweeb at a time attracts the bullies in a
prolonged chase while the remaining dweebs move to a
nonthreatening position. Eventually the sacrificial dweeb is
killed. After transient activity, a fresh self sacrificing dweeb
emerges and the cycle continues. This emergent self sacrifice
strategy performed the desired function of maximizing the
overall lifetime of the dweeb swarm as measured by the fitness.
See Figure 4 and the video available on line [50].

2) Center.: In a second scenario, bullies attack dweebs at a
speed independent of their separation. Swarm inversion results
in the dweeb strategy of clustering in the center of playing
field. The bullies attack causing a scattering of the dweebs.
The bullies then concentrate on sacrificial dweebs while other
dweebs return to temporary safety in the center. As in the slow
chase, the effect was of self sacrifice albeit not as dramatic.
See Figure 5 and the video available on line [50].

B. Gang Warfare

In gang warfare, a second type of wargame, there are two
gangs, red and blue, both able to retreat or to attack and kill the
other. Each team agent has a randomly assigned strength, and
when agents collide the weak is killed and the strongest agent
survives. However, the winning agent loses strength. When an
agent is killed, the strength of the survivor is decayed by a
factor of 0.9. Furthermore, when an agent is far enough away
from any enemy agent its strength slowly increases. If the

Fig. 6. The initial positions of the opposing gangs. Snapshots of the conflict
are shown in Figures 8 through 9. Also see the on line video [50].

nearest enemy agent is at least 0.1 units away, strength increase
by .001 per iteration. Both teams are alternately evolved and
a number of different strategies emerge.

The sensors used for both the red and the blue team are
• S1 = Distances to nearest enemy agent
• S2 = Agent’s self assessment of its strength.
• S3 = Strength of nearest enemy agent

The two consequents for each agent are:
• Movement towards nearest enemy agent
• Movement perpendicular to nearest enemy agent

Fitness is defined to be:

C =

T∑
i=1

(ti − ei) (6)

where ti is the number of agents of one team alive at time
step i, and ei is the number of agents alive of the opposing
team at time step i and T = 2000.

The gangs are alternatingly evolved. Blue is first. As shown
in Figure 6, the two gangs begin at the opposite sides of
the play area. Snapshots of the game are shown in Figures 6
through 9. Also see the video [50].

Different strategies are observed to arise:
• Orbiting

Strategically, it makes sense to attack the weak members
of the enemy forces while keeping your own weak
members out of the fight. The agents begin from the
initial configuration in Figure 6. The strong and weak
agents blue separate in Figure 7 and the stronger agents
head into enemy territory to kill off the enemy agents
in Figure 8. After the weak members have been killed
off, the agents spin around the stronger enemy agents in
Figure 9.
The orbiting action comes from the agents moving both
towards and perpendicular to the enemy agent. Spinning
around the enemy agent would possible bring a weaker



Fig. 7. The blue team divides.

Fig. 8. Attacking from the west wall.

Fig. 9. Red clockwise circling the blue finishes the contest.

0.0 0.5 1.0 1.5 2.0
Enemy Distance

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.5 1.0 1.5 2.0
Enemy Distance

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0
Strength

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.2 0.4 0.6 0.8 1.0
Strength

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0
Enemy Strength

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.2 0.4 0.6 0.8 1.0
Enemy Strength

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

Fig. 10. The actuator functions evolved for the blue agents as used in
Figures 6 through 9. The upper left function indicates the agent should retreat
from the enemy unless the enemy is far away. The middle left function
indicates that, the stronger the blue agent, the more it is inclined to move
towards its enemy. Conversely, as shown in the bottom left, the stronger
an enemy, the more inclined an agent is to retreat. The clockwise circular
motion of blues around reds in Figure 9 is due to the actuator functions
controlling perpendicular motion. As is the case with satellites orbiting earth,
the combination perpendicular motion (the satellite’s momentum) and the
attraction to earth result in orbiting.

Fig. 11. The initial move after four eras of evolution: → B → R → B.
Blue, last evolved, adopts an defensive posture.

agent into view. In the end-stage the perpendicular
movement prevents the circling agents from coming into
contact with a strong enemy agent and being killed.
Figure 10 shows the optimized actuator functions opti-
mized for the blue to fight this battle.

• Defensive Strategy
After the blue team is evolved for an era, its behavior
is fixed and the red team is evolved to counter the
performance of the blue team. In this section, we look at
the effects of the blue team being evolved a second time
to counter the counters of the red team. We denote this



Fig. 12. With blue engaging in a defensive strategy, the red enemy goes
after the nearer strong army, but does not actually attack it due to its strength.

Fig. 13. Red circles blue counterclockwise.

Fig. 14. Blue retreats from red.

Fig. 15. Red pursues blue decoys.

0.0 0.5 1.0 1.5 2.0
Enemy Distance

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.5 1.0 1.5 2.0
Enemy Distance

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0
Strength

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.2 0.4 0.6 0.8 1.0
Strength

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0
Enemy Strength

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.2 0.4 0.6 0.8 1.0
Enemy Strength

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

Fig. 16. The functions for the blue team engaged in a defensive strategy.
Figures 6, through show this strategy as blue against an aggresive red strategy.

process by → B → R → B. Each right arrow denotes
an evolution era. Snapshots of the swarming are shown
in Figures 11 through 16. Also see the on line video
[50]. The blue team evolved a defensive strategy. Instead
of attempting to kill the enemy agents, the strategy now
prioritizes not getting killed.
◦ Figure 11. The battle begins as shown. The blue

team is applying a defensive strategy. The stronger
blue agents move closer to the red enemy, thereby
attracting their attention. The weaker blue agents
retreat to the southeast corner.

◦ Figure 12. The red enemy agents continue to chase
the blue agents but do not attack because the blue
agents have too much strength. The weaker blue
agents at the bottom right gain strength over time
while this is happening.

◦ Figure 13. The blue agents in the southeast corner



Fig. 17. Red uses an aggressive strategy against blue’s defensive strategy.
While the defensive strategy divides its army, the aggressive strategy pushes
against the top wall and moves towards the upper left corner. Sequential
snapshots of the conflict are shown in Figures 18 through fig.war.aggressive.3.

Fig. 18. Red uses an aggressive strategy against blue’s defensive strategy.
The defensive blue strategy retreats from the corner, while the aggressive red
strategy follows. Note how the weaker red elements are in the back of the
army.

have gained strength and are moving up the east wall
in order to join the battle. The blue agent cluster
at the top of Figure 12 has bifurcated. One portion
is in the middle of a string of red agents who are
circling in a counter clockwise direction. The other
blue cluster in the northwest corner has temporarily
escaped the attention of the red agents.

◦ Figure 14. After some time has passed, all agents
are now at or near maximum strength. Using a
philosophy that “The best offense is hiding,” the blue
agents are retreating from the red agent cluster by
moving to the north and west.

◦ Figure 15. Blue decoys have broken from the group
and are being pursued by the single red cluster.

Fig. 19. Red uses an aggressive strategy against blue’s defensive strategy.
Blue attempts to hide in the corner while Red’s entire army comes upon it
resulting in a quick red victory.

0.0 0.5 1.0 1.5 2.0
Enemy Distance

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.5 1.0 1.5 2.0
Enemy Distance

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0
Strength

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.2 0.4 0.6 0.8 1.0
Strength

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0
Enemy Strength

�1.0
�0.5

0.0
0.5
1.0

To
w

ar
ds

 E
ne

m
y

0.0 0.2 0.4 0.6 0.8 1.0
Enemy Strength

�1.0
�0.5

0.0
0.5
1.0

Pe
rp

en
di

cu
la

r

Fig. 20. The actuator functions for the red team engaged in an aggressive
strategy. Figures 6, 17, 18, and ?? show the result of this strategy for red
against the blue strategy in Figure 16.

The other blues hide along the north wall. The
red continues to chase the blue decoys, but never
captures them. In this way, blue has evolved a retreat
strategy that allows it to survive for a very long time.

Figure 16 shows the functions for the blue’s defensive
logic. All values for attraction to enemy red agents are
negative, so blue will always try to run from the red
enemy. However, blue’s propensity to run is tempered
by its strength which allows the separation shown in
Figure 11.

• Aggressive Strategy
The defensive strategy depended on the opponent blue
not being willing to attack strong red agents. Additional
generations of evolution of the the red army addresses
this. The evolution eras are now → B → R → B → R.



When given a chance to optimize against the defensive
strategy, an aggressive strategy arose. The defensive blue
strategy, effective in the → B → R → B, remains
unchanged. Evolution of the reds, though, has made the
blue strategy ineffective. Here are some snapshots of the
action. Also see video #5 [50].
◦ Figure 17. The reds move along the north wall to the

right. There is some separation of the blues. Mostly
stronger blues move up the east wall and some of
the weaker blues move down.

◦ Figure 18. The reds make a sharp right turn at the
northeast corner and move towards the meek blues
who begin to retreat down the east wall.

◦ Figure 19. The red agents move downward on the
east wall. The strong agents lead the way. The red
agents catch the defensive agents in the bottom left
corner, and rapidly kill them.

Figure 20 shows the functions used to control the red
aggressive agents. The actuator functions for the blue
remain those shown in Figure 16. Rather then avoiding
strong agents, the red agents aggressively attack them to
good effect. The propensity for moving towards enemy
agents is related to an agent’s strength. The constant value
of 1.0 for perpendicular movement based on strength
results in the wall following behavior.

C. Foxes vs. Rabbits

Foxes vs. rabbits is a third example used to illustrate swarm
inversion using disjunctive Combs control. In this model, a
bury of rabbits attempts escape to a hole guarded by an earth
of predator foxes. Like the war model, each rabbit and fox
agent is assigned a strength which determines whether or not
it will survive in combat. However, unlike before, strength
neither degrades or increases over time. There are 200 foxes
and 50 rabbits.

The sensors used in this model were
• S1 = distance to center of friendly agents.
• S2 = distance to nearest opponent agent
• S3 = distance to exit (hole)
• S4 = difference between self strength and nearest oppo-

nent’s strength
Fitness is defined as

C =
T∑

i=1

(10ei + si) (7)

where ei is the number of rabbits who have escape by time i,
and si is the number of rabbits who have neither escaped or
been killed and T = 2000.
• Rush. First, the foxes are evolved, and then the rabbits.

So the scenario is
→ F → R

Performance snapshots are shown in Figures 21 through
24. In this simplest case, the foxes head for the rabbits
and the rabbits run away from the foxes. The rabbits have
not yet learned to run to the hole.

Fig. 21. The starting position for the foxes and rabbits. The foxes are red
while the rabbits are blue. The green circle is the hole.

Fig. 22. The rabbits head for the hole, while the foxes chase after them

Fig. 23. The rabbits head for the hole, while the foxes chase after them



Fig. 24. All rabbits have either escaped or been caught

Fig. 25. The rabbits are confused and thus sit in the middle rather than
running for the hole

Fig. 26. The foxes hang around the outside corners, while the rabbits make
it directly to the hole

Fig. 27. In the initial stages of flanking strategy, the rabbits wait the foxes
close in

Fig. 28. After the foxes have gotten close enough in the flanking strategy,
the rabbits run leaving the foxes in a clump

Fig. 29. The rabbits head both directions around the foxes.



Fig. 30. Since the foxes are distracted by the nearest agents, the other rabbits
sneak to the hole

Fig. 31. Eventually there are insufficient rabbits to attract the attention, and
the foxes move close to the hole preventing any future rabbit escapes.

◦ Figure 21. This is the initialization of the contest.
◦ Figure 22. As the foxes close in, the rabbits move

towards the hole in order to escape the foxes.
◦ Figure 23. The foxes continue to push the rabbits

into the hole. The rabbits are not actually trying to
move towards the hole, but rather away from the
foxes. This happens to cause them to move close to
the hole, allowing many to escape.

◦ Figure 24.The simulation ends quickly as the foxes
kill any non-escaping rabbits.

• Confusion.
The foxes are next evolved to counter the Rush scenario.

→ F → R → F

Since the rabbits were running away from the foxes
rather than towards the hole, when the foxes were
evolved against this behavior they developed a strategy

of confusion. The foxes occupy the corners of the area
thus keeping the rabbits in the center, This is shown in
Figure 25.

• Confusion Resolution. The rabbits were again evolved

→ F → R → F → R

Predictably, the rabbits head towards the target unim-
peded while the foxes, still applying their confusion
tactics, remain huddled in the corners. This is shown in
Figure 26. However, the agents are not actually trying to
move towards the hole. Instead, they are heading to the
nearest foxes who are behind the hole.

• Flanking. Evolution continued. At the end of a rabbit
evolution, deception and flanking emerged as a winning
strategy. The repeated evolutions resulted in clever rabbit
behavior. As the foxes placed themselves between the
rabbits and the hole, the rabbits move away from the
foxes thereby drawing the foxes further from the hole.
The rabbits then sneak little by little around the foxes
and make their way to the rabbit hole. Snapshots are
shown in Figure 27 through 31.
◦ Figure 27. The rabbits allow themselves to be sur-

rounded.
◦ Figure 28. Just before they the foxes close in for

the kill, the rabbits break out moving away from the
hole leaving the foxes in a clump.

◦ Figure 29. At the northwest corner, the rabbits bi-
furcate and begin to run around the flanks of the fox
clump.

◦ Figure 30. The sneaky rabbits then manage to make
it to the exit. This works because the foxes only have
a sense of the nearest rabbit. The flanking rabbits are,
in this sense, invisible to the foxes.

◦ Figure 31. Eventually, the foxes detect the flanking
rabbits.The strategy of the rabbits then ceases to
work, and the foxes move to a better defensive
position. The remaining rabbits are now blocked
from the hole and are doomed to a life above ground.

V. CONCLUSIONS

The inversion of swarms has numerous variations not con-
sidered. Application of coevolution [43] can potentially evolve
strategies superior in a large number of strategies. Each agent
can have a different control mechanism. Evolution can then be
applied in vitro wherein killed agents are immediately replaced
by replication of a mutated agent more fit. Agents can be fitted
with adaptive states as is the case, for example, when worker
ants are recruited to be soldier ants when the colony is under
attack [11]. Use of Combs control can keep the dimensionality
of these and other swarm scenarios within reason.

Swarm inversion can result in effective survival strategies
in swarm games. Through a process of evolution, simple rules
in agents allow emergent behavior that extends survival time
for the swarms. More sophisticated simulations could find use
in the development and experimental analysis of swarming in



business models [12], military tactics [6], [23], finance [44],
social science [62] and game theory [64].

ACKNOWLEDGEMENTS

This work was supported in parts by grants from the ONR
and NSF.

REFERENCES

[1] B. Adenso-Diaz, and M. Laguna. Fine-tuning of algorithms using frac-
tional experimental designs and local search. Operations Research,
54(1):99 114 (2006).

[2] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic
algorithm for the automatic configuration of solvers. In Gent, I. P., editor,
Principles and Practice of Constraint Programming CP 2009, volume
5732 of LNCS, pages 142157. Springer, Heidelberg, Germany

[3] P. Arabshahi, R.J. Marks II, and T.P. Caudell. Adaptation of Fuzzy
Inferencing: A Survey. Proceedings of the IEEE/Nagoya University
WWW on Learning and Adaptive Systems, pp.1-9, October 22-23, 1993,
Nagoya University, (Nagoya, Japan)

[4] Arabshahi, P., Choi J.J., R.J. Marks II and T.P. Caudell. Fuzzy Parameter
Adaptation in Optimization: Some Neural Net Training Examples,
Computational Science and Engineering, (IEEE Computer Society), vol
3, No 1, Spring 1996, pp.57-65.

[5] P. Arabshahi, R.J. Marks II, Seho Oh, T.P. Caudell , J.J. Choi, and B.G.
Song. Pointer Adaptation and Pruning of Min-Max Fuzzy Estimation.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol.44, no.9, September 1997, pp.696-709.

[6] John Arquilla and David Ronfeldt. Swarming and the Future of Conflict.
RAND Corporation (2000).

[7] Richard C. Aster and Brian Borchers, i.e. Parameter Estimation and
Inverse Problems, Academic Press; 2 edition (2012)

[8] T. Bartz-Beielstein, Experimental Research in Evolutionary Computa-
tionThe New Experimentalism. Springer, Berlin, Germany (2006).

[9] R. Beckers, O. E. Holland, and J. L. Deneubourg. From local actions to
global tasks: Stigmergy and collective robotics. in Prog. Artificial Life
IV. Cambridge, MA: MIT Press, 1994, pp. 181189.

[10] Birattari, M. (2009). Tuning Metaheuristics: A machine learning per-
spective. Springer, Berlin, Germany.

[11] E Bonabeau, M. Dorigo, and G. Thereulaz. Swarm Intelligence: From
Natural to Artificial Systems, NY: Oxford Univ. Press, 1999

[12] E. Bonabeau and C. Meyer, “Swarm intelligence, a whole new way to
think about business,” Harvard Bus. Rev., vol. 79, no. 5, pp. 106114,
May 2001

[13] Cristian Calude. Multiset processing: mathematical, computer science,
and molecular computing points of view. Springer (2001)

[14] Oscar Castillo, Witold Pedrycz. Soft Computing for Intelligent Control
and Mobile Robotics Springer (2010)

[15] William E. Combs. Reconfiguring the fuzzy rule matrix for large time-
critical applications. in 3rd Annu. Int. Conf. Fuzzy-Neural Applicat.,
Syst., Tools, Nashua, NH, Nov. 1995, pp. 18:118:7.1

[16] William E. Combs and J. E. Andrews. Combinatorial rule explosion
eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy
Systems, vol. 6, no. 1, pp. 1-11, Feb. 1998.

[17] William E. Combs, Jeffrey J. Weinschenk, Robert J. Marks II. Genomic
Systems Design: A novel, biologically-based framework for enhancing
the adaptive, autonomous capabilities of computer systems. FUZZ-IEEE
2004, IEEE International Conference on Fuzzy Systems, 25-29 July,
2004, Budapest.

[18] William A. Dembski and Robert J. Marks II. Conservation of Infor-
mation in Search: Measuring the Cost of Success. IEEE Transactions
on Systems, Man and Cybernetics A, Systems & Humans, vol.5, #5,
September 2009, pp.1051-1061

[19] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control
for communications networks. J. Artif. Intell. Res., vol. 9, pp. 317365,
1998.

[20] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by
a colony of cooperating agents. IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 2941, Feb. 1996.

[21] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA:
MIT Press, 2004.

[22] Eberhart, R.C.; Shi, Y. (2000). Comparing inertia weights and constric-
tion factors in particle swarm optimization. Proceedings of the Congress
on Evolutionary Computation. 1. pp. 8488.

[23] Sean J. A. Edwards. Swarming on the Battlefield Past, Present, and
Future. RAND Corporation (2000).

[24] J.E. Ervin and S.E.Altekin. Combs Method Used in Intuitionistic Fuzzy
Logic Application. in Applications of fuzzy sets theory: 7th International
Workshop on Fuzzy Logic edited by Francesco Masulli, Sushmita Mitra,
Gabriella Pasi. Springer (2007)

[25] A. S. Fukunaga. Automated discovery of local search heuristics for sat-
isfiability testing. Evolutionary Computation, 16(1):3161 (2008).

[26] I. Kassabalidis, M. A. El-Sharkawi, R. J. Marks, P. Asabshahi, and A.
A. Gray, “Swarm intelligence for routing in communication networks,”
in Proc. IEEE Globecom, San Antonio, TX, Nov. 2001, pp. 36133617.

[27] I.A. Gravagne and R.J. Marks II. Emergent Behaviors of Protector,
Refugee and Aggressor Swarm. IEEE Transactions on Systems, Man
and Cybernetics, Part B: Cybernetics, Volume 37, Issue 2, April 2007,
pp. 471 - 476.

[28] M. Günes, U. Sorges, and I. Bouazizi. ARA – The ant-colony based
routing algorithm for MANETs. in Proc. IEEE ICPPW, 2002, pp. 7985.

[29] A. T. Hayes, A. Martinoli, and R. M. Goodman. Swarm robotic
odor localization. in Proc. IEEE/RSJ Int. Conf. IROS, Oct. 2001, pp.
10731087.

[30] F. Hutter, H. H. Hoos, K. Leyton-Brown and K. P. Murphy. An exper-
imental investigation of model-based parameter optimisation: SPO and
beyond. In Rothlauf, F., editor, Genetic and Evolutionary Computation
Con- ference, GECCO 2009, pages 271278. ACM press, New York

[31] F. Hutter, H. H. Hoos, K. Leyton-Brown and T. Stützle. ParamILS:
An automatic algorithm configuration framework. Journal of Artificial
Intelligence Research, 36:267306 (2009)

[32] J.N. Hwang, C.H. Chan, R.J. Marks II, “Frequency selective surface
design based on iterative inversion of neural networks”, Proceedings
of the International Joint Conference on Neural Networks, San Diego,
17-21 June 1990, vol. I, pp.I39-I44.

[33] J.N. Hwang, J.J. Choi, S. Oh and R.J. Marks II. “Query based learning
applied to partially trained multilayer perceptrons,”, IEEE Transactions
on Neural Networks, Vol. 2, pp.131-136, (1991).

[34] Andrew Ilachinski. Artificial War: Multiagent-Based Simulation of Com-
bat, World Scientific Pub Co Inc (2004)

[35] Mohammad Jamshidi, Nader Vadiee, Timothy Ross. Fuzzy Logic and
Control: Software and Hardware Applications (v.2) Prentice Hall (1993)

[36] B. Jayaram. On the Law of Importation (x∧y) −→ z ≡ (x −→ (y −→
z)) in Fuzzy Logic. IEEE Transactions on Fuzzy Systems, vol.16, no.1,
pp.130-144, Feb. 2008. doi: 10.1109/TFUZZ.2007.895969

[37] Craig A. Jensen, Russell D. Reed, Mohamed A. El-Sharkawi, Robert
J. Marks II, ”Location of Operating Points on the Dynamic Security
Border Using Constrained Neural Network Inversion”, Proceedings of
the International Conference on Intelligent Systems Applications to
Power Systems (ISAP), pp.209-217, Seoul, Korea, July 6-10, 1997.

[38] Craig A. Jensen, Russell D. Reed, Robert J. Marks II, Mohamed
A. El-Sharkawi, Jae-Byung Jung; Miyamoto, R.T.; Anderson, G.M.;
Eggen, C.J., “Inversion of feedforward neural networks: algorithms and
applications”, Proceedings of the IEEE, Volume: 87 9, Sept. 1999 ,
Page(s): 1536 -1549

[39] J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. Proceed-
ings of IEEE International Conference on Neural Networks. IV. pp.
19421948 (1995) doi:10.1109/ICNN.1995.488968.

[40] J. Kennedy. The particle swarm: social adaptation of knowledge. Pro-
ceedings of IEEE International Conference on Evolutionary Computa-
tion. pp. 303308 (1997).

[41] J. Kennedy and R.C. Eberhart. Swarm Intelligence. Morgan Kaufmann
(2001) ISBN 1-55860-595-9.

[42] H. Leung, R. Kothari, and A. Minai. Phase transition in a swarm
algorithm for self-organizing construction. Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 68, no. 4, pp. 046 111.1046
111.5, 2003.

[43] Y. Liu, X.Yao, Q. Zhao, T. Higuchi. Scaling up fast evolutionary
programming with cooperative coevolution. Proceedings of the 2001
Congress on Evolutionary Computation, pp. 1101 - 1108 vol. 2 (2001)

[44] Francesco Luna and Alessandro Perrone. Agent-based methods in eco-
nomics and finance: simulations in Swarm. (Kluwer, 2002)

[45] R.J. Marks II, S.Oh, P. Arabshahi, T.P. Caudell, J.J. Choi and B.G.
Song. Steepest descent of min-max fuzzy if-then rules. Proceedings of



the International Joint Conference on Neural Networks, Beijing, vol. III,
pp. 471-477, November 3-6, 1992.

[46] R.J. Marks II, Editor, Fuzzy Logic Technology and Applications, IEEE
Technical Activities Board, Piscataway, 1994.

[47] Joseph McRae Mellichamp, Go Fast, Turn Left, ISBN #978-1427602008
[48] A. Montresor, H. Meling, and Ö. Babaoglu, “Messor: Load-balancing

through a swarm of autonomous agents,” Dept. Comput. Sci., Univ.
Bologna, Bologna, Italy, Tech. Rep. UBLCS-2002–11, 2002.

[49] V. Nannen and A. E. Eiben. Relevance estimation and value calibration
of evolutionary algorithm parameters. In Proc. of IJCAI 2007, pages
975-980. AAAI Press/IJCAI, Menlo Park, CA

[50] Neoswarm War Games http://neoswarm.com/war games.html .
[51] S.Oh, R.J. Marks II and M.A. El-Sharkawi. Query based learning in a

multilayered perceptron in the presence of data jitter. Applications of
Neural Networks to Power Systems, (Proceedings of the First Interna-
tional Forum on Applications of Neural Networks to Power Systems),
July 23–26, 1991, Seattle, WA, (IEEE Press, pp.72-75).

[52] M. Oltean. Evolving evolutionary algorithms using linear genetic pro-
gramming. Evolutionary Computation, 13(3):387-410 (2005).

[53] Russell D. Reed, Seho Oh and R.J. Marks II. Regularization using
jittered training data. Proceedings of the International Joint Conference
on Neural Networks, Baltimore MD, pp.III147-III152, June 1992.

[54] Russell D. Reed, R.J. Marks II and S.Oh. An equivalence between
sigmoidal gain scaling scaling and training with noisy (jittered) input
data. Proceedings of the RNNS/IEEE Symposium on Neuroinformatics
and Neurocomputing, (Rostov-on-Don, Russia, October, 1992), pp. 120-
127

[55] Russell D. Reed, R.J. Marks II and Seho Oh. Similarities of error
regularization, sigmoid gain scaling, target smoothing and training with
jitter. IEEE Transactions on Neural Networks, vol. 6, no.3, May 1995,
pp. 529-538.

[56] Russell D. Reed and R.J. Marks II, Neural Smithing: Supervised Learn-
ing in Feedforward Artificial Neural Networks, (MIT Press, Cambridge,
MA, 1999.)

[57] Emad W. Saad and Donald C. Wunsch II. Neural network explanation
using inversion. Neural Networks, Volume 20, Issue 1, January 2007,
pp.78-93

[58] Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. Proceed-
ings of IEEE International Conference on Evolutionary Computation. pp.
6973 (1998).

[59] Y. Shi and R.C. Eberhart. Parameter selection in particle swarm op-
timization. Proceedings of Evolutionary Programming VII (EP98). pp.
591600 (1998).

[60] Adi Shklarsh, Gil Ariel, Elad Schneidman, Eshel Ben-Jacob. Smart
Swarms of Bacteria-Inspired Agents with Performance Adaptable In-
teractions. PLoS Computational Biology, 2011; 7 (9): e1002177 DOI:
10.1371/journal.pcbi.1002177

[61] William Siler and James J. Buckley, Fuzzy Expert Systems and Fuzzy
Reasoning, Wiley-Interscience (2004)

[62] Pietro Terna. Simulation Tools for Social Scientists: Building Agent
Based Models with SWARM. Journal of Artificial Societies and Social
Simulation. vol. 1, no. 2, (1998)

[63] Benjamin B. Thompson, Robert J. Marks II, Mohamed A. El-Sharkawi,
Warren J. Fox, and Robert T. Miyamoto. Inversion of Neural Network
Underwater Acoustic Model for Estimation of Bottom Parameters Using
Modified Particle Swarm Optimizers. 2003 International Joint Confer-
ence on Neural Networks, July 20-24, 2003, Portland, Oregon (pp. 1301-
1306).

[64] Kagan Tumer and David H. Wolpert. Collectives and the design of
complex systems. (Springer, 2004).

[65] Jeffrey J. Weinschenk, William E. Combs, Robert J. Marks II. Avoidance
of rule explosion by mapping fuzzy systems to a disjunctive rule
configuration. 2003 International Conference on Fuzzy Systems (FUZZ-
IEEE), St. Louis, May 25-28, 2003.

[66] Jeffrey J. Weinschenk, Robert J. Marks II, William E. Combs. Layered
URC fuzzy systems: a novel link between fuzzy systems and neural
network. 2003 International Joint Conference on Neural Networks, July
20-24, 2003 , Portland , Oregon (pp. 2995-3000).

[67] Jeffrey J. Weinschenk, Robert J. Marks II, William E. Combs. On the
use of Fourier methods in URC fuzzy system design. FUZZ-IEEE 2004,
Proceedings 2004 IEEE International Conference on Fuzzy Systems,
Budapest, Volume 2, 25-29 July 2004, pp. 911 - 916.

[68] Jeffrey J. Weinschenk, William E. Combs, Robert J. Marks II. On the
avoidance of rule explosion in fuzzy inference engines. International

Journal of Information Technology and Intelligent Computing, vol.1, #4
(2007).

[69] Zhi Yuan, Marco de Oca, Mauro Birattari and Thomas Stützle. Mod-
ern Continuous Optimization Algorithms for Tuning Real and Integer
Algorithm Parameters, in Swarm Intelligence, edited by Marco Dorigo,
Mauro Birattari, Gianni Di Caro, René Doursat, Andries Engelbrecht,
Dario Floreano, Luca Gambardella, Roderich Gross, Erol Sahin, Hiroki
Sayama and Thomas Stützle. Springer Berlin / Heidelberg. isbn = 978-
3-642-15460-7, pp. 203-214, (2010)

VI. APPENDIX

The emergent behavior resulting from the three simple
swarm rules in the Introduction (Section I) are, as follows,

1) This is a simple model used for termites stacking wood
or ants collecting their dead into piles.

2) This is the protector mode analyzed by Gravagne and
Marks [27]. The emergent behavior is attraction of all
the agents to a fixed set of points. If, in the coupling,
all agents can be linked in the rules to all other agents,
convergence is to a single point.

3) This is the refugee mode mode analyzed by Gravagne
and Marks [27], all agents diffusively disperse.

Additional details and movies illustrating the behavior of
these storms are available on NeoSwarm.com.


